
 1

User’s Guide to

Froglingo, An Alternative to DBMS, Programming Language, Web

Server, and File System

Release 2.0, March 14th, 2013

1. INTRODUCTION... 4

1.1 What is Froglingo?.. 4

1.2 Who should use Froglingo? .. 4

1.3 Why is Froglingo?... 4

1.4 Prerequisites... 5

1.5 System setup.. 5

1.6 Sample tasks .. 5

1.6.1 A DBMS and a programming language.. 5

1.6.2 An information community.. 7

1.6.3 Access over the Internet .. 7

1.8 Document organization... 8

2 DATA CONSTRUCTION .. 9

2.1 Constants ... 9

2.2 Identifiers .. 9

2.3 Terms ... 10

2.4 Assignment and database .. 10

2.5 Dependent relationships ... 12

2.5.1 Functional dependency .. 12

2.5.2 Argumentative dependency ... 13

2.5.3 Recursively functional dependency... 13

2.5.4 Recursively argumentative dependency ... 13

2.6 Database update ... 14

2.6.1 Create operation ... 15

2.6.2 Assignment update ... 15

2.6.3 Delete operation.. 15

2.6.4 Record operation... 16

3 DATA QUERIES ... 17

3.1 Normal forms and evaluations .. 17

3.2 Arithmetical and boolean operators .. 18

3.2.1 Arithmetical .. 18

3.2.2 Booleans on numbers .. 18

3.2.3 Complex booleans ... 19

3.3 Set-oriented queries ... 19

3.3.1 Variables .. 19

3.3.2 Select operations ... 19

3.3.3 Index .. 20

3.3.4 Sort clause ... 20

3.3.5 Summary clause .. 21

3.4 Derivative relationships... 21

 2

3.4.2 Functional derivatives .. 22

3.4.3 Argumentative derivatives.. 23

3.4.4 Recursively functional derivatives ... 23

3.4.5 Recursively argumentative derivatives.. 24

3.4.6 Properties of derivative relationships .. 24

4 BUSINESS LOGIC ... 25

4.1 Infinite data .. 25

4.1.1 Variables and databases.. 25

4.1.2 Variable ranges.. 25

4.1.3 Queries on infinite data retrieval.. 26

4.1.4 Function recursions... 27

4.1.5 Update operations in assignments.. 28

4.1.6 Assignment updates with variables .. 28

4.1.7 Evaluation rules for variables .. 28

4.2 Sequential terms.. 30

5 INFORMATION COMMUNITY .. 31

5.1 User accounts.. 31

5.2 Sessions .. 32

5.2.1 Establishment... 32

5.2.2 Signature.. 33

5.2.3 Stand.. 33

5.3 Locality .. 33

5.3.1 Navigation .. 34

5.3.2 Current and upper stands .. 34

5.3.3 User home ... 35

5.3.4 Application home.. 35

5.3.5 Non-application home .. 35

5.3.6 Absolute names ... 35

5.4 Privileges .. 36

5.4.1 Administration privilege .. 37

5.4.2 Read-only privilege .. 38

5.4.3 Privilege removal.. 38

5.4.4 Service ... 39

5.4.5 Partnership... 40

6 FILE MANAGEMENT ... 42

6.1 File upload .. 42

6.2 File download ... 44

6.3 OS path .. 44

7 ACCESS OVER THE INTERNET ... 46

7.1 Web server setup ... 46

7.2 URI ... 47

7.3 HTML/XML files .. 48

7.3.1 Documents... 49

7.3.2 Tag <frog> ... 50

7.3.3 Attribute proceeded with “frog”... 53

7.3.4 Attribute “frog:if” ... 54

 3

7.3.5 Attribute “frog:while” ... 54

7.3.6 File arguments ... 56

7.4 Requests via HTML forms .. 57

7.4.1 Extended URIs... 58

7.4.2 HTML form ... 58

7.4.3 File upload via web browser... 59

8 MISCELLANEOUS FEATURES ... 61

8.1 Basic data types and the membership operator 61

8.2 Void for nothing .. 61

8.3 Null for undefined ... 62

8.4 Error for failure.. 62

8.5 Date and time ... 63

8.6 Database file... 64

8.6 Log files .. 64

APPENDIX A: Release Notes... 65

APPENDIX B: Grammar ... 65

 4

1. INTRODUCTION

Many database applications were written in programming languages in 1960s and 1970s and they

are currently still in operation. Database management system (DBMS) came to the field of

database application software around 1970s. It significantly improved the productivity in the

development and maintenance of database applications. Due to its limited expressive power,

however, a DBMS has to be employed together with a programming language for a database

application.

A typical database application system in a corporate environment currently requires DBMSs,

programming languages (such as C, Java, and C#), and middleware components including web

servers (such as Websphere and WebLogic), and data exchange tools (such as Hibernate and

LINQ). In addition, an application-based data access control mechanism has to be constructed.

This document is to introduce Froglingo, a new language and database management system

aimed to have both the expressive power of programming language and the productivity of

DBMS.

1.1 What is Froglingo?

Froglingo is a system consolidating the multi-component system architecture of the traditional

technologies into a single component. It is a unified solution for information management, and an

alternative to a programming language, DBMS, a file system, and a web server. It is a database

management system (DBMS) that stores and queries business data; a programming language that

supports business logic; a file system that stores and shares files; and a web server that interacts

with users across networks.

It does more than the combination of existing technologies. It is a single language that uniformly

expresses both data and application logic. It is a system supporting integrated applications

without using application-based data exchange components and data access control mechanism.

1.2 Who should use Froglingo?

Froglingo is a generic tool for software applications. It can be used to construct all kinds of

information management systems involving data, files, and business logic, including

o database applications,

o content management systems,

o data warehouses,

o web sites,

o collaborative computing environment across multiple organizations.

1.3 Why is Froglingo?

Froglingo makes software development easier because

o it is a single language to express business data and business logic,

o database applications in Froglingo can communicate without data exchange agents,

o the EP (Enterprise-Participant) data model, part of Froglingo, is more expressive than any

other existing data models including SQL,

o it stores files, data, and business logic in a uniformed format in a single storage space,

o user accounts and access privileges, as built-in facilities, can be specified by users to

perform data access controls between business units, and (or) between users in a business

unit, and

o it has its own built-in web server that communicates with web browser across network.

 5

1.4 Prerequisites

Since Froglingo is a new technology, it doesn’t require readers to have knowledge on the

traditional technologies such as programming languages and database management systems. The

exceptions are HTML related specification languages with which web pages can be constructed.

1.5 System setup

To run Froglingo, a computer needs to be installed with:

• Windows 7, or Windows XP system, and

• A web browser such as Internet Explorer, FireFox, or Google Chrome.

Here are the steps of installing a Froglingo system:

• Create a folder in your Windows XP system, say: C:\froglingo.

• Download the application file frog.exe to the folder. The file is available on the website:

http://www.froglingo.com

Now the system is ready for use. To run the system, you may simply double click the application

icon frog.exe. A command prompt (CMD) window will appear as the following:

You are now at the root of the system and you are ready to give commands as you desire. Here

are examples:
[//] “Hello World”;
“Hello World”;
[//] 3 + 5;
8;

1.6 Sample tasks

This section provides a few sample Froglingo expressions. It gives readers an overview on

Froglingo.

1.6.1 A DBMS and a programming language

A string or a number is simply echoed:
[//] "Hello World";

 6

“Hello World”;

Regular arithmetic calculations are supported:
[//] 3 + 5;
8;

Data is constructed by using a built-in operator create:
[//] create Mike salary = 1000;
[//] create Dave salary = 2000;

Queries on entered data are available immediately:
[//] Mike salary;
1000;
[//] Mike salary + Dave salary;
3000;
[//] select $person, $person salary where $person salary >=1000;
Mike, 1000
Dave, 2000;

Business logic is stored as data too:
[//] create tax $money = ($money * 0.3);
[//] select $person, $person salary, tax ($person salary) where
$person salary >= 100;
Mike, 1000, 300
Dave, 2000, 600;

Another example of business logic, a factorial function:
[//] create fac 0 = 1;
[//] create fac $n:[$n > 0] = ($n * (fac ($n - 1)));
[//] fac 4;
24;

A set of built-in operators can be used to query data. They are more expressive than those

traditional DBMSs. Queries on a directed graph is a typical example:
[//] create A; /* define a vertex 'A' */
[//] create B; /* define a vertex 'B' */
[//] create C; /* define a vertex 'C' */
[//] create A B = B; /* define a directed connection A -> B */
[//] create B C = C; /* define a directed connection B -> C */

Query: Is there a path from vertices A to C?
[//] A >=+ C;
true;

Froglingo manages files. A HTML file can embed Froglingo expressions. Suppose you have a file

myprofile.html and the content is:
<frog> $name </frog>
<html>
 <body background=”photo.jpg”>
 My name is
 <frog> $name </frog>
 and my salary is
 <frog> $name salary </frog>
 </body>
</html>

 7

The file is loaded by using the load command:
[//] load myprofile.html;

We will see how it will be used in Chapter 5.

1.6.2 An information community

The data you entered into Froglingo databases is not shared with anyone else unless you

explicitly granted permission to some one. The first step is to setup a multi-user environment by

giving a password to youself as the root user:
[//] passwd;
New Passwd: ******
Confirm Passwd: ******

Now you are acting as the most privileged user root; and you are ready to create additional user

accounts:
[//] addusr greg;
The passwd is: un@Ik8l2
[//] addusr www.myclienta.com;
The passwd is: kkjkadsf
[//] quit;

The last command quit terminates the Froglingo process. Now you may login again with a

different user account.
C:\Froglingo\frog.exe
User Id: www.myclienta.com
Passwd: ********
Confirm passwd: ********
[//www.myclienta.com]

1.6.3 Access over the Internet

To demonstrate how Froglingo supports web browsers, let’s continue with a few more tasks:
[//www.myclienta.com] load photo.jpg;
[//www.myclienta.com] load index.html;
[//www.myclienta.com] print index.html;
index.html = <html>
<body>
 Welcome to www.myclienta.com, a business web site hosted by
www.froglingo.com.
</body>
</html>;
[//www.myclienta.com] grtacc index.html anyone;
[//www.myclienta.com] quit;

The command grtacc above assigned the built-in user account anyone to have read-only

permission on index.html. Now any user can view the web page via a web browser across

network as soon as a Froglingo web server is started via a CMD window:
C:\\Froglingo\frog.exe –p 80

Assume that the user account www.myclienta.com also has been registered as a domain

name via a domain name registration agent, you are ready to use a web browser to interact with

the Froglingo web server by entering URIs embedding Froglingo expressions. Here is an example:
http://www.myclienta.com/index.html

 8

1.8 Document organization

In Section 2, we introduce the constructors with which business data is constructed in Froglingo

databases. In Section 3, we introduce a rich set of built-in operators on databases with which

business data is queried. In Section 4, we introduce variables and sequential terms, with which

business logic can be expressed.

Section 5 is about data security, i.e., how user accounts are set such that data is accessed based on

permission. We call a database as an information community to mean that Froglingo offers an

environment in which users can construct their own data in private spaces, selectively specify

data to be shared with others, and collaborate with others in data construction. In the community,

individual users, business owners, and employees are correlated based on their roles in the

community. This community is reachable across the Internet via web browsers, which is

discussed in Section 7.

Froglingo manages files as well, including binary files and HTML/XML files. We discuss it in

Section 6. In Section 8, we discuss miscellaneous issues that system administrators and

developers need to consider. In Section 9, we provide some case studies.

In the document, we use the font Courier New for the text the Froglingo system would

generate; and the bolded font Courier New for those texts as meta expressions. When a

Froglingo expression appears between [and](a pair of bolded square brackets), it means that

the expression is optional.

Through the document, we assume that all the sample data appeared in the order of the document

is entered to a single Froglingo database.

 9

2 DATA CONSTRUCTION

In this section, we introduce the concepts that allow users to construct business data. There is not

a precise mathematical correspondence to the concept of business data. But here we say that

business data is computer presentations that represent a finite set of entities and their relationships

in the world.

2.1 Constants

Like in other languages, integers, real numbers, and strings are constants. Froglingo recognizes

constants by default. When a constant is entered, it is simply echoed back. For examples:
[//] "Hello World";
“Hello World”;
[//] 3.14;
3.14;

The basic mathematical operators plus (+), minus (-), multiplication (*), division (/) and modulus

(%) among numbers are supported. For example:
[//] 3 - 5.5;
-2.5;

The operator plus (+) can be applied among numbers and strings, which concatenates two

operants. For example:
[//] “The pie is “ + 3.14 + “.”;
“The pie is ”3.14”.”

There are a few Froglingo specific constants: null, true, and false. The constant null

is a special one used to represent “not defined”. It can be a return value from a query expression

when the expression yields with no value. The constants true and false are the two boolean

constants.

A string surrounded by the single quote, such as ‘2/20/2009’, representing date and time, is

also a constant. It is stored as an integer in Froglingo; but can be displayed in a format users

desired. Please see the detailed discussion in Chapter 8.

2.2 Identifiers

An identifier is a sequence of ASCII characters including letters, digits, and the special characters

‘_’, and ‘.’. When the sequence forms an integer or a real number, it is not an identifier. When the

first character of the sequence is the character ‘.’, it is not an identifier. The examples of

identifiers are Salary, Mike, Word123_, _basic, www.mycompany.com.

While a constant is automatically recognized, an identifier must be “created” before a Froglingo

database recognizes it. One way of declaring identifiers is to explicitly create it by using the built-

in operator “create”. For examples:
[//] John;

null; /* John is not recognized */
[//] create John;
[//] John;

John; /* John is recognized now*/

There are built-in identifiers void, error, timestamp, and signature. They have their

special meanings as we will see later in the document.

Note that identifiers are different from strings even if one identifier and one string share the same

 10

sequence of ASCII characters, e.g., John and “John”. Users should be careful on the differences

during software development.

2.3 Terms

A term is a constant, an identifier, or a pair of parenthesized terms. In other words:

1. If T is a constant, then T is a term,

2. If T is an identifier, then T is a term,

3. If T1 and T2 are terms, then (T1 T2) is a term.

The examples are 3.14, Mike, (Mike Salary), ((country state) county),

(tax (Mike salary)), and (3.14 (salary “Hello World”)).

A term consisting of an ordered pair of two terms, is called a combinatory term, denoted as comb-

term. The first term of a comb-term is called the plus-term; and the second term the minus-term.

For example, the comb-term (Mike salary) has Mike as the plus-term and salary as the

minus-term.

If the minus-term of a term is not a comb-term, the parentheses surrounding the term don't have

to be written. For example, ((country state) county) is equivalent to country

state county; and ((a b) (c d)) is equivalent to a b (c d).

Like an identifier, a comb-term must be explicitly created before it is recognized. For example:
[//] country state county;
null;
[//] create country state county;
[//] country state county;
country state county;

A term in a comb-term is called an inner-most or a left-most if there is no more term at the left of

it. Given term a b (c d), for example, a is an inner-most term; so are the terms a b, and a

b (c d).

A term in a comb-term is called an outer-most or a right-most term if there is no more term at the

right of it. Given term a b c d, for example, d is the only outer-most term. As another example,

the term (e (f (g h))) has h, g h, f (g h), and (e (f (g h))) as its outer-

most terms.

A term appearing within a second term is called a sub-term of the second term. All the comb-

terms, constants, and identifiers appearing in a term are sub-terms. For example, a b c d has

sub-terms a, b, c, d, a b, a b c, and a b c d. Note that b c are not a sub-term

of a b c d because b c is not a sub-term in (((a b) c) d).

2.4 Assignment and database

An assignment is a state that a term takes another term as its value. For example, Mike salary

= 2000, 2 = 3, and a = b. Not all the assignments are valid and allowed to be stored in

a database. To be recognized by a database, an assignment needs to be declared first. Here are

examples:
[//] create a_number = 1;
[//] create a b (c d) = 6;
[//] a b (c d);
6;
[//] create y u = a b;

 11

[//] y u;
a b;
[//] create Mike salary = 1000;
[//] create Dave salary = 2000;
[//] create Bob = Dave;
[//] create income = salary;
[//] create January 1 = “New Year”;

Given an assignment, the term at the left side of the symbol ‘=’ is the assignee (also called entity

or enterprise); and the term at the right side the assigner (also called value).

As discussed in Section 1.3, a term without explicit assigner will be allowed to be in a database.

To give the definition of database, we call a term without assigner an assignee too. We do so

because a term without assigner has a derived value semantically. To show a term without

assigner in a database meaningful, we echo the term itself back to users. Here are examples:
[//] a b;

a b /* given that “create a b (c d) = 6;” has been entered earlier*/
[//] country state county;

country state country /* given that it has been entered earlier in Section 4*/

A database is a finite set of assignees, each of which has the following restrictions:

1. A constant cannot have an assigner by itself, and cannot be a plus-term,

2. Both the plus-term and the minus-term of a comb-term appeared in an assignee must not have

an assigner,

3. One assignee has at most one assigner, and

4. If there is a sequence of assignments: M0 = M1, M1 = M2, …, Mn-1 = Mn, then Mn must

not contain M0 as a sub-term.

All the constraints enforce a database to represent valid functions. The rule 1 says that a constant

defines itself and it is not allowed to have another assigned value. A left-most sub-term of an

assignee, except the assignee itself, has a derived value from the assignee, and therefore it cannot

have an assigner by itself. Allowing a right-most sub-term of an assignee, except the assignee

itself, would give users more flexibilities in constructing databases, but require more complicated

rules to keep databases in shape and lower system performance. The rule 2 simply prevents a

right-most sub-term of an assignee, except for the assignee itself, from having an assigner. Given

an application m n, the rule 3 enforces that m is a function, i.e., applying m to n yields a unique

value. Rule 4 ensures that each assignee is assigned with a valid value. Without Rule 4, we would

have an assignment, e.g., m n := m n 5, with which applying m to n would not yield a normal

form, i.e., m n == m n 55 … 5. The assignment m n := m n is invalid as well because it doesn’t

result in a valid function.

Here are the examples of invalid assignments:
[//] create 55 = 1;
Creation operation failed. Constant 55 is not allowed to have an
assigner.
[//] create 55 john;
Creation operation failed. Constant 55 is not allowed to be a
plus-term.
[//] create B (6 C) = 343;
Creation operation failed. Constant 6 is not allowed to be a
plus-term.
[//] create e f = 66;
[//] create E (e f) F = 88;

 12

Creation operation failed. the term (e f) having an assigner
cannot be a minus-term of a comb-term.
[//] create c3;
[//] create c1 c2 = c3;
[//] update c3 = c1 c2;
There is an assignment loop having node c3. Update operation
failed.

The concepts introduced so far is sufficient for constructing business data. Here we construct a

sample database for a school administration:
[//] create SSD John SSN = 123456789;
[//] create SSD John birth = ‘6/1/1990’;
[//] create College admin (SSD John) enroll

= ‘9/1/2008’;
[//] create College CS;
[//] create College admin (SSD John) Major

= College CS;
[//] create College CS CS100

(College admin (SSD John)) grade = “F”;

The sample database constructed above indicates: John, born on 6/1/1990, is a resident registered

with his SSN = 123456789 in the Social Security Department (SSD); he was enrolled in College

on 9/1/2008 and majored in Computer Science (CS); and his grade is “F” in course CS101.

Though the sample database is small, it is intended to show that it can manage residents, colleges,

organizational structures in colleges, activities of students in colleges, and the relationships

among the managed objects.

2.5 Dependent relationships

In the real world, we say that one thing depends on another if the existence of the first depends on

the existence of the second. For example, human beings depend on the Earth; a child object

depends on its parent object in a hierarchy; and the birth to an infant depends on both mother and

father. In mathematics, the process (and therefore the result) of applying a function to an

argument depends on the argument and the function. Give a function f(x) = x + 1 and an

argument 4, for example, we say that the process of applying function f to the argument 4, i.e., f

(4), or (f 4) in Froglino term, is dependent on both the function f and the argument 4.

There are dependent relationships among the terms in a database. Given a comb-term (t1 t2)
in a database, we say that the comb-term (t1 t2) functionally depends on t1 and

argumentatively depends on t2. These dependent relationships lead the following operators

available in Froglingo.

2.5.1 Functional dependency

Binary operators: {+, }+

Unary operator: pterm

Definition: If there is a term (M N) in database, the following binary operations are evaluated to

be true:

M N {+ M,
M }+ M N.
Further the unary operation pterm (M N) is evaluated to be M. Examples:

[//]((College CS) CS100) {+ College CS;
true;

 13

[//] pterm (College CS CS100);
College CS;

2.5.2 Argumentative dependency

Operators: {-, }-

Unary operator: mterm

Definition: If there is a term (M N) in database, the following binary operations are evaluated to

be true:

M N {- N,
N }- M N.
Further, the unary operation mterm (M N) is evaluated to be N. Examples:

[//] ((College admin) (SSD John)) {- SSD John;
true;
[//] mterm (College admin (SSD John));
SSD John;

2.5.3 Recursively functional dependency

Binary operators: {=+, }=+

Definition: If N is an inner-most term of term M in a database, the following operations are

evaluated to be true:

M {=+ N,

Or equivalently:
N }=+ M.

Examples:
[//] College admin (SSD John) {=+ College admin;
true;
[//] College admin {=+ College;
true;
[//] College admin (SSD John) {=+ College;
ture;

It is clear from the definitions and the example aboe that if N {+ M, then N {=+ M. The

recursively functional dependency is transitive, i.e., if M {=+ N and N {=+ Q, then M {=+ Q.

2.5.4 Recursively argumentative dependency

Binary operators: {=-, }=-

Definition: If N is a outer-most term of term M in a database, the following operations are

evaluated to be true:

M {=- N,

Or equivalently:
N }=- M.

Examples:

[//] College CS CS100 (College admin (SSD John)
 {=- College admin (SSD John);

true;
[//] College admin (SSD John) {=- SSD John;
true;
[//] College CS CS100 (College admin (SSD John)) {=- John;

 14

true;

It is clear from the definitions and the examples that if M {- n, then M {=- N. The recursively

argumentative dependency is transitive, i.e., if M {=- N and N {=- Q, then M {=- Q.

The dependent relationships align terms in database to hierarchical structures. To show the

hierarchical structures, we provide a graphical view of the sample database of the school

administration in Section 2.4.

College

CS admin

CS100

grade

“F”

Major enroll
‘9/1/08’

SSD

John

birth
‘6/1/90’

SSN
123456789

In the graph above, each circle represents an assignee in database. A root node represents an

identifier, where the identifier is spelled out in the circle center. A non-root node represents an

application, where the left sub-term is spelled out in the circle center. The leaf nodes are the

assignments normally having explicit assigners. A solid up-down link connects an application to

its left sub-term. A dash arrow connects an application to its right sub-term. A solid arrow

connects an assignee to its assigner. For those assignees whose values are constants or other non-

assignees their values spelled out in the cycles.

The up-down links and dash arrows represent the relations {+ and {-. Under each of the relations,

the graph forms tree(s), and further the leaf nodes in trees depend on the upper nodes.

2.6 Database update

In addition to the operator create, there are three more operators that can be used to keep a

database evolving: update, delete, and record. This section gives a comprehensive

discussion on them.

Given two terms M and N, the syntactical forms are:

(create M [= N]),

(record M [= N]),

(update M = N), and

 15

(delete M).

When a pair of braces [and] appears in the meta expressions above, the content surrounded by

the pair is optional. Therefore the part “= N“ is optional for the operators create, and

record.

In the meta expressions above, we added a pair of parentheses (and) for each operation

expression because we treated a update operator as a term too. You may drop the parentheses off

whenever there is no ambiguity.

2.6.1 Create operation

A create operation, when it is executed, requires that the assignee is new to database. A sub-term

of the assignee can be existed in database. But when it is not in database, it will be automatically

created too.

When a create operation has an assigner, each identifier in the assigner must be in database

already. For example:
[//www.a_trial.com] create t1 t2 = t3;
The term t3 is not in database. Or you don’t have access to the
term t3.
Create operation is not successful.

Preventing assigner from including undefined identifiers is to prevent users from entering

unintended expressions. It helps users in debugging.

2.6.2 Assignment update

An update operation, when it is executed, requires that the assignee exists in database and an

assigner must be provided. The assigner is a term, in which all of its identifiers have been in

database. For example,
[//www.a_trial.com] update Mike salary = Dave salary;
[//www.a_trial.com] update country state county = “Somerset”;
[//www.a_trial.com] update Mike Dave = 3;
The term (Mike Dave) is not an assignee in database.
Update operation is not successful.
[//www.a_trial.com] update Mike salary = t3;
The term t3 is not in database. Or you don’t have access to the
term t3.
Update operation is not successful.

2.6.3 Delete operation

When a term is deleted from database, all the other terms that are functionally and

argumentatively dependent on the given term are deleted too.
[//www.a_trial.com] print .;
Bob = Dave;
College CS CS100 (College admin (SSD John)) grade = "F";
College admin (SSD John) Major = College CS;
College admin (SSD John) enroll = 1220245200;
Dave salary = 2000;
January 1 = “New Year”;
Mike salary = 1000;
SSD John SSN = 123456789;
SSD John birth = 644216400;

 16

a b (c d) = 6;
a_number = 1;
country state county = “Somerset”;
c1 c2 = c3;
e f = 66;
income = salary;
y u = a b;
[//www.a_trial.com] delete c1;
[//www.a_trial.com] print .;
Bob = Dave;
College CS CS100 (College admin (SSD John)) grade = "F";
College admin (SSD John) Major = College CS;
College admin (SSD John) enroll = 1220245200;
Dave salary = 2000;
January 1 = “New Year”;
Mike salary = 1000;
SSD John SSN = 123456789;
SSD John birth = 644216400;
a b (c d) = 6;
a_number = 1;
country state county = “Somerset”;
e f = 66;
income = salary;
y u = a b;

Here, we used the command “print .“ to list the assignments stored in database. More

discussion about the command print will follow later.

2.6.4 Record operation

A create operation fails if the assignee exists in database. An assignment update fails if the

assignee is not in database. When a user is not sure if an assignment exists or not and wants to

commit its construction in database anyway, the user can use the operation Record. The record

operation is typically useful when one needs to upload a set of assignments to database. More

discussion on upload process is presented in Section 3. Here are some examples:
[//www.a_trial.com] create Mike salary = 7000;
The term Mike salary has existed already. Create operation failed.
[//www.a_trial.com] record Mike salary = 7000;
[//www.a_trial.com]

The record operation provides users with more flexibility, but increases the risk of unexpected

change on database. Users need to be careful when using it.

 17

3 DATA QUERIES

Given a database, an arbitrary term that was defined in Section 2 can be evaluated to have a

unique value (called the normal form of the given term). Terms are themselves query expressions.

In addition, Froglingo offers “select” operations that produce sets of values.

In this chapter, we discuss how a term is evaluated to its normal form; and how we use the select

command to support set-oriented operations. Froglingo has a set of built-in operators that reflects

pre-orderings relationships among managed data. They can be used to manage business data

having complex relationships including cyclical relationships.

3.1 Normal forms and evaluations

Any terms, under the environment of a database, can be evaluated to unique values –normal

forms. With a given database, a term is called a normal form if

1. it is a constant, or

2. it is in the database and doesn’t have an assigner.

For example, null, 3.14, College, College CS, and salary are all normal forms

under the database that was collected so far in this document.

An arbitrary term can be evaluated to its normal form. Here are the evaluation rules:

1. If an identifier is not in the database, it is reduced to null.

2. If a term is in the database and has an assigner, its normal form is the normal form of its

assigner.

3. A comb-term having a constant as its plus-term is reduced to null.

4. If two terms M and N have normal forms M’ and N’, then the normal form of the comb-term

(M N) is the normal form of the comb-term (M’ N’).

Here are examples of evaluation processes under the database we have so far:
[//] 44;
44;
[//] 23 John;
null;
[//] a_undefined_id;
null;
[//] a b (c d);
6;
[//] a b;
a b;
[//] Dave salary;
2000;
[//] Bob salary;
2000;
[//] College CS CS100 (College admin (SSD John)) grade;
“F”;
[//] College CS CS100;
College CS CS100;
[//] College admin (SSD John) Major CS100;
College CS CS100;

There are infinite terms while finite assignments are defined in database. The rules guarantee that

 18

arbitrary terms can be reduced to unique normal forms under a database. Since database is

evolving, the normal form of a term may change from time to time.

For some business reasons, however, one may not want a term to be reduced to its normal form

but to keep its original canonical form. Here we introduce a built-in operator canon, which takes

a term in database as input and returns the canonical form of the term as output. For example:
[//] Dave salary;
2000;
[//] canon (Dave salary);
Dave salary;

3.2 Arithmetical and boolean operators

Before starting the discussion of set-oriented operations, we introduce the arithmetical and

Boolean operations commonly used in programming languages and DBMSs.

3.2.1 Arithmetical

Binary operators: +, -, *, /, %.

The operants of the operators are reduced to their normal forms before the operators are applied.

Like in other languages, the operators minus -, multiplication *, quotient /, and remainder %

only apply to numbers. The symbol + acts as the plus operator when two operants are numbers.

Otherwise it syntactically concatenates two operants. Here are examples:
[//] 22.2 + Dave salary;
2022.2;
[//] 1000 – Dave salary;
-1000;
[//] Dave salary * 0.3;
600;
[//] Dave salary / 5;
400;
[//] Dave salary % 1999;
1;
[//] “Dave’s salary is “ + Dave salary;
“Bob’s salary is “ 2000;

3.2.2 Booleans on numbers

Binary operators: <, >, <=, >=.

The operants of the operators are reduced to their normal forms before the operators are applied.

Like in other languages, the operators less than <, bigger than >, less than or equal <=, and bigger

than or equal >= only apply to numbers. Here are examples:
[//] 22.2 <= Dave salary;
true;

 19

3.2.3 Complex booleans

Binary operators: and, or.

The operants of the operators are reduced to their normal forms before the operators are applied.

Like in other languages, the operators and and, and or or only apply to Boolean constants true

and false. Here are examples:
[//] 22.2 <= Dave salary;
true;
[//] (22.2 <= Dave salary) and true;
true;

3.3 Set-oriented queries

With the Boolean operators discussed in sections 2.5 and 3.2, and more to be introduced in 3.4,

we can express set-oriented queries, i.e., the outputs of queries are not single terms, but sets of

terms.

3.3.1 Variables

A variable is an identifier prefixed with the character $. A variable is also a term in Froglingo.

Therefore, the combinations of a variable with other terms are terms too. For example, $var,

$person salary, and College CS CS100 $student Grade are all terms.

3.3.2 Select operations

Select expressions are defined in the syntactical form:

(select M1, M2, …, Mn where condition_clause)

Where,

1. condition_clause is a boolean expression, in which there is at least one variable.

2. M1, M2, …, Mn is a sequence of terms delimited by ‘,’. If a variable appears in the

sequence, it must appear in boolean_exp.

Here are a few examples.

[//] select $p, $p salary, ($p salary * 0.3) where $p salary >=
1000;
Bob, 2000, 600
Dave, 2000, 600
Mike, 1000, 300;
For this query expression, the system retrieves all the persons whose salaries are greater than or

equal to 1000. Then for each person retrieved, the system calculates and prints out the person’s

name, salary, and tax.

[//] select $x where $x {=+ SSD;
SSD
SSD John
SSD John SSD
SSD John birth;
In this query, the system retrieves all the entities functionally dependent on SSD.

[//] select $x where $x {=- John;
John
SSD John

 20

College admin (SSD John)
College CS CS100 (College admin (SSD John));
In this query, the system retrieves all the entities argumentatively dependent on John.

[//]select $college, $dept, $student where $college $dept $class
($college admin $student) grade == "F" and $college admin
$student enroll > '1/1/2006' and $class == CS100 and ($college ==
College or $college == ABC_Univeristy);
College, CS, SSD John;
In this query, the system retrieves the students who were enrolled after 1/1/2006 and whose

grades were “F” in class CS100 in college College or ABC_University (an identifier not

defined in the database). For each student selected, the system further prints out the names of the

college, the department, and the student.

3.3.3 Index

A built-in operator index can appear as the listing M1, M2, …, Mn in a select

operation(select M1, M2, …, Mn where boolean_operation). It indexes rows

generated from the operation. For example,
[//] select index, $p, $p salary, ($p salary * 0.3) where $p
salary >= 1000;
1, Bob, 2000, 600
2, Dave, 2000, 600
3, Mike, 1000, 300;

3.3.4 Sort clause

The outputs can be alphabetically ordered by specifying a sort clause in a select operation. The

syntax is
(select M1, M2, …, Mk

where boolean_operation
[sort n1 order[, n2 order, …, ni order]]

)

where i ≤ k, and a number nj, where j ≤ i, is the index of an element Mh in the listing M1,

M2, …, Mk, i.e., nj ≡ h and h ≤ k. The parameter order can be either ascent or descent.

When the key word sort appears in a select operation, at least one order clause needs to be

specified. To sort salaries (the column 2) in the ascent order, for example, we give the following

expression:

[//] select $p, $p salary where $p salary >= 1000 sort 2 ascent;
Mike, 1000
Bob, 2000
Dave, 2000;

Multiple order clauses can be specified. To sort person’s names for the people who have the same

salary, for example, we give the following expression:
[//] select $p, $p salary where $p salary >= 1000 sort 2 ascent,
1 descent;
Mike, 1000
Dave, 2000
Bob, 2000;

 21

3.3.5 Summary clause

The aggregation functions maximum, minimum, average, sum, and count can be applied to the

selected set and provide a summary for a select operation. Here is the syntax:
(select M1, M2, …, Mn

where boolean_operation
[sort n1 order[, n2 order, …, ni order]]
[summary t1[,t2, …, tj]]

)

Here t1[,t2, …, tj]]is a sequence of terms, each of which may be a regular term, the built-

in operator count, or an aggregate clause
aggregate n

where aggregate is one of the following: max, min, ave, and sum and n is a number

representing a position of the output list M1, M2, …, Mn. Here is an example:

[//] select $p, $p salary where $p salary >= 1000
 sort 1 ascent

summary “Summary:”, count, ave 2,sum 2, (0.3 * (sum 2));
Bob, 2000
Dave, 2000
Mike, 1000
“Summary:”, 3, 1666, 5000, 1500;

In the select operation above, “Summary” and (0.3 * (sum 2)) are regular terms, and

ave 2 and sum 2 are aggregate clauses.

3.4 Derivative relationships

In Section 2.5, we said that a comb-term depends on its plus-term functionally and its minus-term

argumentatively because the existence of the comb-term in a database implies the existences of its

plus-term and its minus-term in the database. In this section, we define:

1. Two terms are equal if they have the same normal form.

2. If a com term (m n) is equal to another term q, and (m n) and q are in a database, then we

say that q is functionally derivative from m; and argumentatively derivative from n.

When a term is derivative from another term, it may no longer be dependent on the second term.

Given the function f (x) = x + 1 and the argument 4, for example, the process, i.e., f (4) or (f 4), of

applying f to 4 is ended with the value 5. Therefore both the process (f 4) and the value 5 are

functionally derivative from the function f; but 5 is not dependent on f. This section gives the

binary operators stemming from the derivative relationships.

To show the way Froglingo manages directed graphs including cycles in the coming sub-sections,

we create data representing a directed graph:
[//] create A l1 = B;
[//] create B l2 = A;
[//] create A l3 = D;
[//] create C l4 = D;
[//] create C l5 = D;

Here the directed graph consists of 4 vertices: A, B, C, and D; and 5 directed links: l1 from A to B,

l2 from B to A, l3 from A to D, l4 from C to D, and l5 from C to D. With the Froglingo

expressions above, we can have the following interesting queries:
[//] A l1

B; /* Starting from A, one can reach B by following link l1 */

 22

[//] A l1 l2 l3;

D; /* Starting from A, one can reach D by following links l1, l2, and l3 */
[//] A l1 l2 l1 … l2;

A; /* Starting from A, one can “walk” along the circle as many times as desired by following

links l1 and l2*/

A

B

C

D

A Sample Directed Graph

l1l2

l3
l4l5

3.4.1 Equations

Binary operators: ==, !=

Unary operator: not

Definition: If two terms m and n have the same normal form, then m is equal to n, i.e., m == n.
If two terms m and n have two different normal forms, then m is not equal to n, i.e., m != n, or

not (m == n). Examples:

[//] Bob salary == 2000;
true;
[//] Dave income == Bob salary;
true;
[//] Bob salary != 2000;
false;
[//] Bob != salary;
true;

To retrieve all the terms that are equal to 2000, we have the following select operation:
[//] select $x where $x == 2000;
2000
Dave salary
Bob salary;

Two assignees not having explicit assigners have themselves as normal forms, therefore they are

never equal.

3.4.2 Functional derivatives

Binary operators: <+, >+

Definition: Given terms m n and q in a database, if m n == q, then q is a functional

derivable from m, i.e., q <+ m; or equivalently m >+ q . Examples:

 23

[//] 2000 <+ Bob;

true; /* 2000 is a derivative (salary) of Bob */
[//] College CS <+ College admin (SSD John);

true; /* College CS is a derivative (Major) of College admin (SSD John)*/
[//] D <+ C;
true;
[//] C <+ D;
false;
[//] A <+ B;
true;
[//] B <+ A;
True;

In the directed graph constructed with the vertices A, B, C, and D earlier, we have the following

expression to find all the vertices that have directed links to D:
[//] select $v where $v >+ D;
C
A

3.4.3 Argumentative derivatives

Operators: <-, >-

Definition: Given terms m n and q in a database, if m n == q, then q is an argumentative

derivative from n, i.e., q <- n; or equivalently n >- q .

Examples:
[//] 2000 <- salary;

true; /* 2000 is a derivative of salary, i.e., someone’s salary is 2000 */
[//] 2000 <- income;
true;
[//] College CS <- Major;

true; /*College CS is a derivative of Major, i.e., someone’s major is College CS */

In the directed graph constructed with the vertices A, B, C, and D earlier, we have the following

expression to find the directed links that terminate at D:
[//] select $v where $v >- D;
L3
L4
L5;

3.4.4 Recursively functional derivatives

Binary operators: <=+, >=+

Definition: If m is an inner-most term of p and p is equal to another term q , here m,
p, and q are in a database, then q is a recursively functional derivative from m, i.e., q <=+ m, or

equivalently m >=+ q.

Examples:

[//] 2000 <=+ Bob;
true;
[//] 2000 <=+ Robert;
true;
[//] “F” <=+ College;
true;

 24

[//] College <=+ College;
true;

In the directed graph constructed with the vertices A, B, C, and D earlier, we have the following

expression to find if there is a path from B to D:
[//] B >=+ D;
true;

The query: “Is there a circle having vertices A and B?” is represented as:
[//] A <=+ B and B <=+ A;
true;

To find all the vertices that are reachable from A is expressed as:

[//] select $x where $x <=+ A;
A
B
D;

3.4.5 Recursively argumentative derivatives

Binary operators: <=-, >=-

Definition: If n is an outer-most term of term p and p is equal to another term q, here n,
p, and q are in a database, then q is a recursively argumentative derivative from n, i.e., q <=- n,

or equivalently n >=- q.

Examples:

[//] 2000 <=- salary;
true;
[//] “F” <=- grade;
True;
[//] College
true;
[//] College <=- College;
ture;

3.4.6 Properties of derivative relationships

The operators introduced earlier are are related. Here is a summary:

1. if p {+ q, then p <+ q,

2. if p <+ q, then p <=+ q,
3. if p {=+ q, then p <=+ q.

Similarly,

4. if p {- q, then p <- q,

5. if p <- q, then p <=- q,
6. if p {=- q, then p <=- q.

In addition, the operators <=+ and <=- are pre-ordering relations, i.e., reflexive and transitive

while the operators {=+ and {=- are partial ordering relations, i.e., reflexive, anti-symmetric,

and transitive.

 25

4 BUSINESS LOGIC

Managing business data is the first, but not the final step in database application development.

Business logic, though not having a precise mathematical correspondence, refers to computer

presentation for business work flows. Mathematically, a language supporting business logic must

be able to deal with infinite data. To represent the logic of traffic light, for example, we have to

consider the exception that a light is not red, green, and yellow. This exception implies an infinite

number of the colors other than the 3 colors.

Another requirement of business logic is multiple actions trigged by a single event. A typical

example is a trade. A trade wouldn’t happen unless at least two objects are exchanged between

two parties simultaneously.

By adding variables and sequential terms, Froglingo becomes compete in business data and

business logic presentation, and is sufficient for arbitrary database applications..

4.1 Infinite data

We have introduced variables in Section 3.3. A variable in a select operation is a placeholder for

a finite set of terms satisfying the boolean condition given in the select operation. The variable is

bounded to the select operation, and not visible to the rest of database.

In this section, we introduce variables in the scope of a database. A variable in database allow a

database with limited space to manage infinite data.

4.1.1 Variables and databases

From Section 3.3, we know that a variable is formed by an identifier prefixed by ‘$’, and the

definition of term has been extended with variable. Therefore, $x person, tax $money,

A $x B $y are terms.

Variables can appear as sub-terms of assignees in database. But there are two restrictions:

1. If a variable appears in an assigner, it must appear in assignee, and

2. A variable cannot be a plus-term in assignee.

Here are some examples of valid assignments:
[//] create tax $money = ($money * 0.3);
[//] create Grade $x $y = College CS $y $x grade;
[//] create fun $x 1 $y = ($x + $y);
[//] create fun $x 2 $y = ($x * $y);

Variables serve as placeholders for the domains of functions. Variables bring infinite number of

entities into databases. For example, the assignment
tax $money = ($money * 0.3)
is mathematically equivalent to the following Froglingo assignments without a variable:
tax 0 = 0;
tax 1 = 0.3;
tax 2 = 0.6;
…
tax n = (n * 0.3);

4.1.2 Variable ranges

Business needs may require a range of values that a variable can take. For example employee

salaries are always non-negative. In Froglingo, we allow a variable in an assignee optionally to

 26

have a range. The syntax is:

$ID: [bool_exp]

Here bool_exp is a boolean expression containing the variable $ID. For example, we can re-

define the function tax:
[//] create tax $money:[$money >= 0] = ($money * 0.3);

Note that when a variable is defined without a range, it takes all the terms as its range. Therefore

functions without ranges are partial functions.

Sometime, a function may need to be define by cases. For example, we want the tax rate to be 0.2

for the people whose salary are less than 20,000; 0.5 for the people whose salary is larger than

250,000; and 0.3 for the rest of the people. This requirement can be expressed in Froglingo:
[//] delete tax $money; /* remove the assignment tax $money */
[//] create tax $r1:[$r1 >= 0 and $r1 < 20000] = ($r1 * 0.2);
[//] create tax $r3:[$r3 >= 20000 and $r3 < 250000] = ($r3 * 0.3);
[//] create tax $r2:[$r2 >= 250000] = ($r2 * 0.5);

In the case-based definition above, we defined multiple variables under the function tax and

each variable is associated with a range. When multiple variables are entered for a single function,

they are in the alphanumerical order of the variables under the function. Here is a print out of

function tax showing the order they are stored:
[//] print tax;
tax $r1:[$r1 >= 0 and $r1 < 20000] = ($r1 * 0.2);
tax $r2:[$r2 >= 250000] = ($r2 * 0.5);
tax $r3:[$r3 >= 20000 and $3 < 250000] = ($r3 * 0.3);

Note that Froglingo is implemented without verifying if the variable ranges under a function are

properly specified, e.g., if the ranges cover all the possibilities and if there is any overlaps among

ranges. For example, if function tax is re-defined as:
[//] update tax $r1:[$r1 >= 0 and $r1 < 20000] = ($r1 * 0.2);
[//] update tax $r2 = ($r3 * 0.3);
[//] update tax $r3:[$r3 >= 250000] = ($r3 * 0.5);

where there is no range specified for the variable $r2, the query tax 300000 would not return

its correct answer. It’s user’s responsibility to ensure the integrity of variable ranges.

With variables in databases, we can define functions with domains that are specified by both

variables and individual cases. To interpret traffic lights, for example, we can define the

following assignments:
[//] create light red = “to stop”;
[//] create light green = “to go”;
[//] create light yellow = “be cautious”;
[//] create light $x = “The color “ + $x + “ is not a color for
traffic lights”;

When a function with a domain of having both individual cases and variables is applied to an

input, the system always tries to match one of the individual cases first.

4.1.3 Queries on infinite data retrieval

Variables allow functions with infinite data to be stored in databases. Given a function f and an

input t ranging in an infinite domain, we can query databases to retrieve value f(t).

[//] tax (Bob salary);

 27

400;

Bob salary is reduced to 2000, and 2000 is replacing the variable $money in tax

$money = ($money * 0.3).

[//] Grade (College admin (SSD John)) CS100;
“F”;
The facts leading to the result are:
Grade $x $y = College CS $y $x grade;
College CS CS100 (College Admin (SSD John)) = “F”;

[//] fun 2 1 3;
5;
The fact leading to the result is:
fun $x 1 $y = ($x + $y);

[//] light green;
“To go”;

The fact led the result is:
Light green = “To go”;

4.1.4 Function recursions

With variables, we can define a function by directly or indirectly referencing itself. For example,

the factorial function can be defined in Froglingo:
[//] create fac 0 = 1;
[//] create fac $n = ($n * (fac ($n – 1)));

Here the function fac appeared in the body (the assigner) of defining the function fac itself.

Then we can express a query:
[//] fac 4;
24;
The facts leading to the result are:
fac $x = ($x * (fac ($x – 1)));
fac 4 = (4 * (fac 3));
fac 3 = (3 * (fac 2));
fac 2 = (2 * (fac 1));
fac 1 = (1 * (fac 0));
fac 0 = 1;

Given two vertices X and Y in a directed graph, between which there is not a circular links, we

can print out all the paths from X to Y by using the following expression:
create path $a $b:[$b <+ $a or $b == $a] = ($a + $b);
create path $a $c = select ($a + path $z $c) where $z <+ $a and
$c <=+ $z;

Before applying the function path to the sample directed graph given in Section 3.4, we add one

more link into the graph:
[//] create D l6 = E;
Then,
[//] path C E;
CDE;

With variables, a calculation in Froglingo may never terminate. With the expression,
[//] fac 1.1;
for example, the evaluation process doesn’t never terminate normally. Similarly the system on the

 28

expression:
[//] path A B;
will not terminate normally as well because mathematically there are a infinite number of paths

between A and B: A B, A B A, A B A B, ….

4.1.5 Update operations in assignments

Update operations can be assigners in databases. For example:
[//] create add_a_value = (create a_value = 6);

Allowing update operations in assignments become particularly useful when variables and

sequential terms, as to be discussed in 4.2, are part of the assignments. For example:
[//] create index = 1;
[//] create objects;
[//] create add_an_element $val = (create objects index = $val),
 (update index = index + 1);

Since an update operation becomes an assigner, it is required to return a value. When an update

operation is executed successfully, it returns a special identifier void. While users are able to

enter void, it is never displayed as an output. When an update operation fails to terminate

successfully, it returns a special identifier error. Similarly the identifier error can be entered

but not be displayed. Section 9 provides a full coverage of the identifiers void and error.

4.1.6 Assignment updates with variables

A term with variables cannot be queried. For example:
[//] fac $x;
The variable $x cannot be referenced directly.

To modify the assigner of an assignment with variables, one needs to specify the assignee and

then redefine its new assigner. For example:
[//] update fac $x = ($x + (fac ($x – 1)));

Assignees in databases cannot be modified. To modify an assignee, e.g., the ranges of variables,

one needs to delete the assignment first before creating a new assignment. For example:
[//] delete fun $x 1 $y;
[//] print fun;
fun $x 2 $y = ($x * $y);

where fun $x 1 $y = ($x + $y) is no longer in the database. When a variable in an

assignee has its range defined, the range is not required to be specified when users intend to

delete the assignment from a database.

4.1.7 Evaluation rules for variables

Now let’s discuss how exactly system handles queries against functions with infinite properties.

For the readers who are not interested, this section can be skipped.

Given a list of variables v0, …, vn, and a list of terms as values V0, …, Vn, here n >= 0, we call

the form:

[v0:= V0,…, vn:= Vn]

an environment.

Given a term P and an environment [v0:= V0,…, vn:= Vn], we can obtain another term P’

such that each instance of vi appeared in P is substituted with Vi. The substitution is done for

 29

each i that is ranged from 0 to n. We use the form:

P:[v0:= V0,…, vn:= Vn]

to represent P’and call it the substitution of P under the environment:[v0:= V0,…, vn:= Vn].

Given an assignee M without an assigner, in which there are variables V0,…, vn, here n >= 0,

as sub-terms, and given a list of values V0, …, Vn from the corresponding ranges of the variables,

then we define the substitution:

M:[v0:= V0,…, vn:= Vn]

to be the normal form of M under the environment [v0:= V0,…, vn:= Vn].

Given a substitution M:[v0:= V0,…, vn:= Vn], here none of the variables v0,…, vn
appears in M, then the normal form of the substitution is the normal form of M itself.

Now let’s give a comprehensive algorithm of reducing a term M to its normal form under a

database that may have variables defined. Given a term M, here are the steps of reducing it to its

normal form:

1. If M is a constant, M itself is its normal form.

2. If M is an identifier,

 2.1 If M is not defined in database, its normal form is null;

 2.2 If M has no assigner, M itself is its normal form;

 2.3 If M has an assigner, its normal form is the normal form of its assigner.

3. If M is a comb-term P Q, Evaluate P and Q separately to obtain their normal forms P’and Q’,

where P’ is the substitution of P under an environment ENV, and ENV may have 0 or at least

one pair of variable and value,

3.1 If P’ is a constant, then the normal form of M is null;

3.2 If P’ is a term in database, find the list of non-variable terms N0, …, Nk, here k is 0 or

a positive integer, such that P N0, …, P Nk are in database,

3.2.1 If there is a Ni such that Ni == Q’, here i is a number between 0 and k,

then the normal form of M is the normal form of P Ni:ENV.

3.2.2 If there is not a Ni such that Ni == Q’, here i is a number between 0 and k,

find the list of variable terms v0, …, vl, here l is 0 or a positive integer, such

that P’ v0, …, P’ vl are in database,

3.2.2.1 If there is a vj , here j is a number between 0 and l, such that Q’

falls into its range, then the new environment ENV’ is the union of ENV
and [vj:=Q’],

3.2.2.1.1 If P’ vj has an assigner U, then the normal form of M
is the normal form of the substitution U:ENV’.

3.2.2.1.2 If P’ vj doesn’t have an assigner, then M:ENV’ is

the normal form of M.

3.2.2.2 If there is not a vj , here j is a number between 0 and l, such

that Q’ falls into its range, then M has the normal form null.

When M ends up with an environment as a part of its normal form, then the system reports it as an

error. For examples:
[//] fun 2;
There are not sufficient arguments provided to complete
evaluation.

 30

4.2 Sequential terms

Allowing a sequence of terms as an assigner is to express multiple actions that are triggered by a

single event. For example, when a purchase order is to be closed, multiple operations have to be

executed: reduce storage volume, generate shipping report, verify credit card, and deposit money.

A sequential term is a sequence of terms separated by commas ‘,’. Sequential terms can only

serve as assigners. For example,
[//] create account1 = 100;
[//] create account2 = 300;
[//] create transfer $money =
 (update account2 = (account2 - $money)),
 (update account1 = (account1 + $money));
[//] transfer 10;
[//] account1;
110;
[//] account2;
290;

[//] create ack_after_action $m = transfer $m,

 “The amount “,

 $m,

 “ has been transferred”;

[//] ack_after_action 30;

“The amount “30” has been transferred”;

[//] account1;
140;
[//] account2;
260;

Before ending this section, we see how the system processes sequential terms. For those who are

not interested, the remaining part of this section can be skipped.

Given an assignment M = N1, N2, …, Nn, its substitution under an environment [v0:=V0; …,
vn:=Vn], syntactically N1, N2, …, Nn: [v0:=V0; …, vn:=Vn], is the sequence of the

following sub substitutions:

N1: [v0:=V0; …, vn:=Vn],

…

Nn: [v0:=V0; …, vn:=Vn].

The normal form of the substitution (N1, N2, …, Nn): v0:=V0; …, vn:=Vn is the sequence of

the normal forms of the sub substitutions.

 31

5 INFORMATION COMMUNITY

A community in our daily life is a geographical area in which people live together with families,

interest groups, cultures, and laws. By information community, we mean that Froglingo provides

a computing environment with built-in security facilities for individual users, business owners,

and their customers. They share and collaborate in constructing information inside and outside of

their organizations.

Froglingo offers private spaces for multiple business owners and individual users. It offers data

access control mechanism such that people can share information and collaborate. By setting

Froglingo as a website, users can use web browsers to manage and share their data including files

across the Internet. Users can change their stands (called directory or folders in file management

systems) when they are constructing or viewing data. It allows a user to manage multiple

applications separately.

5.1 User accounts

A user account is actually an assignee in database. More than an assignee, it has additional

attributes such as password, created date, and more.

There are two built-in user accounts: root and anyone. The account root (also expressed as

//) is the root of an entire database. In other words, the root functionally dominates all the

assignees in a database. Given an assignee A, it is always true that A {=+ //. The account

anyone is a term under the root, that is, anyone {+ //.

We have being seen that the sample command lines appeared in the earlier sections were headed

with:
[//]

It hinted that a database is always started with the account root. To add more user accounts, the

account root must be provisioned with a password first:
[//] passwd;
User Id: //
New password: *******
Confirm password: ********
[//]

Now Froglingo is ready to create additional user accounts, which is done by using the command

addusr. The syntax is:
addusr userID;

Here userID is an identifier uniquely representing a user. For example:

[//] addusr jason;
The password is: QiRW$5N8
[//] addusr www.myclienta.com;
The password is: i8u9i1o@

Now the user accounts are ready for users to use. To quite from Froglingo environment:
[//] quit;
Thank you for using Froglingo!

Then one can come back to Froglingo again as the user account www.myclienta.com through

the Windows CMD window:
C:\Froglingo\frog.exe

 32

User id: www.myclienta.com
Passwd: ********

An old password for www.myclienta.com can be changed:
[//www.myclienta.com] passwd;

Now the user www.myclienta.com can create its own user accounts:
[//www.myclienta.com] addusr jone.dow;
The password is: oI45E0@a

To facilitate the management of user accounts, we introduce additional commands in the rest of

the section. The readers who are not interested in the subject at this moment can move to the next

section.

A user account can be suspended or deleted by super users: The formats are:
sususr userID
delusr userID

When a user account is suspended, no one can use the user account to logon to system. But all the

data related to the user account still exists in database. To activate a suspended account, a super

user needs to use the command:
actiusr userID

When a user account is deleted from database, all the data related to the user account are removed.

The command delusr is equivalent to the command delete.

Earlier, we have demonstrated how a user changes his/her own password by the command

passwd, where the user has to provide an old password before a new password was requested. In

a case that a user forgets its password, a super user can reset the password without providing the

old password. Here is the syntax:
passwd useraccount;

For example, the user //www.myclienta.com can reset the password for the user

jone.dow with the following command:
[//www.myclienta.com] passwd jone.dow;

5.2 Sessions

A session is a period of time between which a user logins to a Froglingo system.

5.2.1 Establishment

When a new database starts, a user enters to a session by invoking the executable frog.exe at

the Windows OS level. In this case, the user is the sole root user and can exit from and enter to a

session without providing a password as many time as the user wants until a password for the root

account is created.

As soon as a password is created for either the root account or a non-root account, users must

provide the password before starting a session. A session is started via a CMD window as we

have discussed in Section 5.1.

The last method to start a session is to execute the following command within an earlier session
login UserAccount “passwd”;

where passwd is displayed in plain text and must be surrounded by a pair of double quotes and

UserAccount is a user account. The new session is associated with a new user. For example

the following command is executed by the root user and the root user is switched to

 33

www.myclienta.com:
[//] login www.myclienta.com “i8u9i1o@”;
[//www.myclienta.com]

When the new session starts, the earlier one will be terminated automatically. This method is

typically useful when a user attempts to login through a web browser. We will discuss more about

it in Section 7.

A session is always associated with two parameters. The first one is its user account representing

the user who is interacting with the system. The second one is a context the session sets up for the

user when the user interacts with the system. We call a context a stand, e.g., where the user stands

in a database.

5.2.2 Signature

The built-in identifier signature is automatically assigned with the value of a user account

when the user starts a new starts. For example, one via the user account // in a session can have

the following interactions:
[//] signature;
//;
[//] signature John salary;
2000;

Since the term signature is automatically assigned with a value and not editable by anybody,

it serves as the signature or the footprint of the user account.

A user account is always associated with a set of privileges. Through a user account, the system

knows the privileges the user is assigned with and will either grant or reject the user’s requests

depending on the privileges. We will discuss privileges in Section 5.4.

5.2.3 Stand

The second parameter associated with a session is its stand, a context with which the user

interacts with system. It actually is an assignee that is associated with the session. When a session

starts, the stand is always the user account itself. When a user logins with user account

www.myclienta.com, for example, both the signature and stand of the session are

www.myclienta.com.

In a session, the stand changes when the user navigates a system by the command cd. The stand

can be printed out by the command whereami. In the coming section 5.3, we will discuss how a

user navigates.

5.3 Locality

A Froglingo database can host multiple individual users and business owners, where a user

account may host multiple applications, i.e., terms and assignments functionally dependent on the

user account. To effectively manage data and share data with others, a user may want to “travel”

through database. When a user travels, the data appear differently to the user, and therefore the

user is required to express the data differently. The key to support users’ traveling is to

consistently name the data when a user travels from one place to another. This section gives the

command cd that changes session stands, some common stands users normally take, and the

naming scheme that makes traveling possible.

When a mom speaks to her own kids and shouts out “Michelle”, the name Michelle is always

unambiguously referencing a specific kid. But when she speaks to a group outside of her family,

 34

she may have to say “my Michelle” to reference her own daughter Michelle. In another scenario,

a residential community manager may have to say “Mike on 22 High Street” to reference a

specific person in her community.

In parallel to the ways of our daily communications, we support relative names for data entities in

databases, that is local to and unique around a stand. An expression being uniquely referencing a

database entity under a stand is called a name of the entity. An entity may have many names. The

assignee (entity) itself is a name. All the terms that can be reduced to the same normal form can

serve as names for the entity too.

5.3.1 Navigation

Users can use the command cd to move user’s stand from one to another. The syntax is:
[stand] cd term;

Here stand is the current user’s stand and term is the new stand the user likes to move to. The

new stand can be an assignee in database as long as the user has a privilege to access (we will

discuss privileges in the next section).

To demonstrate this, we assume that a user wants to construct two independent applications and

to store a set of files (to be discussed in Section 6) by creating three terms serving as sub folders
1
:

[//www.myclienta.com] create appl1;
[//www.myclienta.com] create appl2;
[//www.myclienta.com] create files;

Then the user can change the stand to one of the subordinates and perform anticipated tasks:
[//www.myclienta.com] cd appl2;
[//www.myclienta.com appl2] create a b (c d) = 8;
[//www.myclienta.com appl2] print .;
a b (c d) = 8;

The stand is always displayed as the header of each command line.

Constructing an application under a separated stand is important because it isolates one

application from others, and makes the development and maintenance easier. Also an independent

application can be migrated from one place to another by using the download and upload

commands print and load to be discussed in Section 6.

In addition to travel inside its own space, a user is allowed to travel outside as long as a

permission is set to do so. For example, any user can travel to the user account anyone:
[//www.myclienta.com] cd // anyone;
[//anyone]

5.3.2 Current and upper stands

The stand of a session at a given time is called the current stand, and we use the special character

‘.’ to represent it. Continuing the examples in Section 5.3.1, here are some examples:
[//www.myclienta.com appl2] .;
www.myclienta.com appl2;
[//www.myclienta.com appl2] . a b (c d);
8;

The assignee above the current stand is called the upper stand. In other words, if the current stand

is M, then the upper stand is pterm M. We use the special string “..” to represent it:

1
 Here terms appl1, appl2, and files are similar to folders in operating systems.

 35

[//www.myclienta.com appl2] ..;
www.myclienta.com;
[//www.myclienta.com appl2] .. appl2;
www.myclienta.com appl2;

5.3.3 User home

The user home of a session is the user account itself. We use the special symbol ‘~’ to represent it.

For example:
[//www.myclienta.com appl2] ~;
www.myclienta.com
[//www.myclienta.com appl2] cd ~;
[//www.myclienta.com]

5.3.4 Application home

After a user created data on a stand, the stand became an application home. The examples are //,

anyone, www.myclienta.com, and www.myclienta.com appl2. The assignees a and

a b were created under the stand www.myclienta.com appl2, and they are not application

homes because no user yet took them as stands to create data. The sample terms such as

college, college admin, and Mike given in Chapter 2 are not application home either. A

user home must be an application home.

Assume that a user created an assignee A1… An under an application home S D, here S is also an

application home. When the user changes the stand to S, then the A1… An under the stand S

appears to be the expression D A1… An, or equivalently (…(D A1)… An). For examples:

[//www.myclienta.com appl2] print .;
a b (c d) = 9;
[//www.myclienta.com appl2] cd ..;
[//www.myclienta.com] print app2;
appl2 a b (c d) = appl2 9;
[//www.myclienta.com] app2 a b (c d);
appl2 9;

Keeping an assignee a consistent view when a user moves from one application home to another

is important in data construction, in data sharing, and data collaborating.

5.3.5 Non-application home

After a user created an entity A1… An at the stand S, the terms S A1, S A1 A2, …, S A1 A2 …
An are not application homes. For example www.myclienta.com appl2 a and college

admin under // are non-application homes. Users are allowed to step into non-application

homes by using cd. However Froglingo prevents users from creating new data at non-application

homes. Therefore a non-application home cannot become an application home.

5.3.6 Absolute names

The names we have discussed so far are relative. An entity in database changes its relative name

when a user changes the stand from one to another. There is a name for an entity that doesn’t

change all the time no matter what stand a user takes. A term having “//” as the inner-most term

is an absolute name. Therefore, one without “//” as the inner-most term is a relative name.

Given an assignee A1… Aj under an application home S0… Si as the stand, the absolute name of

the assignee is //S0… Si A1… Aj, or equivalently (… ((… (//S0) … Si)A1)… Aj). Here

 36

are a few examples:
[//] www.myclient.a.com appl2 a b (c d);
www.myclienta.com appl2 9;
[//] // www.myclient.a.com appl2 a b (c d);
www.myclienta.com appl2 9;
[//www.myclienta.com appl2] a b (c d);
9;
[//www.myclienta.com appl2] // www.myclient.a.com appl2 a b (c d);
9;
[//www.myclienta.com appl2] // SSD John SSN;
// 123456789;

A stand a user takes is always displayed as absolute names.

To better understand database the naming scheme, we give a graphical view of the sample data

we have created through this document so far. The graphical view also demonstrates how the

Froglingo system uniformly manages data, user accounts, business logic, and files.

Dave a c College SSD A B Tax www.myclienta.comanyone jason

//

salary
2000

b

6

d

CS Admin

CS100

grade
“F”

Major
enroll
‘9/1/08’

John

birth
‘6/1/90’

SSN
123456789

l1 l2
$money
(0.3 * $money)

Jone.dow appl1 appl2 files

a c

b

6

d

5.4 Privileges

In Froglingo, there are only three types of access privileges: administration, read-only, and no

access. With the administration or read-only permission on a given entity, a user has the full

controls or view only access on the entity and the entities functionally depending on the given

entity. With no access on an entity, a user can do nothing about the entity.

By default, a user has the administration privileges to the entities functionally depending on the

user account. Once a user account is created, the account can be suspended or deleted. A user has

not access to his or her suspended account. A deleted account is physically removed from system.

By default, a user has no access to the entities not functionally depending on the user account.

However a user can gain the administration or read-only permissions on entities if the owners of

 37

the entities explicitly assign the privileges.

For the purpose of collaborations and information sharing, data entities also can be accessible to

non-owner users. However it wouldn’t happen until owners assign permissions to non-owner

users. Before discussing them in detail, we give a few examples on how to use the two system

calls grtadm and grtacc.

Assume that a user creates the following data in his/her own space:
[//www.myclienta.com] create AA BB CC = 5;
[//www.myclienta.com] create AA BB DD = 6;
[//www.myclienta.com] create AA private CC = 7;

Now the user wants to make the terms below AA BB readable to anyone; and to make her

employee jone.dow to have the full control over A B and below. Then the user can make the

following specifications:
[//www.myclienta.com] grtacc (AA BB) anyone;
[//www.myclienta.com] grtadm (AA BB) jone.dow;

To test the results, she can login as an anyone user (note that the password for the anyone user

is “anyone” always):
User Id: anyone
Password: ******
[//anyone] //www.myclienta.com AA BB CC;
//www.myclienta.com 5;
[//anyone] //www.myclienta.com AA private CC;
The term may not be accessible or not exists.

When a data entity is made readable to non-owner users, we call it a service, i.e., the privileged

users can retrieve and even update data entities below the service with the owner’s wish. A data

entity is called a partnership if it is created by a service call.

5.4.1 Administration privilege

When a user has the administration privilege on an entity, the user has full control over the entity

and the entities below. In other words, if the entity is M, then all the terms N, such that N {=+ M,

are under the administration privilege of the user. The administration privilege on an entity is

meant that a user can perform all the operations available in Froglingo on the entity. These

operations include create, record, update, delete, query operations and the user account

management operations.

By default, the user possessing a user account has the administration privilege over the entities

below the user account, i.e., functionally dependent. The user account is called the owner of the

entities below it. In other words, If U is a user account, and M is an entity such that M {=+ U

and U != M , then U is the owner of M and U has the administration privilege over M .

By default, if U is a user account, and the entity M is not one below U, i.e., M {=+ U and U !=
M doesn’t hold true, then U has no privilege at all over M.

To assign U to have the administration privilege over M, the operation grtadm has to be used.

The syntax is:
grtadm M U

Here U must be a user account. This operation can be performed only by an owner of M.

 38

5.4.2 Read-only privilege

When a user has the read-only privilege on an entity, the user can do every thing except for create,

record, update, and delete operations and the user account administration operations over the

entity and the entities below. In other words, if the entity is M, then all the terms N such that N

{=+ M are accessible to the user.

When a user has the administration privilege over an entity, it automatically has the read-only

privilege over the entity and the entities below the given entity.

As stated in section 5.4.1, if U is a user account, and the entity M is not one below U, that is, M
{=+ U and U != M doesn’t hold true, then U has no privilege at all over M. To assign U to

have the read-only privilege over M, the operation grtacc has to be used. The syntax is:
grtacc M users

Here users is U itself, or a variable definition with a range such that U falls into the range of the

variable. If users is a variable, then the command allows all the users that fall into the range of

the variable to have the read-only privilege against M. For example:

[//www.myclienta.com] create AA Associate data = 32;
[//www.myclienta.com] grtacc (AA Associate)

$x:[$x fname == $x “Jone”];

The user accounts under the account www.myclienta.com whose first names are “Jone” were

granted with the read-only privilege on AA Associate. The example assumes that each user

account under [//www.myclienta.com] have its first name as its property. For example:
[//www.myclienta.com jone.dow] print .;
fname = “Jone”;
lname = “Dow”;

With the permission set, jone.dow is able to view the data owned by its super user:
[//www.myclienta.com jone.dow] .. AA Associate data;
//www.myclienta.com 32;

The entities accessible to other users due to grtacc actually become services. Not only for the

purpose of viewing data, services allow users to trigger update operations. Sections 5.4.4 and

5.4.5 cover the detailed information on the effect of the command grtacc.

When an entity is not a user account and falls into the range of the variable definition users, the

entity is not affected by the command grtacc.

5.4.3 Privilege removal

There are two additional commands in managing privileges. The first one is to display privileges.

Given an entity M, the command:
echpriv M
displays the privileges assigned to all the assignees N such that N {=+ M or N }=+ M. Only

the owner of M is able to perform this command. Each row of the output is in the following

format
2
:

//grpRoot entity users = true | false

Here //grpRoot always presents, and entity is a term, the object to be accessible to user

account(s) users. When a row is associated with true or false, users is assigned with the

2
 Actually each row is a term, a native expression in the EP data model, in this release. The format can be

improved in a future release.

 39

administration or the read-only privilege respectfully. For example,
[//www.myclienta.com] echpriv AA;
//grpRoot (//www.myclienta.com AA (//www.myclienta.com BB))
$any:[($any {=+ //)]) = false;
//grpRoot (www.myclienta.com AA (www.myclienta.com BB))
(//www.myclienta.com jone.dow) = true;

In the example, the anyone user assigned with read-only permission was automatically

converted to a variable having all the user accounts of database in the range.

The second command is to remove privileges. The privileges to be removable are those added by

grtadm and grtacc. The privileges that are assigned as default cannot be removed. The format

for privilege removal is:

rempriv entity users;

Here entity is the data entity associated with an assigned privilege and users is the user or

the variable representing a group of users who were assigned with a privilege to access entity.

To ensure a successful removal, the parameters entity and users must be provided

correctly to match an entry in the privilege list. When an attempt is succeeded, an entire row of

the privilege list will be removed. Otherwise, no action will be taken and an error message will be

returned. Again only the owner of entity is able to perform this command.

5.4.4 Service

When an entity is granted a user with the read-only privilege, we call the entity an service. An

service not only offers a way of retrieving information, it also can grant a permission to update

data entities that are functionally dependent on the service. The update could happen even if a

user triggering the action doesn’t have the administration privilege. We give a sample application

in simulating a lottery draw: A privately held number would not be increased by 1 unless an

anyone user provided the correct lottery number (e.g., 9242922).
[//www.myclienta.com] create number = 1;
[//www.myclienta.com] create analysis true =
 (update number = (number + 1)),
 “Congratulations! You won the lottery.”;
[//www.myclienta.com] create analysis false =
 “Sorry, you didn’t win the lottery”;
[//www.myclienta.com] create receive_request $num =
 analysis ($num == 9242922);
[//www.myclienta.com] grtacc receive_request anyone;

Now an anyone user will be able to verify his/her lottery number by the expression:
[//anyone] //www.myclienta.com receive_request 2339999;
//www.myclienta.com “Sorry, you didn’t win the lottery.”;
[//anyone] //www.myclienta.com receive_request 9242922;
//www.myclienta.com “Congratulations! You won the lottery.”;

In the commands above, the term number was kept not accessible at all to anyone user, but it

was updated. The Froglingo system does it by switching the requester from anyone user to the

owner www.myclienta.com of number when the assigner of the assignee

receive_request is being evaluated. It was permitted to be evaluated because the assignee

receive_request was granted anyone user with the read-only privilege (and therefore was

called a service).

 40

Switching users during execution is the built-in mechanism allowing users to share information

and to collaborate.

5.4.5 Partnership

Through a service, a user can trigger a comb-term to be created such that the plus-term and the

minus-term are not owned by the same user account. We call such a comb-term a partnership.

Precisely, given two entities M1, owned by O1, and M2, owned by O2 in a database, we call the

third entity M1 M2 in the database a partnership between O1 and O2. Further we call that O1 is the

plus-owner and O2 the minus-owner of the partnership.

A partnership is owned by the owner of the plus-term. Therefore the owner has the full control

over the partnership. A partnership is fully private except that the minus-owner automatically

obtains the read-only privilege on the partnership.

As an example, the business owner www.myclienta.com allows anyone to create a piece of

data by providing the following service:
[//www.myclienta.com] create add_trash $value = (create trash_can
$value date = timestamp);
[//www.myclienta.com] grtacc add_trash anyone;

Then a user, via the anyone user account, can call the method trash_can:
[//anyone] //www.myclienta.com add_trash .;

The database is added with the following entities:
[//www.myclienta.com] print trash_can;
trash_can (// anyone) date = 1243877000;

where the number 1243877000 is the integer for a timestamp. It is not accessible to anyone else

except for the plus-owner and the minus-owner:
[//anyone] //www.myclienta.com trash_can . date;
//www.myclienta.com 1243877000;

In the sample above, the plus-owner doesn’t know who came and created the data. To impose a

stronger responsibility between the two owners of a partnership, the plus-owner may require the

minus-owner to acknowledge the establishment of the partnership by passing its signature to the

service. A club, as an example, accepts new memberships. The only requirement for a person to

become a member is to accept an agreement by providing his/her signature. Assume the owner

www.myclienta.com establishes a club:
[//www.myclienta.com] create club;
[//www.myclienta.com] cd club;
[//www.myclienta.com club] create accept_mem

$who:[$who isa signature] =
 (create members $who enroll_date = timestamp);
[//www.myclienta.com club] create accept_mem $else =

You are not allowed to join the club because you didn’t
provide your signature.”;
[//www.myclienta.com club] grtacc accept_mem anyone;

The user jason joins the club by calling the function accept_mem with his agreement, i.e.,

providing his signature:
[//jason]//www.myclienta.com club accept_mem signature;

With the identifier signature, the system understands that the user accepts the agreement that

his identity will be verified and recorded. If the user provides his user account jason, or any

 41

string other than signature, he would not be able to join the club.

Now, the new entry is viewable to both the plus-owner and the minus-owner:
[//www.myclienta.com club] print members;
. (// jason) enroll_date = 1243878771;
[//jason] print // www.myclienta.com club members .;
enroll_date = 1243878771;

A partnership can be temporarily suspended by a system command susparti. To suspend

Dave’s membership in the example above, we can issue a command:
[//www.myclienta.com club] susparti member (// jason);

When a partnership is suspended, the minus-owner will no longer be able to access the

partnership. To re-activate the participation, the facility susparti can be called:
actiparti partnership

Note that the two commands can be performed only by the plus-owner. To permanently remove a

partnership, either the plus-owner or the minus-owner can use the delete command.

 42

6 FILE MANAGEMENT

When we talk about information today, file is always part of it. Froglingo manages three types of

files:

1. HTML/XML files. They are composed in an editor at operating system level and then uploaded

to Froglingo databases. The files can be Froglingo services, i.e., HTML/XML files containing

Froglingo expressions, which would be rendered to web pages upon calls.

2. Froglingo script files. They contain Froglingo expressions, mostly assignments. They are

composed in an editor at operating system level and uploaded to Froglingo databases.

3. Binary files. They are those not recognizable in Froglingo, They could be image, audio, and

other textual files. Froglingo treats them all as binary files.

In this section, we introduce commands that transfer files between Froglingo, operating system,

and web browser.

A file has a name and its content. The name is an identifier. The examples are: textfile,

myresume.doc, myphoto.jpg, store.html, data.xml, backupfile.frog.

The content is a stream of ASCII codes. Note that a file name at operating system level may

contains special characters space ‘ ‘ and dash ‘-‘. User needs to convert those file names at OS

level to Froglingo identifiers before uploading.

A HTML file having the suffix .html has its content structured according to the HyperText

Marker Language. It is rendered as a web page by a web browser. Many of HTML files today

contain errors and do not exactly follow the Hyper Text Marker Language. Web browsers, on the

other hand, accept those files with errors by rendering them as much as possible.

A XML file normally having the suffix .xml is one with its content structured according to the

Extensible Marker Language. XML language is a more generic than HTML language. In other

words, a HTML file should be a XML file. In practice, a XML parser places more restricted rules

than a HTML parser does.

Like a HTML parser, Froglingo accepts XML and HTML files regardless the quality of file

contents.

6.1 File upload

A file or an entire folder at operating system level can be uploaded to database. The command

format of uploading files is:
(load path [in format])

The parameter path is the path of a file or a folder at operating system level. The optional

parameter format tells the system how files or folders should be parsed:

Format Description

stream A binary stream in US ASCII codes. The system will load the file as it is.

frog
A list of Froglingo assignments. The system will use the command create to load

each assignment.

backup
A list of Froglingo assignments. The system will use the command record to load

each assignment.

xml

A XML document. The system will parse it as a XML file, report any syntactical

errors. If it doesn’t embed any Froglingo expressions, the system stores it as it is. If it

does contain Froglingo expressions and at the same contains syntactical errors, the

 43

system will reject the file and report the errors.

html A HTML document. The system treats it as a XML document.

folder
A folder at operating system level. The system walks the folder recursively and loads

the entire folder.

If the parameter format is not specified, the system detects the format from the path path. If

the path references a file, the type of the file is derived from the suffix of the file name:
.htlm – html
.xml – xml
.frog – frog

For the files with other suffixes or without suffix, the system takes stream as the default format.

Assume that the folder C:\\Froglingo has the following files and a sub folder:
frog.exe
test1.txt
test2.frog

The file test1.txt has the content:
This is a short text file.

The file test2.frog has the content:
loaded_term x = 3;
loaded_term y = 4;

One can load files in Froglingo environment:
[//] load test1.txt;
[//] load test2.frog;

When a file is uploaded, it is stored as a set of assignments. When a binary file is uploaded, it is

stored as one assignment, where the file name is the assignee and the content of the file is the

assigner. After the upload operation of the file text.txt above, for example, you can see that

the file is stored as an assignment:
[//] print .;
Loaded_term x = 3;
Loaded_term y = 4;
test1.txt = This is a short text file.

If the parameter path is a folder, the system walks through the files and the sub folders under

path and loads the entire folder. Assume that the folder C:\\Froglingo has a sub folder

images. Under the folder images, there are files image1.jpg and file.pdf. One can load

the entire sub folder images:
[//] load images;
[//] ls .;
images file.pdf;
images image1.jpg;
loaded_term x;
loaded_term y;

 44

test1.txt;

In the previous examples, we used two utilizes: print and ls. The command print prints the

assignments under the given entity. The command ls lists the assignees only. The command ls

helps to avoid assignees with large size of binary streams to be displayed.

Uploading XML/HTML files as services is discussed in Section 7.

6.2 File download

A file in Froglingo databases can be downloaded back to a file at operating system level,

displayed as an image, or rendered as a web page. A set of assignments in databases can be

downloaded to a file at operating system. All these operations are performed by the the command

print with the following syntax:
print term [to path] [in format]

Given an assignee term, all the assignees that are functionally dependent on term will be

downloaded by the command print. When the optional parameter (to path) is provided, it is

the path (including the file name) of a file to be generated at operating system level. If the

parameter (to path) is not provided, the data entities related to term will be displayed on the

CMD window or on web browser depending on where requests come from. When a request

comes from a web browser, the parameter (to path) should never be provided. Otherwise, the

system will give users an error message.

The optional parameter format specifies the format of the output, and tells the system how the

output should be generated:

Format Description

stream
It is only for a term term which is the file name of an ASCII stream file. The

command retrieves the entire stream and wraps it as a file.

frog

The command retrieves all the assignments where the assignees are functionally

dependent on term. A string as a sub term in a assignment is printed out without a

pair of double-quotes surrounding the string.

backup
It works as if it was the format frog. The only difference is that a string as a sub

term in a assignment is printed out with a pair of double-quotes surrounding it.

xml

The command attempts to generate a XML file. When term is the name of a file

that was uploaded earlier and the file has no Froglingo expressions embedded, it will

simply print out the original file. For a xml file that embeds Froglingo expressions,

see Section 7 on how a xml file is downloaded.

html The system will act as if the format was xml.

When term is the name of a file uploaded before, the parameter format doesn’t have to be

specified. In this case, the format is derived from the suffix of the file name:

.htlm – html

.xml – xml

.frog – frog

For the files with other suffixes or without suffix, the system takes frog as the file format.

6.3 OS path

In sections 6.1 and 6.2, a precise format was not provided for the parameter path at operating

 45

system level, but assumed that path was a file or a folder name appearing as an identifier

located in the same folder where the Froglingo process frog.exe was launched. Actually, a file

or folder not in the same folder of frog.exe can also be uploaded from or downloaded to.

Recall that a path in Windows can be a file name alone, a sequence of folder names followed by a

file name, that are delimited by either “/” or “\”. A path may also be proceeded with a hard drive

name. In other words, the syntax of file path at Windows is:

[driver:\]name0\name1…\namen, or
[driver:/]name0/name1…/namen

Here the number n can be 0 or a positive integer. However, the delimiter “\”is not a symbol in

Froglingo, or is interpreted as the escape character of special ASCII codes in a string in Froglingo.

The delimiter “/” is the arithmetic operator division in Froglingo. Therefore, we express paths at

operating system level differently, that is,

“[driver:\\]name0\\name1…\\namen”, or
“[driver:/]name0/name1…/namen”

In addition, we require that each folder or file name namei must not include special characters

space ‘ ‘ and dash ‘-‘. Here are a few valid sampe paths in Froglingo:
[www.myclienta.com] load “..\\..\\afile”;
[www.myclienta.com] load “C:/folder1/folder2/folder3”;
[www.myclienta.com] print test1.txt to
“C:\\folder1\\folder2\\filder3\\test1.txt”;

A special character ‘*’, serving as a wildcard, can be the last segment of a path, i.e., namen. As a

result, the following two paths have the same effect:

“[driver:/]name0/name1…/namen-1”, and

“[driver:/]name0/name1…/namen-1/*”.

 46

7 ACCESS OVER THE INTERNET

Froglingo can be configured to work as a web server. With the function of web servers, users can

interact with Froglingo via web browsers across the Internet. In Section 6, we have already talked

about how a pure html/xml file is uploaded to and downloaded from a Froglingo database before

rendered as a web page on a web browser. In this section, we discuss how Froglingo expressions

can be embedded into html (Hypertext Marker Language) files such that an embedded html file

can be filled up with Froglingo data entities before rendered to a web page. As a result, Froglingo

supports web-based user interfaces for applications hosted in Froglingo and for administration

work over the Internet.

In this section, we discuss how Froglingo is configured to be a web server and how Froglingo

expressions are embeded in both URIs and HTML files such that Froglingo would understand

requests from web browsers and further the data from Froglingo database can be plugged into on

web pages.

7.1 Web server setup

To run Froglingo as a web server, there are two things to be done:

1. We need to ensure that a network is set up. If it is not ready yet, here are the two ways to get

it ready:

a. If it is only for testing purpose, the network could be in a computer itself, where both a

Froglingo system and a web browser are located. The only thing we need to do to set up

the network is to add a domain name, in correspondence with a user account in Froglingo,

to the system file of the Windows operating system:

 “C:\WINDOWS\system32\drivers\etc\hosts”. A sample entry in the file would be::
 127.0.0.1 www.myclienta.com

b. To make the application available on the Internet, a physical network needs to be

connected to the Internet. It can be done through an internet service provider which offers

connections to business locations or to residential homes. Also it can be done by using a

dedicated computer hosted by a web hosting company.

2. Launch Froglingo as a web server. It is done by entering the command at operating system

level, i.e.,
C:\Froglingo frog.exe –p 80
The web server has been started at port 80

Note that a user account, such as www.myclienta.com, is constructed in a Froglingo

database. It also serves as the Internet domain name of the application.

After Froglingo has been configured as a web server, one can enter a URI, e.g.,

http://www.myclienta.com/”Hello World”, in the address field of a web browser.

See a screen shot below showing what a web browser obtained from the server with the domain

name www.myclienta.com.

 47

7.2 URI

Users via web browser use URI, Universal Resource Identifier to communicate with web servers.

Froglingo parses URIs and converts them to Froglingo expressions. A simple form of the URIs

used by Froglingo is:
http://dn[:port][/t0.../tn-1/tn][/]

The field dn, following the string http://, is a registered domain name. The optional field

port, following the character ‘:’, is the port number on which Froglingo server is listening. This

field is needed only if the port is not 80. The optional field

/t0.../tn-1/tn is a sequence of expressions, and each expression is a sequence of characters,

proceeded with the special character ‘/’. Here each ti is in the correspondence of a term

(possibly a comb-term), and the symbol id in the table below is an identifier in Froglingo.

A URI, once received by a Froglingo web server, is converted to Froglingo expression. A URI

from a web browser is in correspondence with a Froglingo term:

URI (Web Browser Request) Froglingo Expression
http://dn[:port] [//dn] print index.html;

http://dn[:port]/t0.../tn-1/tn/ [//dn (t0)... (tn-1) (tn)] print index.html;

http://dn[:port]/t0.../tn-1/id.html [//dn (t0)... (tn-1)] print id.html;

http://dn[:port]/t0.../tn-1/tn [//dn (t0)... (tn-1)] tn;

The first two rows states that a default HTML file index.html is assumed when there is no

specific request given in a URI. The third row states that if the last expression of a URI is a html

file name, the URI is interpreted as to retrieve the html file. In the last row of the table above,

where a URI is ended with an expression, instead of a html file name or ‘/’, the URI is

interpreted as a request tn with a stand [//dn (t0) … (tn-1)]. Here are sample URIs

embedding Froglingo expressions:
http://www.myclienta.com
http://www.myclienta.com/appl2/a b (c d)
http://www.myclienta.com/files/webpage.html
http://www.myclienta.com/jone.dow/

The expression in the optional field /t0.../tn-1/tn can not include a few special characters

 48

before URIs arrive at web servers; and each of the special characters has to be replaced with an

encoded form, i.e., an escape. The escaped string of a character is the 2 digits of its hex number

proceeded with the character “%”. While you may convert other characters in an expression to

their corresponding escaped strings, the following special characters must be converted their

escaped forms:

Special character Escaped form
/ %2F
? %3F
: %3A
% %25
^ %5E

For example, the Froglingo expression $x:[$x > 0] must be converted to $x%3A[$x > 0].

The form $%78%3A[$x >%200] is acceptable as well because the characters ‘x’ and ‘ ‘ have

the escaped forms %78 and %20. When a web server receives URIs, those escaped characters are

decoded. When users enter URIs via a web browser address field or a HREF value in HTML file,

the users must do the escape character conversion manually. When users use HTML form, the

conversion is automatically done by web browser.

Now with web browser alone, a user can communicate with Froglingo web server by typing URIs

embedding Froglingo expressions. Remember that one has to login to a user account first before

being able to access and to manage the data entities that are functionally dependent on the user

account and are not accessible to everyone publicly. The login format is:
//http://dn/login . “password”

Here are a few sample URIs to communicate with Froglingo web server:
//http://www.myclienta.com/”Hello World”
//http://www.myclienta.com/login . “i8u9i1o@”
//http://www.myclienta.com/create data_via_web = 43
//http://www.myclienta.com/print data_via_web

Using URIs alone is not as friendly as using a CMD window. But it is sufficient to fully interact

with Froglingo server with the exception that users cannot use the root account to communicate

with web servers.

7.3 HTML/XML files

When a user via a web browser sends a request embedding a URI to a web server, the server

responds with a HTML document which is further rendered to a web page by web browser.

HTML files stored in Froglingo database are the sources of HTML documents. When a file

embeds Froglingo expressions, the expressions are replaced with the corresponding normal forms

(values) of the expressions in the HTML documents.

XML (Extensible Markup Language, RFC3470) is a language used to do data communication

between computer systems. A special form of XML is HTML (HyperText Marker Language), the

language for web pages. Here we treat both HTML and XML equally and call them XML

document.

The basic structure of a XML document is a set of elements (or called blocks). Each element

starts with an open tag and mostly ends with a close tag. An open tag is made up of a tag name,

sometime followed by an optional list of attributes, all of which appears between angle brackets <

>. The end tag of an element contains the same name as the one in the open tag, but proceeded by

a slash /. An attribute is normally a pair of name and values separated by an equal sign =.

Sometime, an attribute is a single value by itself. The tag and the attributes in an open tag are

 49

separated by one or more spaces. A text message can appear anywhere before or after a tag. An

element can embeds one or more than one nested elements.

7.3.1 Documents

If a XML file doesn’t embed Froglingo expressions, it is stored as a whole in a binary stream.

Assume that there is a file house.html in the folder at a operating system level where a

Froglingo database server is launched:
[//www.myclienta.com files] load house.html;
[//www.myclienta.com files] print house.html;
<html>
 <body>
 Room
 <table border = 1>
 <tr>
 <td>
 Name
 </td>
 <td>
 Size
 </td>
 </tr>
 <tr>
 <td>
 Main bed room
 </td>
 <td>
 200
 </td>
 </tr>
 <tr>
 <td>
 Dinning room
 </td>
 <td>
 100
 </td>
 </tr>
 </table>
 </body>
</html>

 50

There are XML and HTML document editors that help users to generate syntactically correct

documents. However, many documents were written manually or generated from software

programs. In practice a large volume of such documents contains syntactical errors. However,

commonly available web browsers allow such errors and display information as much as they can.

Froglingo goes along with the web browsers by storing them as a whole no matter whether or not

a document contains errors. When a document contains error, Froglingo reports the errors while it

parses and stores the document. When a file embeds Froglingo expressions, Froglingo does a

stronger syntax checking and stores the document only if there is no syntactical error.

Starting from the next section 7.3.2, we introduce a set of Froglingo-special tags and attributes

through which embedded Froglingo expressions can be replaced with XML texts.

7.3.2 Tag <frog>

There is a special block with tag name frog defined for Froglingo. When Froglingo parses the

block, it treats the entire content of the block as a term. When the block is downloaded from

database, the term is replaced with the normal form of the term. To demonstrate the effects of

Froglingo-specific tags and attributes, we assume that the user www.myclienta.com
collected a database first:
[www.myclienta.com] print .;
customer 1000 fname = "John";
customer 1000 lname = "Smith";
customer 1001 fname = "Dennis";
customer 1001 lname = "Alexandra";
order (customer 1000) 10000 100000 product = storage apple;
order (customer 1000) 10000 100000 volume = 12;
order (customer 1000) 10000 100001 product = storage milk;
order (customer 1000) 10000 100001 volume = 1;
order (customer 1000) 10001 100003 product = storage apple;
order (customer 1000) 10001 100003 volume = 14;
storage apple price = 1.89;
storage apple volume = 500;
storage milk price = 2.95;
storage milk volume = 0;

 51

A file store.html has the content:
<html>
 <body>
 Welcome to my store

 The price of apple is

<frog>storage apple price</frog>

 The price of milk is
<frog> storage milk price </frog>

 </body>

</html>;

It is uploaded to database:
[//www.myclienta.com] load store.html;

We grant the file accessible to everyone:
[//www.myclienta.com] grtacc store.html anyone;

When a user print out the file locally via a CMD window, the output would have the terms

embedded in the store.html file replaced with their normal forms:
[//www.myclienta.com] print store.html;
<html>
 <body>
 Welcome to my store

 The price of apple is
 1.89

 The price of milk is
 2.95

 </body>
</html>;

When an user accesses the web server with the URI:

http://www.myclinenta.com/store.html, the web page is displayed as:

 52

One must ensure that the identifiers embedded between the block <frog> and </frog> have

been defined in database before uploading HTML/XML files. Otherwise, the upload request will

be rejected.

For the readers who are curious on how a XML/HTML file embedding Froglingo expressions is

stored in a Froglingo database, here is a demonstration:
[//www.myclienta.com] print store.html in frog;
store.html 1 = <html>
 <body>
 Welcome to my store

 The price of apple is ;
store.html 2 = storage apple price;
store.html 3 =

 The price of milk is ;
store.html 4 = storage milk price;
store.html 5 =

 </body>

</html>;

As another example, we upload another file customers.html that includes a <frog> block

embedding select operation:
<html>
 <body>
 My Customers:

 <table>
 <tr>
 <td> Customer ID </td>

<td> First Name </td>
 <td> Last Name </td>
 </tr>

<frog>
 select “<tr><td>”,
 mterm $cust,
 “</td><td>”,

 $cust fname,
 “</td><td>”,
 $cust lname,
 “</td></tr>”

where $cust {+ customer
 </frog>

</table>
 </body>

</html>;

[//www.myclienta.com] load customers.html;
[//www.myclienta.com] print customers.html;
<html>
 <body>
 My Customers:

 <table>

 53

 <tr><td>ID</td><td>First Name</td><td>Last
Name</td></tr>

 <tr><td>1000</td><td>John</td><td>Smith</td></tr>
 <tr><td>1001</td><td>Dennis</td><td>Alexandra</td

><tr>
</table>

 </body>
</html>;

7.3.3 Attribute proceeded with “frog”

Attributes are inside the open tag of a block. The value of an attribute is driven by the state of

database. Froglingo recognizes attribute name and value pairs in a tag form: <tagname …
frog:attr=qtermq …>

Here tagname is the tag name of a block, attr is an attribute name in html, and qtermq is a

sequence of characters. Froglingo treats qtermq as a term. If qtermq is a string surrounded by

a pair of the double or single quotes, the quotes are stripped off before Froglingo parses it. If there

is spaces, or special characters in qtermq, qtermq must be a string surrounded by a pair of

double or single quotes, or by (and).

When a block is downloaded from database, qtermq is replaced by its normal form. As an

example, we assume that we add the following data into database:
[www.myclienta.com] create image width = 183;

A html file has a tag:

It will be replaced with the following tag when the file is downloaded:

 54

7.3.4 Attribute “frog:if”

A block in a document may or may not need to be displayed depending on the state of database.

For this purpose, we introduce a special attribute “if” in a block:
<tagname … frog:if= qtermq …>

The value qtermq is a boolean expression in Froglingo. When the block is to be downloaded,

the value qtermq is evaluated. If it is equal to true, then the block is displayed. Otherwise, the

block is not displayed. For example, if the file store.html is modified as the following:
<html>
 <body>
 Welcome to my store

 0) >
The price of apple is <frog>storage apple price</frog>

 0) > The
price of milk is <frog> storage milk price </frog>

 </body>
</html>

If the volume of milk in the store is 0 or not defined, the greeting message for milk will not be

displayed:
[www.myclienta.com] print store.html;
<html>
 <body>
 Welcome to my store

 The price of apple is 1.89

 </body>
</html>

7.3.5 Attribute “frog:while”

In Section 7.3.2, the file customers.html embeds a select operation, which enumerates all

the customers. This function can be alternatively done by specifying a while-loop for a block. The

syntax is:
<tagname … frog:while=var …>
…
<frog> frog_expression_may_having_var </frog>
…
</tagname>

Here var is a variable declaration having a range. When the block is to be downloaded, the

database is searched to find all the terms falling into the range of the variable. For each term

selected, the block is repeated by replacing those Froglingo expressions with their normal forms.

During the evaluation of the normal forms, the instances of the variable are substituted with the

selected term. For example, we can modify the file customers.html:
<html>
 <body>
 My Customers:

 <table>

<tr frog:while=($id:[customer $id != null])>
 <td> <frog>$id </frog> </td>

 55

 <td> <frog>customer $id fname</frog> </td>
<td> <frog>customer $id lname</frog> </td>

 </tr>
</table>

 </body>
</html>

Then:
[www.myclienta.com] print customers.html;
<html>
 <body>
 My Customers:

 <table>

 <tr>
<td>1000</td>
<td>John</td>
<td>Smith</td></tr>

 <tr>
<td>1001</td>
<td>Dennis</td>
<td>Alexandra</td><tr>

</table>
 </body>
</html>

A while-loop for a block can be nested inside another block having its own while-loop. For

example, a summary report about orders can be generated through the file orders.html:
<html>
<body>
 <table border=1 frog:while=($cust: [$cust {+ customer])>
 <tr> <td> <frog>$cust fname</frog> </td>
 <td> <frog>$cust lname</frog> </td>
 </tr>
 <tr frog:while=($ord: [order $cust $ord != null])>
 <td> <frog> $ord </frog> </td>
 <td>
 <table border = 1>
 <tr>
 <td> Product</td><td>Price</td><td>Volume</td>
 </tr>
 <tr frog:while=($item:[order $cust $ord $item !=
null])>
 <td>
 <frog>
 mterm (order $cust $ord $item product)
 </frog>
 </td>

 56

 <td>
 <frog>
 order $cust $ord $item product price
 </frog>
 </td>
 <td>
 <frog>
 order $cust $ord $item volume
 </frog>
 </td>
 </tr>
 </table>
 </td>
 </tr>
 </table>
</body>
</html>

A request http://www.myclienta.com/orders.html from web browser will bring the

following web page:

7.3.6 File arguments

In Froglingo, one can pass parameters into a XML file. It is done via variables pre-inserted in

XML file. When XML files containing variables are downloaded, values can be passed to the

files through the variables such that the XML files are instantiated correspondingly.

Document arguments are declared inside a <frog> block at the first line of a XML file, and

there is no other text before the block. If there are more than one variable declared, they are

delimited by comma ‘,’. A declared variable can appear anywhere in the rest of the file through

Froglingo-specific tags or attributes. Here is a sample XML file orders2.html having

variables:
<frog> $cust, $ord</frog>
<html>
<body>
 Customer <frog> $cust fname</frog>

 57

 <frog> $cust lname </frog>
 has purchase order # <frog>$ord</frog>:

<table border=1>
 <tr>
 <td>Product</td><td>Price</td><td>Volume</td>
 </tr>
 <tr frog:while=($item:[$item {+ order $cust $ord])>
 <td>
 <frog>
 mterm ($item product)
 </frog>
 </td>
 <td>
 <frog>
 $item product price
 </frog>
 </td>
 <td>
 <frog>
 $item volume
 </frog>
 </td>
 </tr>
</table>
</body>
</html>

Once this file is uploaded to database, user with a proper privilege can view the following page

by providing the URI:
http://www.myclienta.com/orders2.html (customer 1000) 10000 in
html

7.4 Requests via HTML forms

In section 7.2, we said that URIs are the messages that deliver user requests from web browsers to

web servers. Users can enter URIs in web browser’s address fields directly or give URIs as links

 58

(via the HTML HREF attribute). It however requires users to know URIs and Froglingo. An easy

and commonly used method of obtaining business requests is to use HTML forms on web pages.

This requires developers to write HTML documents embedding forms.

In this section, we extend the URIs discussed in Section 7.2, which are the carriers of user

requests entered through HTML forms with method “GET”. In this section, we also discuss how

files are uploaded via HTML forms with method “POST”. Form data is ultimately recognized by

Froglingo server.

7.4.1 Extended URIs

In Section 7.2 gave the basic URI syntax:
http://dn[:port][/exp0.../expn-1/expn][/]

It is extended as
http://dn[:port][/exp0.../expn-1]/expn[[?a1=”v1“]&...&am=”vm“][/]

The extended form of URIs includes a set of optional attribute and value pairs. But if there is at

least one attribute name and value pair, the character ‘?’ must appear at the beginning of the pairs.

The pairs are delimited by the character ‘&’, and the attribute name and value in a pair are

delimited by ‘=’. An attribute name is an alphanumeric string and an attribute value is a sequence

of characters surrounded by a pair of character ‘”’. The value is normally entered by users via

HTML form.

The attribute names a1, …, am, prefixed with character ‘@’, may appear in expn serving as

variables. When Froglingo server receives an URI, it will replace all the instances of the variables

in expn with the corresponding values ”v1”, …, ”vm”.

7.4.2 HTML form

Assume that the owner of the account www.myclienta.com wants to collect customer

information. The owner has a function created in database:
[//www.myclienta.com] create rcv_cust_info $fname $lname =
 (create customer cust_index fname = $fname),
 (create customer cust_index lname = $lname),
 (update cust_index = (cust_index + 1));

An identifier cust_index had been created earlier:
[//www.myclienta.com] cust_index;
1003;

A HTML file cust.html is available before being processed by Froglingo:
<html>
<body>
 Please enter your first name and last name:
 <form name="input" action="rcv_cust_info @fname @lname"
 method="get">
 First Name: <input type="text" name="fname">

 Last Name: <input type="text" name="lname">
 <input type="submit" value="Submit">
 </form>
</body>
</html>

[//www.myclienta.com] load cust.html;
[//www.myclienta.com] grtacc cust.html anyone;

 59

The following page can be requested by anyone via web browser:

After the web user entered her first and last names and clicked “Submit” button, the request goes

to the web server. The URI arrived at Froglingo is:
http://www.myclienta.com/rcv_cust_info @fname
@lname?fname=April&lname=Dow

Froglingo server resolves the URI as the following equivalent request:

[//anyone] //www.myclienta.com rcv_cust_info “April” “Dow”;

The URI is also displayed on the web browser. Since rcv_cust_info returns void, the web

browser is blank. See the screen shot below.

7.4.3 File upload via web browser

Files can also be uploaded to Froglingo databases by web browser. Assume the owner of the

website www.myclienta.com wants to collect customer information including image files.

The owner has a function created in the database:
[//www.myclienta.com] create rcv_cust_info $fname $lname $photo=

 60

 (create customer cust_index fname = $fname),
 (create customer cust_index lname = $lname),
 (load customer cust_index $photo in stream),
 (update cust_index = (cust_index + 1));

The term cust_index was created earlier:
[//www.myclienta.com] cust_index;
1003;

A HTML file cust.html is created and uploaded to the database:
[www.myclienta.com] load cust.html;
[www.myclienta.com] grtacc cust.html anyone;
[www.myclienta.com] print cust.html;
<html>
<body>
 Please enter your first name and last name:
 <form name="input" action="cust_index @fname @lname
@photo"
 enctype=”multipart/form-data” method="post">
 First Name: <input type="text" name="fname">

 Last Name: <input type="text" name="lname">
 Photo: <input type=”file” name=”photo”>
 <input type="submit" value="Submit">
 </form>
</body>
</html>

When a user browses the HTML document, the form is displayed on the web browser and the

user will be able to enter the first name and last name, and upload a (image) file (see the

following web page).

 61

8 MISCELLANEOUS FEATURES

Froglingo is untyped, i.e., no user-defined types are necessary. However, it has finitely many

basic data types, e.g., integers, strings, Booleans. We have given an example of using the operator

isa and the data type integer in Section 5.4.5. In this section, we give a full coverage about

the operator isa, a few other basic data types, and special values. At the end of this section, we

introduce administrative tools for Froglingo database backup and user activity audit trials.

8.1 Basic data types and the membership operator

So far, we have introduced integers, real numbers, strings, and files. In corresponding to the

different categories of the constants, the special constant terms integer, real, string, and

stream are introduced as basic data types. The binary operator isa is used to evaluate if a term

belongs to a data type.

Given the binary operation form: I isa T, T is normally expected to be a data type, and I is to

be an instance of the data type T. Here are a few examples:

[//] 3.2 isa real;
true;
[//] 3.2 isa string;
false;

Given the binary operation form: I isa T, T also can be a term that is not a data type, when this

is the case, the instance I is expected to syntactically match T. An example has been given in

Section 20.2 about the special identifier signature:
[//] signature isa signature;
true;

A few more examples are:
[//] 3.2 isa 3.2;
true;
[//] Dave salary isa Dave salary;
true;

Using isa to compare a term to another non-data-type term is more meaningful when it is

applied to the special values void and error in the coming sub sections.

8.2 Void for nothing

When a developer initiates an update operation via a CMD window, the developer will know that

the update is successfully executed if he/she didn’t see any error message but a prompt sign (such

as [//]) for the next line. This kind of interactions is not sufficient when a user accesses

databases via web browsers because the prompt sign is not returned. End users may want to see a

confirmation after they submitted update requests via web browsers. A developer can satisfy the

end users’ need by utilizing the special identifier void.

In Froglingo, the special identifier void has a special normal form: empty, i.e., no return

messages from Froglingo. An update operation, after executed successfully, returns void. We

didn’t see anything (empty) after a successful update operation in the earlier sections because the

return value void is further reduced to empty. One may count empty to be a term, but empty is

not expressible and visible at all.

We interpret void to have empty as the normal form because developers can use it to detect the

return status of an update operation. Based on the return status, developers can generate text

 62

message to inform end users the status of the update operation. Assume that a developer

constructed a web page that allows end users to submit an update operation. If the operation is

successful, the developer intends to show successful.html to the end users. Otherwise,

another page failed.html will be displayed. Here is a sample code:
[//www.myclienta.com] create build_op $x =

(create an_assingee $x = somefun $x);
[//www.myclienta.com] create detect_fun $x: [$x isa void] =

print successful.html;
[//www.myclienta.com] create detect_fun $y = print failed.html;
[//www.myclienta.com] detect_fun (build_op 3);

The first line constructed a method build_op to be exported via grtacc. It returns void

when an update operation of an_assingee is successfully executed. The second and the third

lines constructed another method detect_fun that takes different actions depending on what is

the value passed via the variable $x. The last line is to call the two methods.

8.3 Null for undefined

As it has been clearly defined in section 2, null is a constant by itself, representing undefined as

a return value of a query expression. However, end users may not want to see it when a query

yields with null. In this case, a developer may use void, or a textual message such as “no data

was retrieved from database”, to hide null from end users. Here is a sample code:

[//www.myclienta.com] create display_logic null = void;

[//www.myclienta.com] create display_logic $x = $x;

[//www.myclienta.com] display_logic “A string can be displayed”;

A string can be displayed;

8.4 Error for failure

A failed operation, as we have seen in the earlier sections, always returns a system error message.

It is an ideal presentation for developers who have knowledge of Froglingo, but a presentation for

end users who don’t understand the error messages. Here we introduce another special identifier
error.

The identifier error is given with a normal form. What error’s normal form depends on the

state of a user session. The normal form is always null in most cases. For example:

[//] error;

null;

The only exception is when an operation fails and returns an error message. At this moment the

identifier error takes the error message as its normal form. In the earlier sections, we saw error

messages rather than error because error is further reduced to the error messages. With the

special identifier error, developers are able to display application-oriented error message

instead of system error messages. Here is an alternative code for the sample application described

in section 8.2:

[//www.myclienta.com] build_op $x =

(create an_assignee $x = somefun $x);

[//www.myclienta.com] detect_fun $x: [$x isa error] =

print failed.html $x in html;

[//www.myclienta.com] detect_fun $y = print successful.html;
[//www.myclienta.com] detect_fun (build_op 3);

 63

The first construction is the same as the previous one. The second and the third lines use error

rather than void to detect values passed to method detect_fun.

8.5 Date and time

In this release, Froglingo supports date and time in the format:

‘M[M]/D[D]/YYYY [hh:mm:ss]’

For examples:
[//] ‘3/5/2009’;
1236229200;
[//] ‘03/05/2009 15:03:35’;
1236283415;

To display a time in its nature forms, one needs to use a built-in operator dtform:
dtform [format] number_for_time

Here the optional field format is a string showing the format on how a given
number_for_time is to be displayed. When format is not provided, the default format is

assumed:

“Day Mon Date hh:mm:ss YYYY”

Here Day is one of the followings: Mon, Tue, Wed, Thu, Fri, Sat, and Sun; Mon

is one of the followings: Jan, Feb, Mar, Apr, May, Jun, Jul, Aug, Sep, Oct,

Nov, and Dec. For examples:
[//] dtform 1236229200;
“Thu Mar 05 00:00:00 2009”;
[//] dtform ‘03/05/2009 15:03:35’;
“Thu Mar 05 15:03:35 2009”;

The field format is a string including one or more than one percentage ‘%’ followed by a

special character. A 2-character sub string in format that starts with “%” and ends with another

character is to be replaced with its corresponding substitution value according to the mapping

table listed below during execution:

pattern Substituting values

%a Mon, Tue, Wed, Thu, Fri, Sat, Sun

%A
Monday, Tuesday, Wednesday, Thursday,
Friday, Saturday, Sunday

%b
Jan, Feb, Mar, Apr, May, Jun, Jul, Aug, Sep,
Oct, Nov, Dec

%B

January, Feburary, March, April, May, June,
July, August, September, October, November,
December

%d 01, 02, I, 30, 31

%D A date in the format 'MM/DD/YYYY'

%j A yyyy in the format 'YYYY'

%H the time format: 'hh:mm:ss'

For examples:
[//] dtform “Date: %D” 1236229200;
Date: “3/5/2009”;
[//] dtform “Year: %j, Month: %b, and Date: %d” ‘03/05/2009

 64

15:03:35’;
“Year: 2009, Month: 03, and Date: 05”;

Froglingo supports a special identifier timestamp. When it is called, it returns the integer

presentation of the system time when timestamp is called. For example:
[//] timestamp;
1236294968;
[//] dtform timestampe;
“Thu Mar 05 18:18:32 2009”;

8.6 Database file

As a root administrator, who has the physical access to the files related to Froglingo at operating

system level, he/she needs to know two files at operating system level: a database file and an

event log file.

The database file has the default file name.EPDB, located in the Froglingo home folder. To start

a new database, you can explicitly name a database file name. Here is the syntax:

c:\frogdir frog -f db_file_name

The database files are not maintained or monitored in this release. But the batch load tools

print and load can be used to back up data and to restore data as discussed in Section 6.

8.6 Log files

Froglingo generates three log files. They are located in the same folder (the Froglingo home

folder) where frog.exe is located.

The first file is frog.log. It records all the requests in Froglingo expression from either local

CMD windows or from web browsers across network. Each request, in the log file, may be

followed with a system/error message indicating the result of the request.

The second log file is http_in.log. It records all the requests in HTTP messages from

network. If a HTTP message includes uploaded file(s), the file contents are ignored by default. To

record file contents, one needs to add an option –whole_http_in in the command line of

launching Froglingo server:
c:\frogdir frog –p 80 –whole_http_in

The third log file is http_out.log. It is to record all the out-going HTTP response messages.

By default, they are not recorded. To record it, one needs to add an option -http_out in the

command line of launching Froglingo server:
c:\frogdir frog –p 80 –http_out

The log files are not maintained or monitored by other facilities.

 65

APPENDIX A: Release Notes

The core system discussed in Sections 1 to 4 was implemented by November 2004 (Release 0.1);

and has been applied to many experimental applications.

Release 1.0, in March 2009, supports information community (data access controls), file

management, and access over the Internet.

Release 2.0, in March 2013, included some bug fixes.

More features including multithreads need to be supported in the future.

APPENDIX B: Grammar

The grammar listed here is simplified. Hope it gives readers another view to better understand

Froglingo.

input:

 | input line ';'

 | input error ';'

 | input ';'

;

line: term

 | bin_exp

;

term: '(' term ')'

 | atom_term

 | application

;

bin_exp: bool_exp

 | num_exp

 | bin_assign

;

term_list: term

 | term_list ',' term

;

bin_assign: term '=' term

;

assign_value :

 | '=' term_list

;

opt_num:

 | term

;

order_clause: DESCENT

 | ASCENT

;

sort_clause:

 | SORT sortClauses

;

sortClauses: one_sort

 66

 | sortClauses ',' one_sort

;

one_sort: term order_clause

;

where_clause :

 | WHERE bool_exp

;

summary_clause :

 | SUMMARY term_list

;

atom_term: LABEL

 | TO_UNIOP /* mterm, pterm, pfirst, … */

 | variable

;

query_name: SELECT

 | IS_THERE

;

application: term atom_term

 | term '(' term ')'

 | term '(' bin_exp ')'

 | '(' bin_exp ')'

 | query_name term_list where_clause sort_clause

summary_clause

 | VOID_OP term_constraint assign_value

 /* VOID_OP is create, record, update, or delete */

;

term_constraint : term

 | term ':' term

 | term ':' term ':' term

;

num_exp: term

 | num_exp PLUS num_exp

 | num_exp MINUS num_exp

 | num_exp MULT num_exp

 | num_exp DIVID num_exp

 | num_exp QUOTI num_exp

 | MINUS num_exp %prec NEG

;

range:

 | ':' '[' bool_exp ']'

;

variable: '$' LABEL range

;

bool_exp: atom_bool

 | '(' bool_exp ')'

 | bool_exp high_bool_optr bool_exp

 67

high_bool_optr: AND

 | OR

;

atom_bool: term

 | term bin_optr term

 | '(' term bin_optr ')'

;

bin_optr: ‘isa’ | ‘<’ | == | != | … | ‘{=+’ | ‘<-‘ | …

;

