
 

A data structure that is semantically equivalent to Turing 
machine can be embedded into a constant-dimensional 

Euclidean space  
 

Abstract: The dimension of a graph, particularly a complete graph, is commonly considered to increase 
linearly with the size of the graph. In this paper, we describe the Enterprise-Participant (EP) data model, a 
recursive language and equivalently a data structure that is semantically equivalent to Turing machine. We 
show that the data, including graphs and other transitive relations, in an EP database can be embedded 
into and has an isomorphic image in a constant-dimensional Euclidean space. Embedding the discrete EP 
data into a continuous geometric space provides an opportunity to better enrich statistical machine 
learning by integrating symbolic computing.  
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1  Introduction 
 ​  ​ ​  ​  ​  ​  

The dimension of a graph G, denoted as dim G, is defined as the minimum number n such that G can be 
embedded into an Euclidean n-space En with every edge of G having the unit length 1, [Erdős 1965, Soifer 
2009, Kavangh 2018]. Certain graphs have a constant dim G, such as a path graph has a dimension of 1, a 
tree has a dimension of 2, and a complete-bicolored (bipartite) graph, denoted as Km, n, has dim (Km, n) ≤ 4. 
An arbitrary graph is in general considered to have an unbounded dimension, i.e., it grows linearly with 
the number n of its vertices, particularly dim Kn = n - 1 for a complete graph, denoted as Kn.  

For decades, inventorying a large volume of data and supporting queries on transitive relations have 
been a long and hot research topic. Logic program languages such as Prolog on the top of relational 
databases were used to support queries over transitive relation for knowledge management applications in 
the deductive database research in 1980s and 1990s, e.g., Datalog as a known deductive database system 
[Agrawal 1989], [Ludwig 2009]. Graph, a network-oriented data structure, was used to represent 
transitive relations to manage massive volume of web pages in the Internet in such as Semantic Web 
Technologies, e.g., OWL (Web Ontology Language) designed to manage complex web contents, in 2000s 
and 2010s [Bizer 2009, Halpin 2010]. Graph again has been the data structure carrying transitive relations 
being embedded to a Euclidean space to inject desired knowledge to statistical machine learning models 
since the 2010s [Nickel 2012, Nickel 2017, Bordes 2011, Berant 2012, Berant 2014, Cai 2017]. However, 
these approaches have not been successful with a symptom of an unacceptable system performance, i.e., 
in response time in the symbolic approaches [Liu 1999, Brass 2019] and in the accuracy of prediction in 
machine learning due to the high dimensionality of graph data [Seshadhri 2020, Nickel 2017, Apidianaki 
2022]. To avoid the challenge of the high dimensionality reduction for graphs, embedding hierarchical 
data into a geometric space for machine learning has become popular. The study has shown its 
outperformance over the graph embedding because of its low dimensionality [Berant 2014, Nickel 2017,  
Chamil 2020, Lin 2023]. 

EP is a type and variable free language system and equivalently a data structure with which an EP 
database can be constructed. EP can represent various transitive relations including cyclical data like a 
graph and hierarchical data. These transitive relations are actually the effect of EP’s reduction rules on the 
top of physical data that are arranged in three kinds of hierarchical structures. In this paper, we will show 
that an EP database can be embedded into, and further has an isomorphic image in, a constant 
dimensional Euclidean space because of its underlying hierarchical structures. 

An EP database can be syntactically converted from a finite approximation to the lambda calculus and 
is interpreted as a bounded function, i.e., recursive with infinite domain while guaranteed with a finite 
co-domain [Xu 2017]. As a result, the union of all (infinite) EP databases and equivalently the class of all 
bounded functions are semantically equivalent to the lambda calculus, i.e., equivalent to Turing Machines. 
In other words, we can use EP to accumulate information, formally a proper subset of the properties of the 
class of partially computable functions, as much as the finitely available time and space were allowed. EP 



 

is more expressive than the contemporary data structures, including relational data, tree structures, and 
network structures (graphs).  

Embedding discrete EP data to a continuous space with a constant dimension should help enrich 
statistical machine learning through symbolic computing and prior-knowledge, i.e., in the area of 
informed machine learning [Daniel 2025]. As an example, if we can use EP to embed a set of natural 
language utterances that strictly follow a set of standard syntactic structural rules, into a 
constant-dimensional geometric space through EP, we will be able to use statistical machine learning to 
map those utterances not following the standard rules onto the smooth and continuous geometrical space 
that is featured by the EP-enabled discrete points representing the standard utterances. When a 
non-standard utterance is very close to a standard utterance in distance, we may predict the former is 
actually meant to be the latter. This approach is an alternative to the natural language process solely using 
statistical machine learning.  

In [Xu 2025], a class of bounded functions that is represented by a corresponding class of EP databases 
is found to be Probably Approximately Correct (PAC) learnable. In other words, receiving a finite set of 
sample EP expressions that are randomly selected from its infinite domain, an algorithm exists to 
automatically construct an EP database that produces fresh EP expressions that are not originally received 
as samples. With the unique capacity of a semantically Turing machine equivalent computing power, the 
PAC learnability, the embeddability to a constant dimensional Euclidean space, we believe the EP data 
structure is the foundation of a new generation of machine learning that integrates learnability, statistics, 
and symbolic computing for advanced applications such as a natural language process with more 
intelligence and accuracy. The EP data structure would be similar to the vector data structure for today’s 
statistical based machine learning with an exception that using the EP data structure doesn’t need 
dimensionality reduction. 

In Sections 2, we discuss the differences in the approaches and the results of graph embeddings 
between the traditional graph embedding method and the method using EP. In Section 3, we introduce 
terms and assignments with which an EP database is formed, and additionally the three kinds of trees 
underlying EP databases that enable the embedding of EP data to a constant dimensional space. In Section 
4, we introduce the reduction rules of EP that enable views of transitive data, particularly cyclical data. In 
Section 5, we give an isomorphic image of EP in a constant dimensional Euclidean space. This material in 
Section 5 appears to be tedious but logically is straightforward: mapping EP data to a 6-dimensional 
Euclidean space according to the three kinds of physical tree structures one EP databases. 

2. Related work 

The conclusion that a graph can be embedded to a constant dimensional space using EP doesn’t have a 
simple correlation with the common understanding on a graph’s linearly growing dimension. First, the 
embedding methods of the two approaches are different. When a graph is represented into an EP database, 
the basic notions of vertex and edge are transformed to different notions in EP. The resulting data 
structure, with its own notions of “vertex” and three kinds of “edges”, can be further embedded to a 
constant dimensional Euclidean space, during which the embedding method obeys the rule of a graph 
embedding that the length of an edge maintain to be unit 1. However, the length unit of 1 is no longer 
applied to the edges in the original graph but to the new “edges” in the EP database that transformed the 
graph.  

Secondly, all the properties of a graph are preserved when it is embedded into a constant dimensional 
space no matter what an approach is taken. 

Thirdly, being able to embed a graph to a constant dimensional space may not be interesting at all if 
the embed method doesn’t keep the length of the edges in the original graph to be the unit of 1. Given a 
graph, for example, we can add a vertex right into the middle of an edge and mark the new edge with a 
color while marking the two end vertices of the edge with a second color. The resulting graph would be a 
bipartite graph, which has a constant dimension of at most 4. However, this embedding doesn’t add a 



 

value even though the properties of the original graph are preserved, because we cannot gain anything 
new from such an embedding.  

With that said, we continue being interested in discussing the constant dimensional embeddings 
because we believe the constant dimensional space embedding should help informed machine learning 
[Daniel 2025]. 

3. EP terms and databases for tree-structured relations 

The Enterprise-Participant (EP) data model is a language system and equivalently a data structure with 
which an EP database can be constructed. The idea behind EP is that  The Enterprise-Participant (EP) data 
model is a language system and equivalently a data structure with which an EP database can be 
constructed. The idea behind EP is that we treat all objects to be represented as functions. Given a 
function f that produces a value m when it is applied to an argument n, denoted as f (n) = m, let’s think of 
an exercise in which we inventory the behavior of f in a database. We can rewrite f (n) = m as {f n := m}, 
reading it as: applying f to n is assigned a value m. The set {f n := m}, called a database, is an 
approximation of f. When we apply f to an additional argument n’, we would obtain a better 
approximation {f n := m, f n’ := m’} where f (n’) = m’. In addition, m could be another function such that 
m (p) = q for a given input p. So we can exhibit more properties of f with the accumulated approximation 
{f n := m, f n’ := m’, m p := q} or equivalently {f n p := q, f n’ := m’}. From the database {f n := m, f n’ := 
m’, m p := q}, we can derive: (f (n)) (p) = q.   

The EP data model is described as a language system (F, C, null, ·, (,), :=, D) where   
1)  F is a set of identifiers (function names),  
2) C is a set of constants, disjoint from F. It could include infinite domains such as strings, integers, reals, 
and timestamps. C includes a special constant null​.​  
3)  · is a binary operation that produces a set E such that   

m​ ∈ ​F​  ⇒ ​m​ ∈ ​E  
m ​∈ ​E, (n ​∈​ C  ​∪ ​E) ​⇒​ (m · n) ​∈ ​E  

Here we simply write (m · n) as (m  n) and further m n when (m n) is implied, where m, n, and m n are 
called a function, an argument, and the corresponding application. For a x​ ∈ ​E, we call x a term. We 
further use SUB(x) to denote all the subterms of x, where x ∈ SUB(x) and m, n ∈ SUB(x) when x ≡ m n. 
We use SUB+(p) to denote all the proper subterms of x, i.e., SUB+ (x) = SUB(x) – {x}. 

Identifiers are the most basic building blocks in EP. Like in programming languages, we can choose 
alphanumeric tokens as identifiers, such as abc123, _abc, and more commonly we take words from a 
natural language vocabulary as identifiers, such as hello, John, sport, law, and person.  

A term is either an identifier x​ ∈ ​F or an application x y​ ∈ ​E​ where x ∈ ​E, y ∈ C  ​∪ ​E, such as x 
x, x 3.14, (a b c) (d e 3 (d t 3)) are legitimate terms where x, a, b, c, d, e, t ​∈ ​F.   

By terms alone, we can represent containment relationships. For example, the hierarchical structure of 
geographical locations can be expressed, such as USA Florida Miami. The terms embed transitive 
relations, such as we can infer Miami is part of USA because Miami is part of Florida and Florida is part 
of USA.  

The containment relationships embedded in a term can be formally defined with a built-in 
tree-structured relation. Given a term m n ∈ E, a relation, denoted as {+ 1, is used to represent the 
relationships between the application and its function, i.e., 

m n ∈ E ⇒  m n {+ m  

1 All the built-in transitive relations defined in the paper are denoted with symbols without given a name.  See all the 
operators and their proved properties in [Xu 2010]. 



 

The containment relationships are also defined with a transitive relation. Given a term m0 … mn-1 mn ∈ E, 
where n ≥ 0, the transitive relation, denoted as {=+, represents the relationships between the given term 
and its left-most terms, i.e.,   

m0 … mn-1 mn ∈ E ⇒  
 ​ m0 … mn-1 mn {=+ m0 … mn-1 mn 
 ​ m0 … mn-1 mn {=+ m0  … mn-1  
  ​ … 
 ​ m0… mn-1 mn {=+ m0 

For the earlier geographical containment example, we have USA Florida Miami {=+ USA because USA 
Florida Miami {=+ USA Florida and USA Florida {=+ USA. Given a, b, c ∈ ​E, in general, we have a 
{=+ c if a {=+ b and b {=+ c.  

We just defined one tree-structured relational operator {+ and a transitive relational operator {=+, 
which take the most left identifier of a term in D as a root. When we take the right most identifier of a 
term in D as a root, we develop another tree-structured relation, denoted as {- and the corresponding 
transitive relation {=-. Given a term m n ∈ E, a relation, denoted as {-, is used to represent the 
relationship between an application and its argument, i.e., 

m n ∈ E ⇒  m n {- n.  
Given a term m0 (m1 … mn) ∈ E, where n ≥ 0, a relation, denoted as {=-, represents the relationships 
between the given term and its right-most terms, i.e.,  

m0 (m1 … mn) ∈ E  ⇒   
m0 (m1 … mn) {=- m0 (m1 … mn ) 
m0 (m1 … mn) {=- m1 … mn 
… 
m0 (m1 … mn ) {=- mn 

For example, we have college.edu math math100 (college.edu admin (SSA.gov John)) {=- John. This 
transitive relation is a way to infer that John is associated with college.edu.  Given terms a, b, c, in 
general, we have a {=- c if a {=- b and b {=- c.  

A term can be assigned with another term to form a database. The EP data model is further consists of: 
4)  := is the Cartesian product E × (C  ​∪ ​E), i.e., := = E × (C  ​∪ ​E). When a pair (p, q)​ ∈ :=, we 
denote it as ​p := q, which is called an assignment, where p and q are the assignee and assigner 
respectively.  
5)  D, called a database, is a finite set of terms and a finite set of assignments, i.e., D ​⊂​ (E​  ∪ :=), such 
that for each assignment ​p := q ​∈​ D, where p, q ​∈​ E, the following constraints are met:   

1.​ p has only one assigner, i.e.,  p := q  and p := q’ ​∈ ​D​ ⇒  ​q​ ≡ ​q’  
2.​ A proper subterm of p cannot be an assignee, i.e.,  p := q ​∈ ​D​ ⇒ ∀​x​ ∈ SUB​+(p​) [∀​m​ ∈ ​E [x 

:= m ​∉ ​D]]  
3.​ q can not be an assignee, i.e., p := q  ​∈ ​D​ ⇒ ∀​a ​∈ (​C  ​∪ ​E) [q := a ​∉ ​D]  

A database can be considered as a program representing data and business logic. Here are a few 
examples: 1) {u v := v;  v u := u} for the directed graph including a cycle; 2) {a b c : = d; d (e f) := g}, for 
a random database having a non-cyclic but transitive relation; 3) {Joe birth date =  '03/20/1980'; Joe 
height =  6; Joe weight =  180; joe male} for a random database; and 4) {SSA.gov John SSN := 
123456789; SSA.gov John birth := ‘6/1/1996’; college.edu admin (SSA.gov John) enroll := ‘9/1/2014’; 
college.edu admin (SSA.gov John) major := college.edu math; college.edu math math100 (college.edu 
admin (SSA.gov John)) grade := A; GroceryStore (SSA.gov John);}, for a sample school administration 
database. 
   To this end, we give Fig. 1 showing the data structures for a few sample databases.  



 

 
Before moving on to the next section, we introduce a syntactical order among terms E, designated by one 
of its operators <EP, that is used for physical data storage and referenced in Section 5. Given any m, n ∈ 

E,  
1 If m ≡ n, then m is equal to n, denoted as m =EP n; 
2 If m and n are identifiers or constants and m is alphanumerically smaller than m, then we say m is 
smaller than n, denoted as m <EP n. 
3 If m ≡ s0 … sk mk+1 … mi and  n ≡ s0 … sk nk+1 … nj, where k ≥ 0, i and j > 1, mk+1 <EP nk+1, then m <EP n. 
For example, we have jessie <EP joe, Florida Miami (South Beach) <EP Florida Tampa. 

 
4  EP Reductions for pre-ordering relations 

As part of the EP data model, a set of reduction rules are available on an EP database. Given a database 
D, a term n​ ∈ ​C ​∪​ E is in EP normal form (or normal form in brief) if and only if  
1. It is a constant c​ ∈ ​C, or  
2. It is a term n​ ∈ ​D and n is not an assignee, i.e., n​ ∈ ​D​ and ∀​b ​∈ ​E [n := b ​∉ ​D].  
   Let NF(D) denote the entire set of normal forms under a database D, where null ∈ NF(D) and other 
constants c​ ∈ NF(​D) only if c​ ∈ ​D.   
Definition 4.1 Given a database D, we have one-step reduction​ rules, denoted as ➛D:​  
1. An assignee is reduced to the assigner, i.e., a := b​ ∈ ​D​ ⇒  ​a ​➛D​ b  
2. An identifier not in the database is reduced to null, i.e., a ​∈ ​F, a ​∉ ​D​ ⇒  ​a ​➛D ​null  
3. If a and b are normal forms and a b ​∉ ​D, then a b is reduced to null, i.e.,  

a, b​ ∈ ​NF(D), a b ​∉ ​D​ ⇒ ​a b​ ➛D ​null  
4. a​ ➛D ​a’, b​ ➛D ​b​’ ⇒ ​a b​ ➛D ​a’ b’ 
   If we have a sequence of reductions: a ​➛D​ a0, a0 ​​ ➛D a1, …, an-1 ➛D​ an, where ​n ≥ 0​, we say that a is 
effectively, i.e., in finite steps, reduced to an, denoted as a​ →​D an.  If a1​ →​D b and a2​ →​D b, then we say 
that b, a1 and a2 are equal (equivalence relation), denoted as b == a1 == a2. We also define a == a for any 
term a​ ∈ ​D. Note that given an application, e.g., a b c, the sequence of the reductions toward its normal 
form is unique because the restricted syntactical form of an application only allows one unique reduction 
sequence, e.g., a b c is restrictedly written as ((a b) c).  
   A term a has a normal form b if b is in normal form and a​ →​D b. Any term a​ ∈ ​C ​∪​ E under a 
database D has one and only one normal form and can be effectively reduced in finite steps. A constant, 
such as null, 3.14, or “Hello”, is always in normal form.   
   With the EP reduction rules introduced, we give two sample databases representing graphs. First, we 
give a graph with a single directed link with two end vertices: D = {u1 u2 := u2}. EP has a reduction on D:  
u1 u2​  →​D  u2. Here the vertex u1 can be viewed as a function that yields to u2 when it is applied to u2, 
which simulates that one from u1 can walk over to u2. Because the database is only defined with the single 
pair {u1 u2 := u2}, applying u2 to anything else would yield to meaningless, denoted as null in EP: u2 y​  



 

→​D  null for any y. This reduction says that one from u2 cannot reach out to anything else. In this 
database, NF(D) = {null, u1, u2}.  
   Now, let’s give another EP database representing a graph with a triangle: D = {v1 v2 := v2;  v2 v1 := v1;  v2 
v3 := v3 ; v3 v2  := v2; v3 v1  := v1; v1 v3 := v3}, where each undirected edge is expressed by a pair of directed 
edges, for example, v1 v2 := v2 and  v2 v1 := v1 for the edge between vertices v1 and v2. With the database D, 
the system has the following infinitely possible reductions:  

v1 v2 v1 ​→​D  v1   
v3 v2 v1 v2 … v1​ →​D  v1   
…   

  The sample reductions above simulate how one can walk from one vertex to another along the edges of 
the triangle. In this database, NF(D) = {null, v1, v2, v3}.  
   Given a database D, there is a function YD: E  →  NF(D) that is defined as: 
              YD = {(m, n) | m ∈ E, n ∈ NF(D), and m →D n}.  
We call such a function YD bounded because E is infinite and NF(D) is finite. To support the discussion in 
the coming section, we further introduce another set similar to but semantically equivalent to YD, where 
only meaningful terms (reduced to non-null normal forms) are included: 

WD = {(m, n) | m ∈ E, n ∈ NF(D)  \ {null}, and m →D n}.  
Given a database, potentially an arbitrary number of terms can be reduced to a non-null normal form. For 
example, D = {x x := x} has WD = {(x, x), (x x, x), (x x x, x), …}, where except for the first two elements, 
the others are derived by reductions. Note all databases have infinite elements in WD. For example, D = {a 
b c := d; d e := f;} has only one derived element (a b c e, f) in WD and D = {a b c := c;} has no derived 
elements in WD. 
    Given an equivalence relationship m n == q under a database D, a binary relation, denoted as (+, is 
defined to represent the relationship between m and q, i.e., 

m n == q ⇒  q (+ m 
Given m0 … mn-1 mn == q under a database D, where n ≥ 0, we define a pre-ordering relation, denoted as 
(=+, such that 

q (=+ m0 … mn-1 mn 
q (=+ m0 … mn-1  
 … 
q (=+ m0 

Given a database {a b c : = d; d e := f}, for example, we have f (=+ a because f (=+ d and d (=+ a. Given a 
→D b and b →D c, we also have c (=+ a. Given a graph with two vertices u and v connected by two 
bi-directional connections, represented as D = {u v := v; v u := u}, a path from u to v  is expressed as v (=+ 
u; and a cycle between u and v is expressed as (v (=+ u and u (=+ v). We demonstrate these relationships 
in Fig. 1.2 and 1.3. The relations ==, {=+, {=-, and (=+ are all pre-ordered. We are more interested in 
calling (=+ a pre-ordered relation because it can express paths and cycles in a graph and other cyclical 
data.   

5  An isomorphic mapping between EP and a substructure in a 
constant-dimensional Euclidean space 

Given a database D over E and an Euclidean space with a dimension of 6, denoted as R, we develop a 

mapping from D to R, from which we obtain an image of D, denoted as D. On the top of D, we develop 

an image of EP’s one-step reduction rule ➛D, denoted as ➛D. With the reduction rule ➛D, we expand D 

to WD ⊂ R, attempted to be an image of WD in EP. We further show the structures D and ➛D are 



 

isomorphic to the corresponding images D and ➛D respectively while WD is an injection to WD, where 

WD is added with many intermediate results that do not impact the reserve surjection from WD to WD. 

Before we start the discussion, we give alternative notations in a data structure for the notations in an 
EP database so that we can exchangeably use all of them. Fig. 1.1 and 1.3  give the data structures for two 
sample databases introduced in Section 3, where a dot (node) represents an application that is connected 
to the function using an up-down link and to the argument using a dashed arrow. A dot doesn’t have a 
label but it can be named by the corresponding application, e.g, u v in Fig. 1.3, according to the data 
structure having an upward link to the function and a dashed arrow to the argument from the dot. Given 
an assignment, the assignee connects to the assigner using a solid arrow, e.g., the dot u v points to v. Any 
term in D is called a node in the corresponding data structure, e.g., the label v, the dot named as u v in Fig. 
1.3. See Appendix A for a formal discussion that builds an isomorphism between an EP database and the 
corresponding EP data structure.  

5.1  Database image D in R 
While other and likely better embedding methods are available, such as Hyperbolic embeddings [Nickel 
2017,  Chamil 2020, Lin 2023], we simply choose a Euclidean space R of a dimension of 6 for a 
demonstration purpose in this section. The idea is very simple: let each of the 3 categories of the 
hierarchical structures under {=+, {=-, and := take one plane in R. Specifically, the trees under {=+ are in 
the first plane, denoted P1, the trees under {=- are in the second plane, P2, and the trees under := (and 
later extended to ==) are in the third one, P3. 

For a given node in a database, e.g., m ∈ D, we reserve a space on a plane, e.g., P1. The space is 
defined by 1) an open interval (x1, x2) where x1 and x2 are fractions along X-Axis, and 2) a semi-closed 
interval [y, ∞) where y is a non-negative integer along Y-Axis. For example, in Fig. 3.1, the term d is 
reserved in P1 with the area surrounded by dashed lines right below the letter “d” at the center of the 
figure. It is precisely defined by the intervals (⅓, ⅔) and [1, ∞).   

To maintain EP’s physical storage constraints, e.g., nodes must be stored in an ordered sequence (e.g., 
implemented in a B-tree) while a database manages to record randomly entered nodes, the width of an 
open interval along X-Axis to be reserved varies for a given node, depending on the time when the node 
is entered.  When a rectangle area with an open internal (x1, x2) and an semi-closed internal [y, ∞) is 
initially reserved for a node m, the interval (x1, x2) is divided to three equal open intervals: (x1,  x1 + ⧍),  
(x1 + ⧍, x1 + 2⧍), and (x1 + 2⧍, x2), where ⧍ = (x2  - x1)/3. When an identifier that is first ever to be 
mapped to a plane such as P1, it will be mapped to the center sub rectangle with the horizontal interval (x1 
+ ⧍, x1 + 2⧍) and the vertical internal [y +1, ∞). For example, d in Fig. 1.3 took the center sub interval 
(⅓, ⅔) as it was the first ever node being entered in P1 before other nodes. A second identifier will take 
either the first or the third sub rectangle, depending on its alphabetic order. For example, the term b, after 
d was entered, is reserved within the left interval (0, ⅓). To leave space for identifiers that are later to be 
entered, the left interval is recursively divided into 3 sub intervals and the node b actually takes only the 
center sub interval (1/9, 2/9). For all identifiers, the interval along Y-Axis in a plane like P1 is always [1, 
∞). See the area defined by (1/9, 2/9) and [1, ∞) that is reserved for the b node in Fig. 1.3. 

Given an area defined by (x1, x2) and [y, ∞) for a term m, a subordinate of m, such as m n for m n {+ m 
in P1 or n m for n m {- m in P2, must be placed within m’s area in the given plane with the y-coordinate of 
y + 1. For example, the term b c is reserved with the area defined by the intervals (⅙ - 1/54, ⅙ + 1/54) and 
[2, ∞) within the term b reserved area defined by intervals (1/9, 2/9) and [1, ∞) in P1 as depicted in Fig. 
1.3.  

For an assignment, e.g., m := n, or an equivalence relation, e.g., m == n, we use the plane P3, where n 
takes the Y-Axis interval [1, ∞) and m takes the Y-Axis interval [2, ∞) all the time. See Fig. 3.3 for some 
examples. 



 

For a reserved X-Axis interval in a given plane, if a node m has already reserved the center sub interval 
and if another node m’ needs to be inserted into the same interval beside the m reserved center sub 
interval, the operator <EP given at the end of Section 3 determines if m’ takes either the left subarea or the 
right subarea: if m’ <EP m, then m’ will take the left subarea, otherwise if it is larger, it will take the right 
subarea. For example, because a e (b c f) <EP d (b c f), the node a e (b c f) takes the left subarea under g in 
the plane P3 as depicted in Fig. 3.3. 

Because a X-Axis interval is open, the two end points of the interval will never be reserved for an EP 
node. With more EP nodes are added into a plane, the gap between an open point of a X-Axis interval, 
e.g., the left open point of the interval for b, and an open point of an inner X-Axis interval, e.g., the left 
open point of the interval for b c, is getting smaller. However, the continuous plane guarantees more and 
more nodes can be continuously inserted between the shrinking gap. 

For each given plane, we only utilize the open interval between 0 and 1, i.e., (0, 1), along the X-Axis 
for potentially infinite EP nodes. The top level starts at 1 along Y-Axis. Therefore a point p (0, 0) in a 
given plane signifies that p is not in the plane. The first ever node entered into a plane is mapped to the 
point (½, 1) in R, which is the first point entered in the given plane.  

We use a vector to capture a mapped point in R. For example the term d is mapped to a point with the 
vector (½, 1, ⅓, 0, 0, 0, ⅙, 1, 1/9), as depicted in Tab. 1. In the vector, the first two numbers are its x- and 
y-coordinates in P1, the third is the width of its open interval centered at its x-coordinate in P1. The 
middle three 0s are about P2, signifying that d is absent. The last three numbers are about d’s x- and 
y-coordinates and its open interval width in P3. A vector is also associated with the corresponding EP 
term, e.g., d, and a name, e.g., d, named after the EP term in the Pacifico font, for the point in R. A 
collection of such vectors is denoted as “Matrix” in this paper. 

With the protocol laid out up to this point, we give detailed steps below to map an EP database to R. 

Definition 5.1 Term mapping. Given a database D, we initiate a corresponding subspace D = ∅ in R. D is 
physically represented by a sequence of vectors, denoted as Matrix. For each term t ∈ D, call the 
following function, denoted as map-term(t): 
1.  If t is an identifier i, we search P1’s top layer sequence to see if i has already been mapped to a point in 
the sequence that is ordered by <EP (i.e., the alphabetical order at the identifier level). The search is done 
against Matrix, where i and i are recorded together when i is mapped to i in R. See Tab. 1 for an example. 

If it has already inserted to R, i.e., i has a vector in Matrix, then do nothing and return. If it is not yet, find 

out the geometric information about the left and right neighbors between which i needs to be inserted, 

create i by calculating i’s x-coordinate, say x, and i’s open interval with on X-Axis, say r, and assigning 1 
as its y-coordinate in P1. At this point, we leave 0 for all the others in P2 and P3 for now. (The calculation 
is done by the protocol laid out at the earlier of this section.) This is the end of Step 1 and the map-term(t) 
call. Return to the caller. 
2. If t is an application, e.g., t ≡ m n. We call map-term(m) and map-term(n) to obtain the corresponding 
m and n in R first, and then, 

a)​ Search m’s subordinates in P1 to see if (m n) has already been mapped to a corresponding (m n). 

If yes, move to Step b) below. Otherwise, create a point in P1, denoted as (m n), under m’s 
subordinate sequence using the protocol described at the beginning of this section. A new entry 
for (m n) would have been created in Matrix. We fill in 0s for all the other vector elements in P2 
and P3 for now in the Matrix.  



 

b)​ Search to see if n has already been in P2. If n is not in P2, insert it into P2. Note if n is an 

identifier, n will be inserted into the top layer of P2. Otherwise, we  insert n, when n ≡ n1 n2, to 

the subordinate sequence of n2 (see d (b c f) under b c f in Tab. 1 for an example). (n’s location 
and the reserved area information in P2 would have been recorded in Matrix.) 

c)​ Search to see if (m n) has already in the subordinate sequence of n in P2. If not, insert (m n) to the 

subordinate sequence of n in P2. ((m n)’s location and the reserved area information in P2 would 
have been recorded into Matrix.) 

Definition 5.2 Assignment mapping. For each term t ∈ D, call map-assignment(t): if t doesn’t have an 
assigner, do nothing and return as it has already been assigned with (0, 0) as the coordinate of the 
corresponding t in P3 through a map-term() call. Otherwise, for t := s  ∈ D, we search if s is in P3. If not, 
insert s into the top layer of P3  (note that s would be at the top layer of P3 always). Once s is in P3, we 
insert t into the subordinate sequence of s according to the protocol laid out at the beginning of this 
section. 
     See the EP terms and the corresponding points in Fig. 3.1, 3.2, 3.3, and Tab. 1 for the example 
database depicted in Fig. 2. 
 
 

 

 

 



 

 

Point in R EP term P1 P2 P3 

X Y r X Y r X Y r 

a 
 

a 
 

1/24 1 1/27 0 0 0 0 0 0 

b b 1/6 1 1/9 0 0 0 0 0 0 

c c 5/18 1 1/27 1/2 1 1/3 0 0 0 

d d 1/2 1 1/3 0 0 0 1/6 1 1/9 

e e 13/18 1 1/27 13/18 1 1/27 0 0 0 

f f 5/6 1 1/9 5/6 1 1/9 0 0 0 

g g 17/18 1 1/27 0 0 0 1/2 1 1/3 

a e a e 1/24 2 1/81 13/18 2 1/81 1/6 2 1/27 

b c b c 1/6 2 1/27 1/2 2 1/9 0 0 0 

b c f b c f 1/6 3 1/81 5/6 2 1/27 0 0 0 

d (b c f) d (b c f) 1/2 2 1/9 5/6 3 1/81 1/2 2 1/9 

a e (b c f) a e (b c f) 1/24 3 1/243 399/486 3 1/243 25/54 2 1/27 

Tab. 1: The Matrix for D = {d (b c f) : = g; a e := d}, where P1 is the plane for the trees under {=+, P2 is for the trees under {=-, and P3 is for the 
trees under == including :=. In each plane, the columns x and y are the x- and y-coordinate of a point m in the plane mapped from a term m, and 
the column r is the open interval width reserved for m’s subordinates (in correspondence to dashed horizontal lines in Fig. 3.1, 3.2, and 3.3). 

   So far, we have mapped D to D in R. It is clear that we have the following results:  

Lemma 5.3 1 D and D are isomorphic. 
2 The tree structures under {+, {-, and := are reserved in D.  

Proof: 1 D and D are isomorphic. 
a)​ for every t ∈ D, there is a t ∈ D. The function call map-term() in Definition 5.1 maps every 

term  t in D to a point t in R. 
b)​ for every t ∈ D, there is a t ∈ D. In Matrix, each vector is associated with the corresponding EP 

term from which the vector is transformed from. We simply choose the EP term as the reverse 
mapping for a given vector. 

2)  The tree structures under {+, {-, and :=  are reserved in D.  
a)​ Given m and n in E, the relations {+ and  {- are defined as m n {+ m and n m {- m. When m, n, n 

m, and m n are mapped to R in Definition 5.1, m n and n m are located in the immediate 



 

subordinate sequences of m in P1 and P2 respectively, i.e., |(m n).P1.x - m.P1.x| < m.P1.r/2 and (m 
n).P1.y - m.P1.y = 1 for P1, and |(n m).P2.x - m.P2.x| < m.P2.r/2 and (n m).P2.y - m.P2.y = 1.  

b)​ The tree structure  under :=  has the correspondence in P3 with only two layers, as defined in 
Definition 5.2. It is a similar situation as those for {+ and  {- in P1 and P2 respectively, as shown 
above.� 

Note the transitive relations {=+ and {=- are clearly reserved in D as well. (No further discussion is 
necessary.) 

5.2  Wd in EP vs. WD in R 

In this section, we expand D to WD in R in a correspondence to WD by introducing a one-step reduction 

rule ➛D in R that mirrors ➛D in EP. This expansion will have the multi-step reduction of EP to be 

reflected in R (and clearly so are those EP pre-ordering relations).  

Definition 5.4  Given m, n ​∈ ​R, if m is a subordinate under n in P3, i.e., m.P3.y - 1 = n.P3.y and |m.P3.x 

- n.P3.x| < n.P3.r / 2, we say m is one-step reducible to n, denoted as  m ➛D n ​. Otherwise, we say m is 

one-step reducible to null, denoted as  m ➛D null . For convenience, we also use m ➛D m to denote no 

action taken during a reduction process as m cannot be further reduced.  

    In Definition 5.4, we allow m and n ​to be in R in order to make the reduction ➛D rule applicable to 
points in WD that are beyond D. But up to now, only the points in D will make sense under the ➛D 
reduction rule, i.e.,  
 
Lemma 5.5 m := n ∈ D ⟹ m ➛D n  
Proof. When m := n ∈ D, Definition 5.2 maps m under n’s immediate subordinate sequence in P3, i.e., 
m.P3.y - 1 = n.P3.y and |m.P3.x - n.P3.x| < n.p3.r / 2. By Definition 5.4, we have m ➛D n. �� 

    Using the  ➛D reduction rule, we expand D to include images reflecting meaningful terms in E under a 

D, i.e., for every term m , n ∈ E, m ≠ null, and m →D n, we expand D to include m and n in R such that 

m →D n . Actually the construction of WD starts with the one-step reduction rule ➛D: 

Definition 5.6 The construction operator · is a binary operation that produces a set WD  ⊂ R such that   

I) m​ ∈ ​D​  ⇒ ​m​ ∈ ​WD   

II) if m, n ​∈ ​WD ​, m ➛D m’ , n ➛D n’ , and  (m’  n’ ) is in WD, i.e., there is a third point  (m’  n’ ) ≡ p ​∈ 

​WD  such that  |m’.P1.x - p.P1.x| < m’.P1.r /2, m’.P1.y + 1  = p.P1.y, |n’.P2.x - p.P2.x| < n’.P2.r/2, and 

n’.P2.y + 1 = p.P2.y, then we construct a new point, denoted by m n ∈ ​​WD, into R, and further extend 

the definition of the one-step reduction ➛D to include m n ➛D p. Specifically,  

1) call map-term(m n) to create points in P1 and P2 for m n, where m n is the EP term in correspondence 

to m n (according to Lemma 5.3.1). (This expansion brings meaningful terms, even not in D, into WD in a 
correspondence to WD.)  



 

2) insert (m n) to the subordinate sequence of p in P3 by calling map-assignment() as given in Definition 

5.2. Such an addition in P3 allows m n ➛D p, where m n is not in D. (This expansion brings the reduction 

rule ➛D in EP , more than an assignment in D, into WD in a correspondence to WD.) 

III) if m, n ​∈ ​WD​, m ➛D m’ , n ➛D n’ , and  (m’  n’ ) is not in WD, we continue to construct m n ​∈ ​WD​, 

such that m  n ➛D null .  

    Definition 5.6.III above introduces intermediate results, such as a b ➛D null, into WD​.. This step is not 
desired but necessary because an EP database allows an assignment like  a null := c, where we may have 
another term d e ➛D null to be an intermediate result for the reduction from (a (d e)) to c. In this case, if 
we don’t keep d e to be a point in WD​, we will not be able to map the EP one-step reduction rule a​ ➛D 
​a’, b​ ➛D ​b​’ ⇒ ​a b​ ➛D ​a’ b’ that is defined in Definition 4.1.4 when the special symbol null is involved.  

Lemma 5.7 The relations ➛D and ➛D  are isomorphic. 

I).   ➛D  ⇒  ➛D  
Given a, b​ ∈ ​E ​and a ​➛D​ b , there are the following possibilities according to the definition of ➛D  in 
Section 4: 
Case 1: An assignee is reduced to the assigner, i.e., a := b​ ∈ ​D​ ⇒  ​a ​➛D​ b. We have ​a ​➛D​ b from 
Lemma 5.5. 
Case 2: An identifier not in the database is reduced to null, i.e., a ​∈ ​F, a ​∉ ​D​ ⇒  ​a ​➛D ​null. Because a is 
not in D, neither is a in R according to the Definition 5.1. Because a is not in R, we have ​a ​➛D ​null 
according to Definition 5.4.  
Case 3: If a and b are normal forms and a b ​∉ ​D, then a b is reduced to null, i.e., a, b​ ∈ ​NF(D), a b ​∉ ​D​ 
⇒ ​a b​ ➛D ​null. Because a and b are normal forms, a and b are in D, so are a and b in R. However, since 
a b is not in D, neither is a b in R. According to Definition 5.4, we have a b ​➛D ​null.    
Case 4: a​ ➛D ​a’, b​ ➛D b​’ ⇒ ​a b​ ➛D ​a’ b’.  

a)​ When a’ b’ ∈ WD, Definition 5.6.II makes a b ∈ WD with a b ➛D a’ b’. 
b)​ When a’ b’ ∉ WD, Definition 5.6.III makes a b ∈ WD with a b ➛D ​null . 

II).   ➛D  ⇒  ➛D  

When we have m ➛D n, we choose the exact reverse sequence of the mappings defined in Definition 5.1, 
5.2, and 5.6, i.e., take the EP terms m and n associated with the vectors m and n, and immediately we have 
m ➛D n.�� 
 

The construction process adds all derivable information to ​WD. For example, we have the vector a e (b c 
f) ∊ WD, as shown the entry in red color in Tab. 1, which is the only piece of meaningfully derivable 

information for D = {d (b c f) : = g; a e := d}. Also see the image ​WD with infinite vectors in Tab. 2 for D 
= {u v := v; v u := u}, representing infinite walks between two vertices with two directed edges.  

Point in R EP term P1 P2 P3 

X Y r X Y r X Y r 

u u 1/2 1 1/3 1/6 1 1/9 1/6 1 1/9 



 

 

v v 5/6 1 1/9 1/2 1 1/3 1/2 1 1/3 

u v u v 1.2 2 1/9 1/2 2 1/9 1/2 2 1/9 

v u v u 5/6 2 1/27 1/6 2 1/27 1/6 2 1/27 

u v u u v u 1/2 3 1/27 79/486 2 1/81 1/6 3 1/81 

… … … … … … … … … … … 

Tab. 2: Matrix for D = {u v := v; v u := u;}, where infinitely possible walks like u v u, v u v, … u v u … u, … have vectors in Matrix.  

Theorem 5.8 WD is an injective to WD and there is a subjective from WD to WD.  

I) WD is an injective to WD  

This is because of Definition 5.6.III, which introduces some intermediate results like a b ➛D null into 

WD while it is not in WD. Otherwise, WD would be isomorphic to WD . 

II) there is a subjective from WD to WD 

a)​ Given m ∈ WD, if m ➛D ​null , we choose m in the m vector to be its reverse image and we have  

m ➛D null and m ∉ WD according to Definition 5.1, 5.2, and 5.6. 

b)​ Given m ∈ WD, if m ➛D ​n and n is not identical to null, we choose m and n in the m and n 
vectors to be their reverse images and we have  m ➛D n and m ∈ WD according to Definition 5.1, 
5.2, and 5.6.�� 

Now, we are ready to introduce the final reduction rule →D in R which reflects the multiple step 
reduction rules →D in EP as given in Section 4: 
Definition 5.9 Given an arbitrary point p ∈ ​R, a reduction rule, denoted as →D, is defined as following: 

1)​ if p cannot be found in WD (in the vector Matrix), we define p is reduced to null, i.e.,  p →D null, 
where null is one of the points on the top layer of the sequences on P1, reflecting null, a special 
identifier (or constant) in F (or C).  

2)​ if p’s y-coordinate in P3 is 0 or 1, then p is reduced to itself, denoted as p →D p. 

3)​ if p’s y-coordinate in P3 is larger than 1, and if we find another point n such that n’s y-coordinate 

in P3 is 1 and p is within n’s X-Axis open-interval in P3, i.e., |n.P3.x - p.P3.x| < n.P3.r/2, p.P3.y > 

n.P3.y = 1, then we reduce p to n, denoted as  p →D n. Otherwise, we reduce p to null, denoted as  

p →D null.  

Theorem 5.10 →D and →D are isomorphic 
Proof. This is done by Lemma 5.7, Theorem 5.8, and Definition 5.9.�� 

    As an potential application, we may define an approximation: Given an arbitrary point p ∈ ​R with 

coordinates (x1, y1) and (x2, y2)  on P1 and P2 respectively, 1) if we find a point m ∈ WD with 



 

coordinates (x’1, y’1) and (x’2, y’2) that p is very close to, i.e., |x’1 - x1| < m.P1.r/ (2 * C), |x’2 - x2| < m.P2.r/ 
(2 * C), |y’1 - y1| < 1 / (2 * C), and |y’2 - y2| < 1 / (2 * C), where C is a large constant integer, then we 
define m and p are similar: m ≃ p, and p is probably reducible to n, denoted as  p ⤳Z n if m →D n. 
 
6  Conclusion 

The main contribution of this paper is: a constant dimensional Euclidean space is constructed to mirror an 
EP database and the behaviors. This embedding can potentially better enrich statistical machine learning, 
particularly informed machine learning. 

Acknowledgement Prof. A. Blumer, C. Seshadhri, and many other reviewers provided valuable inputs on 
a previous manuscript. 
 

References  
[Agrawal 1989] R. Agrawal, A. Borgida. Efficient management of transitive relationships in large data 
and knowledge bases. ACM SIGMOD Record, Volume 18, Issue 2. 
[Apidianaki 2022] M. Apidianaki. From word types to tokens and back: a Survey of approaches to word 
meaning representation and interpretation. Computational Linguistics (2023) 49 (2): 465–523. 
[Berant 2012] J. Berant, I. Dagan, J. Goldberger (2012). Learning entailment relations by global graph 
structure optimization. Journal of Computational Linguistics, 38(1):73-111. 
[Berant 2014] J. Berant, I.Dagan, M. Adler, J. Goldberger. Efficient tree-based approximation for 
entailment graph learning. Proceedings of the 50th Annual Meeting of the Association for Computational 
Linguistics, pages 117-125. 
[Bizer 2009]  C. Bizer, T. Heath, and T. Berners-Lee. Linked data-the story so far. International Journal on 
Semantic Web and Information Systems, 5(3):1–22, 2009. 
[Bordes 2011] A. Bordes, J. Weston, R. Collobert, Y. Bengio (2011). Learning structured embeddings of 
knowledge bases. Proceedings of the Twenty-Fifth AAAI Conference on Artificial Intelligence. 
[Brass 2019] S. Brass, M. Wenzel. Performance Analysis and Comparison of Deductive Systems and 
SQL Databases. CEUR-WS.org/Vol-2368/paper3.pdf. 
[Cai 2017] H. Cai, V.W. Zheng, K. Chang. A Comprehensive Survey of Graph Embedding: Problems, 
Techniques and Applications. IEEE Transaction on Knowledge and Data Engineering, Sept. 2017.  
[Chamil 2020] I. Chami1, A. Wolf1, D. Juan, F. Sala1, S. Ravi, and C. R´e. Low-Dimensional Hyperbolic 
Knowledge Graph Embedding. Proceedings of the 58th Annual Meeting of the Association for 
Computational Linguistics, pages 6901–6914, July 5- 10, 2020 
[Daniel 2025] D. Schulz, C. Bauckhage. Informed Machine Learning (Cognitive Technologies), Springer 
ISSN 2197-6635 (electronic), 2025. 
[Erdős 1965] P. Erdős, F. Harary, W. T. Tutte (1965). "On the dimension of a graph". Mathematika. 12 (2): 
118–122. 
[Halpin 2010] H. Halpin, P. Hayes, J. McCusker, D. Mcguinness, and H. Thompson. When owl: sameAs 
isn’t the same: An analysis of identity in linked data. The Semantic Web–ISWC 2010, page 305–320, 
2010. 
[Kavangh 2018] R. Kavangh. "Explorations on the dimensionality of graphs". Retrieved August 16, 
2018.l 
[Lin 2023] Y. E. Lin, R. R. Coifman, G. Mishne, R. Talmon. Hyperbolic Diffusion Embedding and 
Distance for Hierarchical Representation Learning. Proceedings of the 40th International Conference on 
Machine Learning, Honolulu, Hawaii, USA. PMLR 202, 2023. 

http://www.renyi.hu/~p_erdos/1965-09.pdf
https://en.wikipedia.org/wiki/Mathematika
https://rak.ac/files/papers/graph.pdf


 

[Liu 1999] M. Liu. Deductive Database Languages: Problems and Solutions. ACM Computing Surveys, 
Vol. 31, No, 1, March 1999. 
[Ludwig 2009] S. A. Ludwig, C. Thompson, K. Amundson. Performance Analysis of a Deductive 
Database with a Semantic Web Reasoning Engine: ConceptBase and Racer. Proceedings of the 21st 
International Conference on Software Engineering and Knowledge Engineering (SEKE'2009), Boston, 
Massachusetts, USA, July 1-3, 2009 
[Nickel 2012] M. Nickel, V. Tresp, H. P. Kriegel. Factorizing YAGO – Scalable Machine Learning for 
Linked Data. WWW2012 – Session: Creating and Using Links between Data Objects. April 2012, Lyon, 
France. 
[Nickel 2017] M. Nickel, D. Kiela. Poincaré embeddings for learning hierarchical representations. 2017. 
[Schaefer 2013] M. Schaefer (2013). "Realizability of graphs and linkages", in Pach, János (ed.), Thirty 
Essays on Geometric Graph Theory, Springer, pp. 461–482.  
[Schonfinkel 1924] Moses Schönfindel, On the building blocks of mathematical logic, 1924.​  ​  
[Seshadhri 2020] C. Seshadhri, A. Sharma, A. Stolman, A. Goel. The impossibility of low rank 
representation for triangle-rich complex network. The Proceedings of National Academy of Sciences, 
March 2020. 
[Soifer 2009] A. Soifer (2009). The Mathematical coloring book: mathematics of coloring and the 
colorful life of its creators. Springer-Verlag, 2009. 
[Xu 2025] K. Xu. Classes of bounded functions that are semantically equivalent to Turing-machine are 
PAC learnable. The 38th Annual Conference on Learning Theory (COLT 2025) - Theory of AI for 
Scientific Computing Workshop, June 30–July 4, 2025 in Lyon, France. 
[Xu 2024] K. Xu. Outline of a PAC learnable class of bounded functions including graphs, accepted by 
the 6th International Conference on Machine Learning and Intelligent Systems (MLIS 2024). 
[Xu 2017] K. Xu. A class of bounded functions, a database language and an extended lambda calculus. 
Journal of Theoretical Computer Science, Vol. 691, August 2017, Page 81 - 106, 2017. 
[Xu 2010] K. Xu, J. Zhang, S.Gao. An Assessment on the Easiness of Computer Languages, The Journal 
of Information Technology Review, May, 2010. 
 
 
Appendix A. An EP database D and its isomorphic data structure  
 

Notation 4.1 Given a database D, its data structure, denoted as D, is constructed with the following steps: 

1)​ For an identifier or a constant m ∈ D, we add the identifier or the constant into the structure as a 

node, i.e., m ∈ D. 

2)​ For an application m n ∈ D, we draw a dot below m, draw a up-down link from m to the dot, and 
draw a dashed arrow from the dot to n. (Therefore, a dot can be uniquely named by m n.) 

3)​ For an assignment p := q ∈ D, we draw a solid arrow from p to q. 

When a term m ∈ D and an assignment p := q ∈ D, we equivalently denote: m ∈ D, p := q ∈ D. 

Theorem 4.2  A database D and its corresponding data structure D are isomorphic 

Proof  1) D ⇒ D, it is true from the notation 4.1 itself. 
2) D  ⇒  D, where D is initiated to be empty. 
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a) For an identifier or a constant m ∈ D, we add it to D. 
b) For a dot, we find the term m n that uniquely names it by searching upward for its application 
m and by searching along the dashed arrow for the argument n. we add m n to D. 

3) For a solid arrow in D, we find the name p for the assignee, where the solid arrow started with, as we 
did in the step a) or b), and further we find the name q for the assigner, a constant, an identifier, or a dot 
that the solid arrow points to, based on the step a) or b) above. then we add p := q into D. ◻ 



 

 
 

 


	 

