
The Enterprise-Participant (EP) Model, a Untyped and Recur-

sive Language Semantically Approximating the Lambda Calculus

Kevin H. Xu
kevin@froglingo.com

Abstract. Many recursive languages, e.g., the simply typed lambda calculus in
which computations always terminate, define infinite functions, i.e., with infi-

nitely many ordered pairs, that don’t include self application functions, i.e., ap-

plying a function to itself is allowed. In this article, we introduce the Enterprise-

Participant (EP) data model, a recursive language that defines bounded func-

tions, i.e., the co-domains are finite while domains are possibly infinite. The

bounded functions include self-application functions. The notion self applica-
tion is a synonym of the notion untyped in programming languages. Self appli-

cation and untyped are normally associated together with the notion of non-

termination, because we put ourselves in the context of programming languages

that define partial computable functions. By limiting ourselves to the bounded

functions in this article, we show that an untyped language doesn’t have to go

together with non-termination and can be practically useful in database man-
agement.

Keywords. The lambda Calculus, Partial Computation (Finite Apprxomiation),

Partial Continuous Functions, Computability, Expressiveness, Data Structure.

1 Introduction

We have been trying to avoid non-terminating computations by using recursive lan-
guages, such as the simply typed lambda calculus, that don’t express self-applications.
To make programming language fully expressible, however, we always include fixed-
point combinators that bring in fixed points including self-applications and at the
same time bring in non-terminating computations. If we have a recursive language
that expresses some of the fixed points and at the same time guarantees terminating
computations, we can improve software development productivity by using the recur-
sive language. The Enterprise-participant data model, abbreviated as EP, is such as a
recursive language for database management.

Example 1.1 The set {x x := x} is an EP database, where x can be viewed as a func-
tion that yields to itself when it is applied to itself, and yields to null (a special con-
stant in EP) when it is applied to other arguments. Given the set {x x := x}, there are
infinitely many expressions x, x x, x x x, x x x x, … that are reducible to x. The letter x
actually represents an approximation to all the functions that yield to themselves after

being applied to themselves, e.g., the identify function λx.x.

Example 1.2 A directed graph with connections from v1 to v2, from v2 to v1, and from

v2 to v3 can be expressed in an EP database: {v1 v2 := v2; v2 v1 := v1; v2 v3 := v3},

 2

where v1, v2, and v3 represent vertices, and an assignment represents a directed con-
nection. In this example, the vertex v1 is viewed as a function that yields to v2 when it
is applied to v2, and yields to null when it is applied to others. The function v2 yields
to v1 when it is applied to v1, v3 when it is applied to v3, and null otherwise. The vertex
v3 is also a function, but a constant one for the time being. It may become a non-
constant function later with an EP update operation. With this database, we can re-
duce infinitely many expressions v1 v2, v1 v2 v1, …, v1 v2 v1 … v1, … to v1. It could be
thought of as if one walked along the circle from v1 to v2 and from v2 to v1 as many
times as she liked and eventually stopped at the vertex v1. The query “is there a path
from v1 to v3 ?” is simply expressed in EP as v3 <=+ v1, where the binary operator <=+
reflects a pre-ordering relation among functions, arguments, and values that exist in a
database. The answer would be the truth value true.

By adding constants, such as integers, strings, and truth values, the EP data model
can express common business data in software development practice.

Example 1.3 A school administration can be expressed in the following database:

SSD.gov John SSN := 123456789;

SSD.gov John birth := ‘6/1/1990’;

SSD.gov John photo.jpg := …; /* a binary stream for a photo*/
college.edu admin (SSD.gov John) enroll := ‘9/1/2008’;

college.edu admin (SSD.gov John) Major := college.edu CS;

college.edu CS CS100 (college.edu admin (SSD.gov John)) grade := “F”;

This database can be alternatively expressed in a diagram:

In this article, we introduce the EP data model, a recursive language that defines EP
databases and a set of built-in operations over the databases. An EP database defines a
finite set of functions, where each function is finite, i.e., finitely many ordered argu-
ment-value pairs. When applying a built-in operator to an EP database, however, the
finite functions in a database are expanded potentially to be infinite. Put differently,

CS admin

CS100
Major

enroll
‘9/1/08’

SSD.gov

John

birth

‘ 6/1/90 ’
 SSN

 123456789

Grade

 “F”

Legends:

application points up to function
application points to argument
assignee points to assigner
an application

college.edu

photo.jpg
 .

 3

an EP database under the build-in operator as a whole actually defines a bounded
function, i.e., the domain is infinite while the co-domain is finite. Such bounded func-
tions actually include self application functions. (The built-in operator is a constant
function – the application that applies an EP term to another, in an analogy to the
application operation of the lambda calculus. We will discuss it in detail later.)

To better understand what the bounded functions are in a relation with computabil-
ity, we develop an approach of partial computations for the lambda calculus, in which
a partial computation enumerates a finite set of properties from the semantics of the
lambda calculus. Recall that the properties of partial computable functions repeat
themselves in an enumeration. Therefore the finite set of properties in the discussion
contains redundant information. We refine the finite set of properties to exclude re-
dundant information before being transformed to an EP database. Conversely from an
EP database, we show that the finite set of properties is recoverable by applying the
built-in application operator. In addition, the built-in application operator actually
defines, under a given database, a bounded function, which approximates the seman-
tics of the lambda calculus as well.

Studying bounded functions definable in the EP data model pertains to have the
following objectives:
1) The nature of being untyped of the lambda calculus, i.e., being without ground

level objects such as integers or allowing self applications, is captured in the
bounded functions and is found practically useful through the EP data model. It is
a contrast to the common view that a system without ground level objects [4] or
having self-applications [3] is not practically useful and a contrast to contempo-
rary language systems where ground level objects normally are in the place be-
fore more complex and meaningful objects can be constructed.

2) Provided that all data desired to be managed in a database is bounded functions
definable in the EP data model, the EP data model is a mathematical underpin-
ning universally for arbitrary data management and data exchange. The desire of
managing the bounded functions for business data is quite reasonable because all
a computer can do is to produce finite approximations to partial computable func-
tions. Even more, the desire is a little luxurious because bounded functions are
more than finite approximations.

3) With the availability of Turing-machine equivalent programming languages, a
data management system equivalent to the EP data model may not be welcomed
in practice if it forces users to manage redundant data, i.e., repeatedly store a
function multiple times. By relating EP databases with finite approximations
where a function many repeatedly appear in the approximations, the EP data
model is allows users to manage business data without data redundancy.

In Section 2, we introduce the EP data model. In Section 3, we introduce an approach
to partial computations of the lambda calculus. The development of the partial com-
putations is aimed to describe the EP data model in the lambda calculus. In Section 4,
we exclude recoverable (redundant) data from finite approximations produced by
partial computations. Further the refined finite approximations are transformed to EP
databases, and therefore we show that every finite approximation can be defined in an
EP database. In Section 5, we give an algorithm of enumerating all EP databases.

 4

With the enumeration, we can show that the EP data model, as an independent lan-
guage, does nothing else but approximate the denotational semantics of the lambda
calculus. In Section 6, we briefly relate the EP data model with other approaches of
approximating partial computable (continuous) functions, with which we can compare
the EP data model with purely typed language systems. We also question if there is a
more expressive recursive language than the EP data model that would be interesting
in database management.

In the article, the proofs to most of the lemmas, corollary, and theorems are pro-
vided in an appendix at the end.

2 The EP Data Model

Rather than defining functions in formulas or algorithms, the EP data model defines
functions in ordered argument-value pairs. A collection of ordered pairs, in the form
of assignments, is called a database. Starting from a set of identifiers, we construct a
set of EP terms.

Definition 2.1 Given a set of constants C including a special constant null and a set of
(functional) identifiers F, the set of EP terms, denoted as E, is defined inductively* as
follows:

x ∈ C ∪ F ⇒ x ∈ E

x, y ∈ E ⇒ x y ∈ E

We adopt many notations from the lambda calculus, including sub-term
† (SUB(t) for

all sub-terms in t), left-most
‡ sub-term (LMS (t) for all left-most sub-terms in t), and

applications without surrounding parentheses, e.g., a b, instead of (a b) when there is
no ambiguity. Given a term a b (c d), for example, SUB (a b (c d)) = {a b (c d), a b, c

d, a, b, c, d}, LMS (a b (c d)) = {a b (c d), a b, a}. Given a term t, we further call a
sub-term of t, except for t itself, a proper sub-term, and therefore we use SUB+(t) to
denote all the proper sub-terms of t, i.e., SUB+ (t) = SUB(t) – {t}.

An EP database (or simply a database) is a finite set of assignments where assign-
ees and assigners are terms. Some terms that have a constant as a left sub term, e.g., 3

t, are not allowed to be in a database. We identify a sub set out of E, denoted as E0,
which is inductively defined as:

x ∈ F ⇒ x ∈ E0

x ∈ E0, (y ∈ C ∪ E0) ⇒ x y ∈ E0

It means that if an application a b is a term in E0, then the left sub term a cannot be a
constant.

An assignment is in the form of

* When an inductive definition is given, it will always be understood that the class defined is

the smallest set satisfying the conditions. It is applied to other inductive definitions intro-

duced later in the article.
† Precisely, t ∈Λ ⇒ t ∈ SUB(t), and m n ∈ SUB(t) ⇒ m, n ∈ SUB(t).
‡ Precisely, t ∈Λ ⇒ t ∈ LMS(t), and m n ∈ LMS(t) ⇒ m ∈ LMS(t).

 5

a := b

where a, b ∈ E0, called the assignee and the assigner respectively.

Definition 2.2 A database D is a finite set of assignments with the following con-
straints:

1) Each assignee has only one assigner, i.e.,

a := b1 and a := b2 ∈ D ⇒ b1 ≡ b2

2) A proper sub term of an assignee cannot be an assignee, i.e.,

a := b ∈ D ⇒ ∀x ∈ SUB+(a) [∀c ∈ E0 [x := c ∉ D]]

3) An assigner is a non-null constant, an identifier, or a proper sub-term of an as-
signee, i.e.,

a := b ∈ D ⇒ b ∈ C – null, b ∈ F, or ∃c, d ∈ E0 [c := d ∈ D and b ∈ SUB+(c)]

4) If there is a sequence of assignments a0 := a1, a1 := a2, …, aj-1 := an ∈ D for a n ≥
1, then an must not be identical to a0, i.e.,

a0 := a1, a1 := a2, …, aj-1 := an ∈ D ⇒ a0 ≠an

The system being discussed in this article was originally called the Enterprise-

Participant data model [8], where given an application a b ∈ E, a was meant an enter-
prise and b a participant. The notion term in Definition 2.1 says a lot about how ob-
jects in the real world interact to each others, such as a person participates in a party.
The constraints in Definition 2.2 require that a participation has a outcome, i.e., ap-
plying a function to an argument yields a value. Put it differently, a database is a col-
lection of functions, each of which has a finite set of triplets function-argument-value,
i.e., a b := c where a, b, c are respectively a function, an argument, and the corre-
sponding value. An assignee is normally an application, and an assigner is a value.
The first constraint ensures that each application yields only one value. The second
constraint prevents two equivalent applications from being assigned with multiple

values. Given assignments a0 … ai … ak := b, ai := c ∈ D, and b ≠ e, for example, we
prevent the assignment a0 … c … ak := e from being in D.

The value of an application is a term which is in turn interpreted as a function as
well. We could choose any term in E to be a value along with an adjustment to the
definition 2.2. But we limit it by the third constraint in an ultimate form desired to
represent a value. The ultimate form is called a normal form.

As a notation, we say that terms a and b are in database, denoted as a, b ∈ D, if a

:= b ∈ D. Similarly, we say that b is in database, denoted as b ∈ D, when there is a

term a ∈ D and b ∈ SUB(a).

Definition 2.3 Given a database D, a term n ∈ E is a normal form in D if it is a con-

stant or a term in D except for an assignee in D, i.e., n ∈ C, or n ∈ D and ∀b ∈ E0 [n

:= b ∉ D].

In other words, a normal form is a constant, an identifier in D, or a proper sub-term of

an assignee, i.e., n ∈ C, n ∈ F ∩ D, or ∃a, b ∈ E0 [a := b ∈ D and n ∈ SUB+(a)]. For

 6

example, the terms x, v1, v2, v3, John, SSD.gov John are normal forms of the example
databases in Section 1. We use NF

D to denote all normal forms with a database D.
Limiting values to be in formal forms doesn’t limit the expressiveness of the EP data
model, as we will see more in detail in coming sections. Instead, it has many benefits:
help users in finding typos during development, improve system performance, and
simplify the theoretical discussion of the EP data model.

Now, we want every term in E to have a value. This becomes possible by introduc-
ing a set of reduction rules.

Definition 2.4 Given a database D, we have one-step reduction rules, denoted as �:
1. An assignee is reduced to the assigner, i.e.,

a := b ∈ D ⇒ a � b

2. An identifier not in database is reduced to null, i.e.,

a ∈ F, a ∉ D ⇒ a � null

3. If a and b are normal forms and a b ∉ D, then a b is reduced to null, i.e.,

a, b ∈ NFD, a b ∉ D ⇒ a b � null

4. a � a’, b �b’ ⇒ a b � a’ b’.

Definition 2.5 Let a � a0, …, an-1 � an for a number n ∈ N. Then we say that a is

effectively, i.e., in finite steps, reduced to an, denoted as a →EP an.

Definition 2.6 A term a has a normal form b if b is a normal form and a →EP b.

If a1 →EP b and a2 →EP b, then we say that b, a1 and a2 are equal, denoted as b == a1

== a2.

Here are a few sample equations under the databases of Section 1:

SSD.gov John SSN == 123456789

college.edu admin (SSD.gov John) Major == college.edu CS

v1 v2 v1 == v1

v1 v2 v1 v2 v1… v1 == v1

x x x == x

With the reduction rules, we want the value of an assignee to be the value of its as-
signer. Note that a reduction may not terminate if there is a set of circular assign-

ments, i.e., there are a chain of assignment a0 := a1, a1 := a2, …, aj-1 := an ∈ D for a n

≥ 1 such that a0 := a1, a1 := a2, …, aj-1 := an ∈ D, and a0 ≡ an. The constraint 2.2.4
ensures that all reductions terminate, which lead to the following conclusion: a term
has one and only one normal form, i.e., it is strongly normalizing.

Lemma 2.7 An assignee has a unique normal form in a database.

Theorem 2.8 A term a ∈ E has one and only one normal form under a database D.

Our discussion has emphasized that under a database D, a term a has a normal form as
its value, either a constant, an identifier in D, or a proper sub-term of an assignee. In
comparing with the contemporary programming language and database management

 7

systems, it is easy to understand that a takes a constant as its value, or a takes a proper
sub-term of an assignee which is not a itself as its value. One difference in the EP
data model is that a proper sub term of an assignee, say a as a term in E, takes itself as
its normal form. It has been a misleading in this article so far to say that a takes a
itself as it’s own value. Precisely, we say that a is a name to a’s value which is not
explicitly given in D but implicitly derivable from D. For example, the term SSD.gov

John is a normal form in the database of Example 1.3. Rather than saying that
SSD.gov John has a value SSD.gov John, we should have said that it has a value of a
function: {(birth, ‘6/1/90’), (SSN, 123456789), (photo.jpg, ‘…’)}, here ‘…’ stands for
a binary stream as the content of a file named photo.jpg. Allowing a proper sub term
of an assignee to take itself as its normal form and to reference an implicit value pro-
vides a syntactical mean to express meaningful applications without constants and to
express self applications in the EP data model. That is the distinguishing feature mak-
ing the EP data model untyped.

In the discussion so far, we have said that an assignee is normally an application.
The definition 2.2 also allows an identifier to be an assignee, which is consistent with
the lambda calculus and its partial computations to be discussed in coming sections.
The definition 2.2.3 doesn’t allow null to be an assigner to prevent users from enter-
ing meaningless assignments into databases because any meaningless terms is re-
duced to null according to 2.4.

Before ending this section, we show that given a database D, the EP data model de-

fines a total function with a bounded support. A function f : X → Y, where X and Y
are arbitrary sets of objects, has a finite support if and only if there exists a finite set A

⊂ X and a member a ∈ Y such that

f(x) = b, where b ∈ Y and b ≠ a if x ∈ A

 a if x ∉ A

A function f : X → Y, where X and Y are arbitrary sets of objects, has a bounded

support, if and only if there exists a finite set A ⊂ Y such that

f(x) ∈ A for all x ∈ X.

In this article, we simply call a function finite if it has a finite support, and bounded if
it has a bounded support. A finite function is bounded, but a bounded function may
not be finite.

Lemma 2.9. Given a database D, the set of all non-constant normal forms, i.e., NF
D –

C, is finite.

Given a database D and a term m ∈ E, we use mnf to denote m’s normal form.

Theorem 2.10 Given a database D, there exists a computable function YD: E → E
such that

Y
D (m) = mnf

for all m, n ∈ E.

Theorem 2.11 Given a database D, there exists a finite function XD: D → NF
D such

that

 8

X
D (m) = mnf

for all m ∈ E and m ∈ D.

Theorem 2.12 If there exists a sequence of assignments a0 := a1, a1 := a2, …, aj-1 :=

an ∈ D for a n ≥ 1 such that a0
nf ≠ null and an ∈ SUB(a0), then YD is not finite but

bounded.

The application function that applies an EP term to another, e.g., a b ∈ E for arbitrary

a, b ∈ E, is the constant application operator we discussed in Section 1. There are

many more operators including <=+ mentioned in Example 1.2 that stem from the
relationships between functions, argument, and value and are not discussed here. For
more information, please reference [6] and [7].

3 Partial Computations of the Lambda Calculus

In Section 2, we showed that EP terms are structurally similar to lambda applications
and the EP data model defines bounded functions including self application functions.
In this section, we develop a partial computation of the lambda calculus which enu-
merates finitely many closed lambda terms. Given a closed lambda term§, all terms
that share the same term as the left most sub term and have normal forms are said in
this article to be the properties of the given term. A partial computation produces a
finite set of such properties which approximate and converge to the whole properties
of a given term. Finite approximations as syntactical objects, i.e., a finite set of prop-
erties from partial computations, are refined to exclude redundant information, and
eventually expressed in an EP database. As a result, we say that an EP database ap-
proximates the properties of a lambda term, or simply we say that an EP database
approximate a lambda term semantically.

Through discussing partial computations of the lambda calculus, we are also able
to relate the syntax of the EP terms with the syntactical structure of lambda applica-
tions. It further helps us to better understand what the EP data model is exactly. In this
section, we introduce the approach of partial computations of the lambda calculus.
We will see how we transform a finite approximation to an EP database in the coming
section.

Given a n-ary number-theoretical partial recursive function ϕe: N
n → N, e.g., in the

form of Kleene’s systems of equations, and a number s ∈ N, i.e., {0, 1, …}, for a
finite computational steps, we have a partial computation that produces a finite ap-

proximation ϕe, s to ϕe such that:

ϕe, s (x1, x2, …, xn) = y if x1, …, xn, y ≤ s and ϕe (x1, x2, …, xn) ↓s y

Here ϕe (x1, x2, …, xn) ↓s y denotes that ϕe (x1, x2, …, xn) converges within s steps and

the output is y. (In other words, there exists a Turing program P for computing ϕe that

§ Note that we only consider closed lambda terms that sufficiently gives us a full account of

partial continuous functions to be discussed in this article.

 9

terminates within s steps and produces the output y.) As a finite set, the approximation

ϕe, s can be rewritten as a finite set of n-ary tuples:

ϕe, s = {<(x1, x2, …, xn), y> | x1, …, xn, y ≤ s and ϕe (x1, x2, …, xn) ↓s y}

and the union of all approximations is ϕe itself:

ϕe = ∪s∈N ϕe, s

Given a closed lambda term M0 ∈ Λ0 in the lambda calculus, we would like to have a
similar partial computation for M0. It comes with a few adjustments. First of all, we
need to consider all the terms that have M as a left most sub term, i.e.,, M0, M0 M1, …,

M0 M1 M2 … Mn, … for all M1, M2, … Mn, … ∈ Λ0, in contrast to a fixed number n.
Formally, we define a set as the complete properties of a lambda term M0:

Definition 3.1 Given M0 ∈ Λ0, the set [M0] is defined as:

[M0] = {(M0 M1 … Mn, Q) | n ≥ 0; M1, …, Mn ∈ Λ0; and M0 M1 … Mn ↓ Q}

here we use M0 M1 … Mn ↓ Q to denote that M0 M1 … Mn has a normal form Q ∈ Λ0.
The set [M0] considers all terms that vary in their sizes, i.e., the number n in M0 M1

… Mn varies from 0 to any number in N. It is necessary because of head normal
forms. Recall that a term M0 has a head normal form if and only if there exist M1, …,

Mn ∈ Λ0, where n ≥ 0, such that M0 M1 … Mn has a normal form [4]. If all terms M0

M1 … Mn with a fixed n don’t have normal forms, we would not be able to expose
potential normal forms of applications M0 M1 … Mn Mn+1 … Mn+i for some i > 0.

Even if a normal form has been found for a term M0 M1 … Mn, we continue to
count terms M0 M1 … Mn Mn+1 … Mn+i for i > 0 in the set [M0] as long as they have

normal forms. Let I = λx.x, for example, all the pairs (I I, I), (I I I, I), … will be in [I].
We are interested in all terms that have M0 as a left most sub terms when we study the
properties of M0, particularly in studying the relationship of the EP data model with
the lambda calculus.

To give a partial computation, we assume (and we know it is possible) that all

terms in Λ0 are in a sequence, e.g., N0, N1, …. Given M ∈ Λ0, we use #M to denote its
index in the sequence. Using Contor’s diagonal method, we have the following defini-
tion:

Definition 3.2 Given M0 ∈ Λ0 and s ∈ N, the set [M0]s is defined as:

[M0]s = {(M0 M1 … Mn, Q) | n ≥ 0; n, #M1, …, #Mn, #Q ≤ s; M0 M1 … Mn ↓s Q}

here we use M0 M1 … Mn ↓s Q to denote that M0 M1 … Mn is reduced to a normal
form Q within s steps and further M0 M1 … Mn ≠ Q.

Note that if M0 M1 … Mn itself is a normal form (in this case, n must be 0), the pair
(Q, Q) is not included in the set [M0]s. There is no need to keep (Q, Q) in the set, and
the corresponding EP data model doesn’t allow it as well.

In the definition above and in the rest of the article, the symbol ≠ is always meant

to “is not identical”,
To come up with a truly finite set in which each element is also finite as an ap-

proximation to a partial continuous function, we need another adjustment to the ap-

 10

proach of the approximations of partial recursive functions. Recall that xi for 1 ≤ i ≤ n

and y in ϕe, s are numbers, ground level values, that cannot be further approximated by

other objects. Therefore ϕe, s is in fact a finite approximation. Terms M1, …, Mn, and P

in [M0]s, however, don’t have their own finite approximations because they represent
infinite functions. Therefore [M0]s is not a truly finite approximation to partial con-
tinuous functions. In stead of enumerating the properties of just one term, we enumer-

ate all terms M ∈ Λ0:

Definition 3.3 Given s ∈ N, the set, denoted as [Λ0]s, is defined as

[Λ0]s = ∪#M ≤ s [M]s

Writing differently, we have

[Λ0]s = {(M0 M1 … Mn, Q) | n ≥ 0; n, #M0, #M1, …, #Mn, #Q ≤ s; M0 M1 … Mn ↓s Q}

Definition 3.4 The properties of all the closed lambda terms can be represented in a

set [Λ0] such that

[Λ0] ={(M0 M1 … Mn, Q) | n ≥ 0; M0, M1, …, Mn ∈ Λ0; and M M1 … Mn ↓ Q }

Theorem 3.5 Given s ∈ N,

1) [Λ0]s is finite and recursive.

2) [Λ0]s ⊆ [Λ0]s+1.

3) [Λ0] = ∪s∈N [Λ0]s

Proof. The results are clear from the definitions 3.2, 3.3, and 3.4 themselves.

4 EP Databases Defining Approximations

With a set [Λ0]s, our attention is no longer with lambda terms and their reductions,

e.g., M0, M1, …, Mn, and Q in [Λ0]s, but relationships among them, e.g., how Mi for an
i ≤ n and sub terms of Mi are related to terms M0 M1 … Mn and Q. As a matter of fact,

each lambda term, as far as the set [Λ0]s itself is concerned, doesn’t represent its own
semantics any longer, but acts as a name (an identifier) representing an approximation

to its semantics. In other words, the relationships among the terms in [Λ0]s are pre-
served if the lambda terms, e.g., M0, M1, …, Mn, and Q, are substituted with identifi-
ers, e.g., those from F in the EP data model. The set

 [Λ0]s = {(I I, I), (I W, W), (W I, I)}

where I ≡ λx.x and W ≡ λx. x x, for example, is equivalent to an EP database

{a a := a; a b := b; b a := a}

in the sense that two sets give the same relationships among two objects.

The relationships among the terms in [Λ0]s are represented in the EP data model.

First we convert a refined subset of [Λ0]s into an EP database. In Section 3, we al-

lowed two terms sharing the same left most sub terms to be in [Λ0]s as long as they
have normal forms, i.e.,

 11

(M0 M1 … Mn, Q) ∈ [Λ0]s,

(M0 M1 … Mn Mn+1 … Mn+i , Q’) ∈ [Λ0]s for some i > 0.

The lambda calculus tells us that there exists another expression Q Mn+1 … Mn+i such

that it can be reduced to Q’. Therefore we may have a third pair in [Λ0]s, i.e.,

(Q Mn+1 … Mn+I , Q’) ∈ [Λ0]s for some s ∈ N.

To fit [Λ0]s in an EP database, we need to exclude the second pair from [Λ0]s due to
the constraint posted in Definition 2.2.2. On the other hand, the resulting set, denoted

as [Λ0]s
¯, contains enough information to recover the second pair by using the EP data

model when [Λ0]s
¯ is converted to an EP database.

Definition 4.1 Given s ∈ N, the set, denoted as [Λ0]s
¯, is defined as

[Λ0]s
¯= {(M0 … Mn, Q) | n ≥ 0; n, #M0, …, #Mn, #Q ≤ s; M0 … Mn ↓s Q; and

∀x ∈ SUB+(M0 … Mn) [x ↑s] }

here x ↑s is to denote that x is either a normal form, or after s-step reduction, x is still
not reduced to a normal form.

Now we are ready to replace λ-terms in [Λ0]s
¯ with some identifiers in F. We let

the set of identifiers in F to be bijective to the closed terms in Λ0. Given an identifier

a ∈ F, we used #a to denote its index in the sequence a0, a1, … of F. Given an identi-

fier m ∈ F and a closed term M ∈ Λ0, m is said to be the identifier for the term M if
#M = #m. In the discussion, we always use capital letters to represent closed lambda

terms, e.g., M ∈ Λ0, and small letters to represent identifiers, e.g., m ∈ F. Given a
letter with different cases, e.g., m and M, we imply that #M = #m.

Definition 4.2 Given a set of pairs of closed lambda term S, a new set, denoted as S

(F/Λ0), is obtained by replacing closed terms in S with their corresponding identifiers
in F and rewriting a pair as an assignment, that is

S (F/Λ0) = {m0 … mi := q | (M0 … Mn, Q) ∈ S}

A set S in the definition above can be [Λ0], [Λ0]s, or [Λ0]s
¯. We may rewrite [Λ0]s, and

[Λ0]s
¯ as

[Λ0]s(F/Λ0) = {m0 … mi := q | n ≥ 0; n, #m0, …, #mi, #q ∈ s; M0 … Mn ↓s Q}

[Λ0]s
¯(F/Λ0) = {m0 … mi := q | n ≥ 0; n, #m0, …, #mi, #q ∈ s; M0 … Mn ↓s Q; and

∀x ∈ SUB+(M0 … Mn) [x ↑s]}

Now we prove that a [Λ0]s
¯ (F/Λ0) is an EP database.

Theorem 4.3 [Λ0]s
¯ (F/Λ0) is an EP database.

From the proof above, we see that Q in a pair (M0 … Mi … Mn, Q) ∈ [Λ0]s or [Λ0]s
¯ is

always a normal form. Therefore the corresponding q in the database [Λ0]s
¯ (F/Λ0) is

always an identifier. It tells us that the constraint of 2.2.3 that doesn’t allow arbitrary

 12

terms but a limited set of terms including identifiers to be assigners doesn’t impact the
expressiveness of the EP data model.

In 2.2.3, we allow an application to be an assigner as long as it is a proper sub-term
of an assignee, e.g., if a (b c) := d is in a database, then e := b c is allowed to be in a
database. Actually it is a way to maximize redundancy reduction by more closely
following the process of partial computations. At the above, we refined a finite ap-

proximation [Λ0]s to [Λ0]s
¯ by excluding a pair (M0 … Mi … Mn, Q) ∈ [Λ0]s from

[Λ0]s
¯ if there is another pair (M0 … Ni … Mn, Q) ∈ [Λ0]s such that (Mi, Ni) ∈ [Λ0]s

for an i ≥ 0, where Ni is a normal form and Mi is not. Actually the same redundancy
reduction can be done even if Ni is not a normal form but as long as it is reducible
from Mi with s steps. The resulting databases will have applications as assigners. As a
matter of fact, the resulting databases utilize the full syntactical flexibilities given in
Definition 2.2.3. (Note that constants as assigners are not discussed here because we
excluded constants as part of the discussion starting from Section 3).

Another issue that is worth to mention but we don’t have space to elaborate here is
also related to applications as assigners. When an assigner is an application, we may
face multiple choices in converting a lambda term Q to an EP term q in Definition 4.2

where the definition S (F/Λ0) = {m0 … mi := q | (M0 … Mn, Q) ∈ S} is given. Taking

Q as M N, for example, q can be m n or an identifier, say p ∈ F, such that #p = #(M

N). Nevertheless, it makes no difference in choosing either m n or p in [Λ0]s
¯ (F/Λ0)

because the semantics of p and m n converge to be identical when the number of the
computation steps s approaches infinite.

In the rest of the section, we show that the EP data model is as informative as a
Turing-machine equivalent programming language, i.e., all finite approximations of
partial computable functions can be defined in the EP data model.

Definition 4.4 Given a database D, a function Z is defined as

Z(D) = {(m, n) | m ∈ E, n == mnf}

Theorem 4.5 Given a finite approximation [Λ0]s, we can always find a database D
such that

[Λ0]s(F/Λ0) ⊆ Z(D)

Theorem 4.6 Given a sequence of approximations [Λ0]0, [Λ0]1, …, we can find a
sequence of databases D0, D1, … such that

[Λ0] (F/Λ0) ⊆ ∪s∈N Z(Ds)

5 An Enumeration of EP Databases

In this section, we give an enumeration for all EP databases. The aim is to show that

the EP data model does nothing else but approximates the complete properties [Λ0] of
all partial computable functions.

There are three dimensions we have to consider: infinitely many constants in C, in-
finitely many identifiers in F, and infinitely many left-most sub-terms a term may

 13

contain. The idea is to set an up bound s ∈ N for the number of constants, the number
of identifiers, and the number of the left-most sub-terms of a term, e.g., the size of a
term, a database is allowed to contain. We can find all the databases with the bound
s, denoted as Ds. Using Cantor’s diagonal method, we can find all databases with the
bound s + 1, where the bounds of constants, identifier, and the size of a term in a da-
tabase is increased by 1.

Instead of the notation Ds, we use a triplet [C, F, k] to denote all the databases gen-
erated with up bounds C – a finite set of constants, F – a finite set of functional identi-
fier, and k – the size of a term. Correspondingly [C + 1, F, k] denotes databases with
an extra constant, [C, F + 1, k] denotes database with an extra identifier, and [C, F, k

+ 1] denotes databases with a term whose size is up to k + 1. Therefore [C + 1, F + 1,
k + 1] = Ds+1 when [C, F, k] = Ds.

Before precisely giving the algorithm of enumerating databases, we demonstrate
how we obtain [{c}, {}, 2], [{}, {f}, 2], [{}, {f}, 3], and [{c}, {f}, 2].

To save space, we use a pair (m, n) to denote an assignment m := n. Further, we ig-
nore an assignment where the assignee is an identifier because the identifier as the
assignee doesn’t add a new function into databases but serves as an alias (an alterna-
tive name) of the assigner.

Example 5.1 An enumeration of [{c}, {}, 2]
1. The allowed symbols are c.
2. All the terms with 2 as the maximum size are c, c c. According to 2.2, c c cannot

be an assignee. We underline it, indicating that it cannot be an assignment.
3. There is not a valid assignment (a constant cannot be an assignee).
4. There is no database generated.

Example 5.2 An enumeration of [{}, {f}, 2]
1. The allowed symbols are f.
2. All the terms with 2 as the maximum size are f, f f.
3. All the possible assignments are (f f, f), (f f, f f). (the assignment f f := f f is not

allowed by Definition 2.2. We underline it, indicating that it is not a valid as-
signment.)

4. There is only one valid database:{(f f, f)}.

Example 5.3 An enumeration of [{}, {f}, 3]
1. The allowed symbols are f.
2. All the terms with 3 as the maximum size are f, f f, f f f.
3. All the possible assignments are (f f, f), (f f, f f), (f f, f f f), (f f f, f), (f f f, f f), (f f

f, f f f) (the underlined assignments are invalid by 2.2.)
4. There are 3 valid databases: {(f f, f)}, {(f f f, f)}, {(f f f, f f)}, {(f f, f), (f f f, f)},

{(f f, f), (f f f, f f)}, {(f f f, f), (f f f, f f)}. (The underlined sets are invalid data-
bases by 2.2.)

Example 5.4 An enumeration of [{c}, {f}, 2]
1. The allowed symbols are c, f.
2. The allowed terms with 2 as the maximum size are c, f, f f, f c , c f, c c.

 14

3. All the possible assignments: (f f, f), (f f, c), (f f, f f), (f f, f c), (f c, f), (f c, c), (f c,
f f), (f c, f c). (The underlined assignments are invalid by 2.2.)

4. All the database candidates: {(f f, f)}, {(f f, c)}, {(f f, f c)}, {(f c, f)}, {(f c, c)},
{(f c, f f)}, {(f f, f), (f f, c)}, {(f f, f), (f f, f c)}, {(f f, f), (f c, f)}, {(f f, f), (f c, c)},
{(f f, f), (f c, f f)}, {(f f, c), (f f, f c)}, {(f f, c), (f c, f)}, {(f f, c), (f c, c)}, {(f f, c),
(f c, f f)}, {(f f, f c), (f c, f)}, {(f f, f c), (f c, c)}, {(f f, f c), (f c, f f)}. The data-
bases with underlines are invalid by 2.2. There are total 15 valid databases, as
those without underlines.

Definition 5.5 An algorithm to enumerate all the databases [C, F, k] with the up
bounds C – a finite set of constants, F – a finite set of identifiers, and k – the size of a
term is defined as the follows:

1. Let L = C ∪ F, and |L| be the number of members in L.

2. Let Ti be the set of all the terms, each of which take i as its size, where i ≤ k. It is

the permutations of i members from L with repetition. Let |Ti| be the number of
the permutations. |Ti| = ki.

3. Let T be the set of all the terms, each of which take k as the maximum size. Then

T = ∪i ≤ k Ti, |T| = ∑i ≤ k |Ti|.
4. Let A be all the assignments with assignees and assigners from T. It is the permu-

tations of 2 members from T. The size is |A| = |T|2.
5. Let Hi be all the database candidates, each of which takes i members from A,

where 1 ≤ i ≤ |A|. Hi is the combinations of i members from A. |Hi| = |A|! / (i! ×
(|A| - i))!.

6. Let H be all the database candidates, i.e., H = ∪i ≤ | T | Hi, where |H| = ∑i ≤ | T | |Hi|.
7. For each database candidate in H, we create a database space and feed its as-

signments into the database space. If all the assignments pass the constraints de-
fined in 2.2, the candidate database is valid and recorded. Otherwise, it is invalid
and discarded.

The maximum size, the number of assignments, of a database candidate is |T|. The
actual size of a database is always smaller than |T|. The total number of database
candidates is |H|. The actual number of databases in [C, F, k] is always smaller than
|H|.

Theorem 5.6 1. [C, F, k] ⊂ [C + 1, F, k]

2. [C, F, k] ⊂ [C, F + 1, k]

3. [C, F, k] ⊂ [C, F, k + 1]

4. Ds ⊂ Ds + 1

Proof All of them are clear from the algorithm in Definition 5.5 and the examples

5.1, 5.2, 5.3, and 5.4. �

Let D = ∪s∈N Ds

Theorem 5.7 Given a database D ∈ D, there is a lambda term, denoted as λ(D), such

that Z(D) ⊆ [λ(D)] (F/Λ0).

 15

In the following we let λ(D) to denote any lambda term such that Z(D) ⊆ [λ(D)]

(F/Λ0). And further we denote Z(D) as {[λ(D)] (F/Λ0) | D ∈ D}.

Theorem 5.8 Z(D) ⊆ [Λ0] (F/Λ0)

Theorem 5.9 Z(D) = [Λ0] (F/Λ0)

6 Conclusion

The EP data model is a distinguished solution to approximate the denotational seman-
tics of the lambda calculus, e.g.., a domain isomorphic to the space of all continuous

functions from itself to itself, e.g., E∞ = (E∞ → E∞). Different from others such as

Scott’s higher-order function space: En+1 = (En → En) for all n ∈ N, where a sub do-
main En doesn’t allow to have self application functions [2], the bounded functions
definable in the EP data model do contain self application functions. It tells us that the
EP data model and a purely typed language system compensate each other, where the
former defines finitely many total functions allowing self references and the latter
infinitely many functions prohibiting self references [1].

Approximations to partial computable functions are certainly not the partial com-
putable functions themselves. However the union of the approximations and the union
of all partial computable functions amount to the same object: the universe of all
computable information. An approximation, e.g., a bounded function, that has finite
functions each of which has finite ordered pairs (properties) is particularly important
to database management where only finite objects are desired to be manageable. The
relational data model, where tables can be interpreted as level-2 functionals, certainly
cannot define approximations to partial computable functions. A hierarchical data
model, e.g., XML, can be interpreted as finite approximations to partial computable
functions (a detailed discussion is not provided here). However, only the EP data
model defines self application functions (such that more expressible operations can be
applied to databases) and provides users a way to eliminate data redundancy.

Lacking a higher expressive data types in programming languages for finite data is
a reason to utilizing multiple data types such as lists, trees, graph-based structures,
and relations imported from a relational database. As a result, the communications
among the multiple data types complicate software development efforts. The EP data
model eliminates the extra burden in expressing finite data in programming languages
and in data communications.

There are many kinds of approximations to partial computable functions. Primitive
recursive functions can be viewed to be approximations to partial recursive functions.
Purely typed systems such as a purely typed lambda calculus define approximations
to the denotational semantics of the lambda calculus. They are not interesting to us in
this article because they are infinite and not suitable to database management. Finite
approximations to partial recursive functions [3] are interesting because they are finite
and suitable to database management. The bounded functions discussed in the article,
larger than the finite approximations, are interesting us because they are actually finite
sets of finite functions and the corresponding EP data model is recursive for database

 16

management. Is there another kind of approximations that are larger than the bounded
functions and have a corresponding recursive language useful in database manage-
ment?

Acknowledgement: Author thanks Dag Normann for his comments and encourage-
ment.

Reference:

[1] J. R. Longley. “Notions of Computabiloity at Higher Types I”. In Logic Col-
loquium 2000, Vol. 19 of Lecture Notes in Logic, pp 32 – 142.

[2] D. Scott. “Outline of a Mathematical Theory of Computation”. Proc. 4th Ann.
Princeton Conf. On Information Sciences and Systems, Princeton Univeristy,
Princeton, N.J., 1970, pp. 169-176.

[3] R. Soare. “Computability and Recursion”. Bulletin of Symbolic Logic 2
(1996), pp. 284 -321.

[4] C. P. Wadsworth. “The Relation Between Computational and Denotational

Properties For Scott’s D∞-Models of the Lambda-Calculus”. SIAM J. Com-
put. Vol. 5, No. 3, September 1976, pp 448 – 521.

[5] K. H. Xu. “A Bi-directional Mapping between Froglingo Programming Lan-

guage and the Lambda Calculus”. Technical Report, September 2011, avail-
able at http://www.froglingo.com.

[6] K. H. Xu, J. Zhang, S. Gao. “Approximating Knowledge of Cooking in

Higher-order Functions, a Case Study of Froglingo”. Workshop Proceedings
of the Eighteenth International Conference on Case-Based Reasoning
(ICCBR 2010), page 219 – 228.

[7] K. H. Xu, J. Zhang. “A User’s Guide to Froglingo, An Alternative to DBMS,

Programming Language, Web Server, and File System”. Available at the
website: http://www.froglingo.com.

[8] K. H. Xu, B. Bhargava. “An Introduction to the Enterprise-Participant Data

Model”. The Seventh International Workshop on Database and Expert Sys-
tems Applications, September, 1996, Zurich, Switzerland, page 410 - 417.

 17

7 Appendix

Lemma 2.7 An assignee has a unique normal form in a database.

Proof When a term a0 is an assignee in a database D, we may find a chain of assign-

ments: a0 := a1, …, aj-1 := aj ∈ D for j ≥ 1. By 2.4.1, if aj has a normal form, then a0
takes a0’s normal form as its unique normal form. First, j must be a finite number
because there are only finite assignments in D and there is not a set of circular as-
signments in D by 2.2.4. Secondly, aj must be a normal form, i.e., a constant or a
proper sub-set of an assignee in the database D because it can no longer be an as-
signee according to 2.2.3. Because j is finite, we obtain aj as the normal form of a0 in

finite steps. �

Theorem 2.8 A term a ∈ E has one and only one normal form under a database D.

Proof Here is the algorithm that calculates the normal form of a:

1. If a is a constant or an identifier in D, i.e., a ∈ C ∪ (F ∩ D), a itself is its only

normal form by Definition 2.3. In one step, we prove a →EP a.
2. If a is an identifier not in database D, a is reduced to null (the only normal form)

by Definition 2.4.2, i.e., a →EP null. The reduction takes finite steps because D is
finite.

3. If a is an identifier as an assignee in database D, it has a unique normal form by
2.7.

4. If a is an application, e.g., a ≡ p q, we assume that p and q have their unique
normal forms p’ and q’ respectively, obtained in finite steps.

a) If p’ q’ is not in database, i.e., p’ q’ ∉ D, then p’ q’ →EP null by Definition

2.4.3. We further have a ≡ p q →EP p’ q’ →EP null. Therefore a is uniquely
reduced to null. The reduction takes finite steps because D is finite.

b) If p’ q’ is a proper sub-term of an assignee. By the definition of normal
forms (Definition 2.3), p’ q’ is the unique normal form by itself. The reduc-
tion takes finite steps because D is finite.

c) If p’ q’ is an assignee, it has a unique normal form by 2.7. �

Lemma 2.9. Given a database D, the set of all non-constant normal forms, i.e., NF
D –

C, is finite.

Proof There are finitely many assignments and each assignment has finitely many

sub terms. Therefore there are finitely many terms m such that m ∈ E and m ∈ D. By

the Definition 2.3, the total number of non-constant normal forms in D is finite. �

Theorem 2.10 Given a database D, there exists a computable function YD: E → E
such that

Y
D (m) = mnf

for all m, n ∈ E.

 18

Proof By Theorem 2.8, m has one and only one normal form. Therefore Y
D is a

function. YD is computable because the reduction process from a term to its normal

form is effective.�

Theorem 2.11 Given a database D, there exists a finite function XD: D → NFD such
that

X
D (m) = mnf

for all m ∈ E and m ∈ D.

Proof: There are finitely many assignments and each assignment has finitely many

sub terms. Therefore there are finitely many terms m such that m ∈ E and m ∈ D.

Since YD is a function, so is XD ⊂ YD is a finite function. �

Theorem 2.12 If there exists a sequence of assignments a0 := a1, a1 := a2, …, aj-1 :=

an ∈ D for a n ≥ 1 such that a0
nf ≠ null and an ∈ SUB+(a0), then YD is not finite but

bounded.

Proof: Given any term m ∈ E, we have mnf ∈ NF
D, a finite set. Therefore, YD is a

bounded function.

When an = SUB+(a0), we can rewrite a0 as a context filled with an, i.e., a0 ≡ C[an].
Due to the sequence of the assignments, we have a0 == an. It means that a0 is equal to
a infinitely many terms C[an], C[C[an]], …, C[C…[C(an)]…]. It concludes that there

are infinitely many elements m ∈ E such that mnf != null because a0 has a non null
normal form. On the other hand, there are infinitely many terms equal to null, e.g,

infinitely many identifiers having null as the normal form. Therefore YD is not finite.�
Y

D is the constant application operator we discussed in Section 1. There are many
more operators including <=+ mentioned in Example 1.2 that are not discussed here.
For more information, please reference [6] and [7].

Theorem 4.3 [Λ0]s
¯ (F/Λ0) is an EP database.

Proof We show that [Λ0]s
¯ (F/Λ0) satisfies the constraints posted in Definition 2.2.

1) [Λ0]s
¯ (F/Λ0) is a finite set of assignments because [Λ0]s is a finite set.

2) Each assignee has only one assigner (in a satisfaction of 2.2.1), i.e.,

a := b1 and a := b2 ∈ [Λ0]s
¯ (F/Λ0) ⇒ b1 ≡ b2

because there are not two assignees that are identical in the [Λ0]s
¯ (F/Λ0).

3) A proper sub term of an assignee cannot be an assignee (in a satisfaction of

2.2.2). If there is an assignment a := b ∈ [Λ0]s
¯ (F/Λ0) and let x ∈ SUB+(a), then

we cannot have a c such that x := c ∈ [Λ0]s
¯ (F/Λ0) according to the definition of

[Λ0]s
¯ (F/Λ0) given in Definition 4.1.

4) There is not a set of circular assignments in [Λ0]s
¯ (F/Λ0), i.e., if there is a se-

quence of assignments a0 := a1, a1 := a2, …, aj-1 := an ∈ [Λ0]s
¯ (F/Λ0) for a n ≥ 1,

then an must not be a0. In each a := b ∈ [Λ0]s
¯ (F/Λ0), the corresponding lambda

term B is a normal form. Therefore, we cannot have a c such that b := c ∈ [Λ0]s
¯

(F/Λ0) according to Definitions 3.2 and 3.3. Therefore, there is not a set of circu-

lar assignments in [Λ0]s
¯ (F/Λ0), a satisfaction of 2.2.4.

 19

5) In each a := b ∈ [Λ0]s
¯ (F/Λ0), the corresponding lambda term B is a normal

form, and therefore the corresponding b is an identifier in [Λ0]s
¯ (F/Λ0). It satis-

fies the constraint of 2.2.3 that an identifier is allowed to be an assigner in a data-
base.

Therefore [Λ0]s
¯ (F/Λ0) is a database.�

Theorem 4.5 Given a finite approximation [Λ0]s, we can always find a database D
such that

[Λ0]s(F/Λ0) ⊆ Z(D)

Proof We let D to be initially [Λ0]s
¯ (F/Λ0). For each (M0 M1 … Mn, Q) ∈ [Λ0] where

there is another pair (N0 N1 … Nk, P) ∈ [Λ0] for a k ≥ 0 such that N0 N1 … Nk ∈

SUB+(M0 M1 … Mn), i.e., M0 M1 … Mn ≡ C[N0 N1 … Nk] for a context C[]. In this

case, (M0 M1 … Mn, Q) ∉ [Λ0]s
¯ by Definition 4.1. Then we add the pair (C[P], Q)

(F/Λ0) into D. The resulting Z(D) will include (m0 m1 … mn, q). Note that the expres-

sion (C[P], Q) (F/Λ0) is a pair of lambda expressions substituted by their correspond-

ing identifiers in F, a notation borrowed from Definition 4.2. �

Theorem 4.6 Given a sequence of approximations [Λ0]0, [Λ0]1, …, we can find a
sequence of databases D0, D1, … such that

[Λ0] (F/Λ0) ⊆ ∪s∈N Z(Ds)

Proof By Theorem 4.5, we have ∪s∈N ([Λ0]s(F/Λ0)) ⊆ ∪s∈N Z(D). By Theorem 3.5,

we have [Λ0] = ∪s∈N [Λ0]s, and therefore [Λ0] (F/Λ0) = (∪s∈N [Λ0]s) (F/Λ0) = ∪s∈N

([Λ0]s (F/Λ0)). Then we have [Λ0] (F/Λ0) ⊆ ∪s∈N Z(Ds).�

Theorem 5.7 Given a database D ∈ D, there is a lambda term, denoted as λ(D), such

that Z(D) ⊆ [λ(D)] (F/Λ0).

Proof According to Church’s thesis, D, representing a bounded function YD, can be

expressed in a lambda term λ(D) such that Z(D) = [λ(D)] (F/Λ0). Actually the lambda
term is expressed in multiple fixed points of the lambda calculus [5].

Further we can find more lambda terms, e.g., λ0(D), λ1(D), …, such that Z(D) ⊆

[λi(D))] (F/Λ0) for each i ≥ 0. �

Theorem 5.8 Z(D) ⊆ [Λ0] (F/Λ0)

Proof For each D ∈ D, we have λ(D) ∈ Λ0. Then we have {λ(D) | D ∈ D} ⊆ Λ0 .

Therefore Z(D) ⊆ [Λ0] (F/Λ0) by Theorem .57. �

Theorem 5.9 Z(D) = [Λ0] (F/Λ0)

Proof It is clear from Theorem 4.6 and Theorem 5.8.�

