
FROGLINGO

A Monolithic Alternative to DBMS, Programming Language,

Web Server, and File System

Kevin H. Xu, Jingsong Zhang, Shelby Gao
Bigravity Business Software LLC

(kevin, jingsong, shelby)@froglingo.com

Keywords: Total recursive functions, computability, productivity, data model, programming language, DBMS, data

exchange, access control, web server, file system.

Abstract: Application software started with a monolithic architecture in the 1960s, i.e., a single executable file for the

entire application. For better productivity in software development, software application in a typical

corporate environment today consists of multiple components including off-the-shelf products. Froglingo is

a unified solution for database management and programming language. It is an alternative to the

combination of software technologies including DBMS, programming language, web server, and file

system. The Enterprise-Participant (EP) data model, Froglingo without variables, is a computer language

equivalent to a class of total recursive functions. It brings the monolith back to application software. In this

paper, we show that Froglingo is a monolith and demonstrate that this monolith with the EP data model

improves the productivity in both software development and software maintenance.

1 INTRODUCTION

A typical database application system in a corporate
environment today needs DBMS (such as Oracle and
MySQL), programming language (such as Java and
C#), and middleware components including web
servers (such as Websphere and WebLogic), data
exchange tools (such as Hibernate and LINQ), and
centralized authentication tools for multiple web
applications (such as IBM TAM and RSA
ClearTrust). With the combination of the current
technologies, we have made limited progress in
effectively and efficiently developing and
maintaining software applications [2].
Froglingo [8] is a unified solution for software

development and maintenance, and an alternative to
DBMS, programming language, file system, and
web server. It is a “database management system
(DBMS)” to store and to query business data; a
"programming language" to support business logic; a
"file system" to store and to share files; and a "web
server" to host multiple applications and to interact
with users across network. It does more than
combine existing technologies. It is a single
language that uniformly expresses both data and
application logic, and it is a system supporting
integrated applications without using application-

based data exchange component and data access
control mechanism.
The EP (Enterprise-Participant) data model is at

the centre of Froglingo. It is semantically equivalent
to a class of total recursive functions [6]. The
equivalence for a data model dictates that the EP
data model is nothing but high-order functions and
the ordering relations among the functions [4].
Representing software applications in high-order

functions and their ordering relations is not only
applied to business data, i.e., finite data, by using the
EP data model, but also applied to business logic,
i.e., infinite data, by using Froglingo, the extended
system having variables beyond the EP data model
[9].
It is not surprising that Froglingo is a

programming language, i.e., a Turing-machine
equivalent system reaching the full capacity of what
a computer can do [9]. What makes Froglingo
unique is the high-order functions as the sole objects
in representing software applications. The
uniformness of the managed objects leads to
Froglingo’s opportunity of being a monolith in
software architecture. Being claimed as a monolith,
Froglingo is an off-the-shelf product, i.e., a single
executable file, and is self-sufficient in software
development and maintenance. Being worth as an

alternative, Froglingo is expected to be more
productive than the traditional technologies.
In this paper, we analyze the individual

components of the traditional technologies, identify
how the equivalent functions of the components are
supported in Frolingo, and conclude with the
feasibility of the monolithic architecture of
Froglingo.
To facilitate the discussion in this paper, we

briefly introduce Froglingo in Section 2. From
Section 3 to Section 7, we discuss the components of
the traditional technologies and identify where the
equivalent functions of the components go in
Froglingo. Through the discussion, we demonstrate
that Froglingo is monolithic in system architecture
and suggest that it is more productive in software
development and maintenance. In the conclusion, we
reiterate an objective view on the easiness of
computer language to strengthen the suggestion that
the monolith Froglingo is more productive.

2 FROGLINGO

In traditional data models, an entity is either
dependent on one and only one other entity, or
independent from the rest of the world. The
functional dependency in relational data model and
the child-parent relationships in hierarchical data
model are the typical examples. This restriction,
however, doesn’t reflect the complexities of the real
world that are manageable using a computer. The EP
(Enterprise-Participant) data model suggests that if
an entity is dependent on others, it precisely depends
on two other entities. Drawing the terminologies
from the structure of an organization or a party, one
depended entity was called enterprise (such as
organization and party), the other called participant
(such as employee and party participant), and the
dependent entity called participation. An enterprise
consists of multiple participations. Determined by its
enterprise and its participant, a participation yields a
value, and this value in turn is another enterprise.
The EP data model is the core of Froglingo. It

establishes the entire semantic space for practical
software applications. Variable is a way of using
finite expressions for the (infinite) semantics
established in the EP data model. It is intended to be
a supplement semantically to the EP data model
although it unfortunately brings non-termination
processes into Froglingo [5].

2.1 EP Data Model

The core concepts are terms, assignment,
database, normal form, and reduction.

A term is a constant, an identifier, or a pair of
parenthesized terms, i.e.,
• If T is a constant, then T is a term,
• If T is an identifier, then T is a term,
• If T1 and T2 are terms, then (T1 T2) is a

term.
Integers, real numbers, timestamps, and strings are
constants. In addition, files, as long as not
embedding Froglingo expressions, are also
constants. For example, 3.14, ‘5/2/2009’,
“any strings”, and a file content at operating
system level are all constants. Identifiers are the
tokens to represent high-order functions. The
examples are an_id, salary, Mike, and
www.aclient.com.
A term is used to express data, to embed

relationships between data, and to serve as a name in
data communications. The examples are 3.14,
Mike, (Mike Salary), ((country state)
county), and (tax (Mike salary)).
When a term consists of an ordered pair of two

other terms, it is called a combinatory term,
abbreviated as comb-term. The first term of a comb-
term is called the left-term; and the second term the
right-term. For example, the comb-term (Mike
salary) has Mike as the left-term and salary
as the right-term.
If the right-term of a comb-term is not another

comb-term, the parentheses surrounding the term
don't have to be written. For example, ((country
state) county) is equivalent to (country
state county); and ((a b) (c d)) is
equivalent to (a b (c d)).
A term can be assigned with a value. An

assignment is a state that a term takes another term
as its value. For example, (Mike salary) =
2000, 2 = 3, and a = b. Given an assignment,
the term at the left side of the symbol ‘=’ is the
assignee; and the term at the right side the assigner
(also called value).
A database is a finite set of terms and

assignments. To make a database meaningful, the
terms and the assignments in a database must satisfy
the following conditions:
• A constant cannot be an assignee, and cannot be

a left-term,
• The right-term of a comb-term appeared in an

assignee must not have an assigner; and
• Assignments cannot form a circle, i.e., if there is

a sequence of assignments: M0 = M1, M1 =
M2, …, Mn-1 = Mn, Mn must not be identical
to M0.

As an example, we may have the following database
for a school administration:
SSD John SSN = 123456789;

SSD John birth = ‘6/1/1990’;

SSD John photo.jpg = …;

/* a file is a binary stream*/;
College admin (SSD John) enroll =

 ‘9/1/2008’;

College admin (SSD John) Major =

 College CS;

College CS CS100 (College admin (SSD

John)) grade = “F”;

The normal form of a term is the final form, i.e.,
the value, reducible from the term. An arbitrary term
can be reduced to its normal form. Here are a few
examples of the reduction process:
SSD John SSN � 123456789;

College CS CS100 (College admin (SSD

John)) grade � “F”;

College CS CS100 � College CS CS100;

College admin (SSD John) Major CS100 �

College CS CS100;

In EP data model, we say that a comb-term

functionally depends on its left-term because the

existence of the comb-term depends on the existence

of its left-term in a database. Similarly, we say that a

comb-term argumentatively depends on its right-

term. A database is ordered as a tree structure either

under the functional dependency or under the

argumentative dependency.

The EP data model has built-in operators for the
dependencies. For example, we have SSD {=+

SDD, SSD John {+ SSD (or equivalently SSD
John {=+ SSD), and SSD John birth {=+

SSD.
Pre-ordering relations [4] are the additional

relations existing among high-order functions and
lead to the corresponding built-in operators in the EP
data model, e.g., (=+, (=-, and (=, which are not
further explained here.

2.2 Variables

A variable in Froglingo is represented by an
identifier preceded with the symbol $. For example,
$a_variable, and $student. A variable is a
term too. To be in a database, a variable must satisfy
the two conditions:
• If a variable appears in an assigner, it must

appear in assignee;
• A variable cannot be a left-term in an assignee.
With the addition of variables, we can have the
following valid assignments in database:
fac 0 = 1;

fac $n = ($n * (fac ($n - 1)));

Syntactically, the first assignment is for finite
data and the second for infinite data. However, they
are managed together, i.e., both are stored physically
together in the same data structure; and both can be
updated with the same manner. For example, one

can issue the expression: delete fac;, which
removes both assignments from database.
Semantically, the two assignments represent the

factorial function and they are equivalent to a
database having infinite assignments in the EP data
model: fac 0 = 1; fac 1 = 1; fac 2 = 2;
fac 3 = 6; …;.
A variable can have a range to prevent unwanted

data from being the instances of the variable. For
example, the factorial function can be redefined to
allow integers only being the instances of the
variable $n:
fac 0 = 1;

fac $n:[$n isa integer] =

($n * (fac ($n - 1)));
Data, having variables or not, is equally

applicable to the built-in operators in Froglingo, and
produces the meaningful values according to the
semantics of the data. Here is an example: select all
the integers that are less than 7 and applicable to the
factorial function fac:
select $x where fac $x != null

and $x < 7;

Please note that variables bring non-termination
process to Froglingo. It is users’ responsibility to
avoid it.
To express the multiple actions triggered by a

single event, Froglingo adopts the sequential order
of the statements in a traditional programming
language, i.e., a statement is not executed until its
preceding statement is executed in a procedure of an
application program. For example, transferring
money between bank accounts is expressed in
Froglingo as:
transfer $m =

 (update acnt2 = (acnt2 - $m)),

 (update acnt1 = (acnt1 + $m));

provided that the two accounts were established
earlier: acnt1 = 100;, and acnt2 = 300;.

3 DBMS AND DATA MODELING

The relational data model and the hierarchical data
model, and the conceptual Entity-Relationship
model, from which the traditional commercial
database management systems (DBMS) are
established, are the special cases of the EP data
model. In this section, we use examples to
demonstrate it.
The employees table in the relational data model:

Employees

ID Name salary

1 “Jone” 50000

2 “Mary” 60000

can be presented in Froglingo as:
employees 1 name = “Jone”;

employees 1 salary = 50000;

employees 2 name = “Mary”;

employees 2 salary = 60000;

The query of finding all the employees whose
salary is greater than 55000 is expressed in
Froglingo as:
select $e name, $e salary where

where $e salary > 55000;

A car consisting for its body and its engine (and
the engine further consisting for its piston and its
cylinder), that is traditonaly managed by using the
hierarchical data model, can be expressed in
Frogingo as:
car body;

car engine piston;

car engine cylinder;

The query: retrieve all the parts and assembles
under the car is expressed in Frogling:
select $p where $p {=+ car;

The network-oriented data is the favourite of the
conceptual model: Entity-Relationship model. It can
also be presented in Froglingo. Given the directed
graph: G = {A->B, B->A, B->C, C->D}, as an
example, one has a Froglingo presentation:
A B = B;

B A = A;

B C = C;

C D = D;

A database in the EP data model is a high-order
function, and all the total recursive (high-level)
functions can be expressed by the EP data model.
This is not the case for the relational and the
hierarchical models. The relational can only express
functions of level 3 [1]; and the hierarchy data
model can express only those functions expressed in
the EP data model where the right-terms are not
comb-term. For example, the term College

admin (SSD John) cannot be expressed in the
hierarchical data model.

4 APPLICATION PROGRAM

The main function of application programs, i.e.,
application-oriented executable files in a traditional
programming language, is to express infinite data in
finite expressions. Froglingo has its variables to
counter this function as discussed in Section 2.2.
A traditional programming language is also used

to express finite data and the queries on the finite
data. A typical example is to express the following
query: Is there a path from vertices A to vertices D
in the directed graph given in Section 3. The EP data

model has the following expression for it: D <=+
A;.
Placing data access controls and generating web

page contents are also application-specific. We will
discuss them in Sections 7 and 5 correspondingly
and conclude that all of them are managed as data in
Froglingo.
Historically, many efforts have been made to

couple DBMS and programming together as
discussed in Section 2. However, it was concluded
that there was a difficulty, called “impedance
mismatch”, when one wanted to manage relational
data model and programming language together [3].
In other words, the clear obstacle is the lower
expressive power of traditional data models and the
lower productivity of traditional programming
languages in representing finite data [5]. A stored
procedure in relational DBMSs appears to be a
“monolith” physically. But it retains two exclusive
languages, i.e., a data model and a programming
language. There are many other attempts for a
monolith with high productivity. Without a data
model equivalent to a class of total recursive
functions, however, none of them can get rid of the
issues raised from the traditional technologies.
Please reference [7] for more discussion on this
topic.

5 WEB SERVER

In addition to DBMSs, application programs also
need web servers to communicate with web
browsers on networks. A web server is to perform
the common task of software applications: parsing
HTTP requests and generating HTTP responses. A
web server as a off-the-shelf product is at the front-
end facing the networks while a DBMS as another
off-the-shelf product is at the back-end.
When the functions of the application programs

are expressed as data and the physical executable
files for the application programs disappear from the
architecture of Frogingo, the function of web servers
is further supported by Froglingo itself, and
therefore the web servers as off-the-shelf products
are also eliminated from the architecture of
Froglingo . See a graphical view of the evolution in
the diagram of Section 8 that compares the software
architectures of the traditional technologies and
Froglingo.
When we conclude that the application programs

and the web servers are eliminated from the
architecture of Froglingo, we assume that the
function of generating web page contents, that is
application-specific, is expressed as data in
Froglingo as well. Here is an example to show how

Froglingo stores and generates web pages. Froglingo
accepts a HTML file (named as store.html)
embedded with Froglingo expressions:
<html>
<body>

Welcome to my store

The price of apple is
<frog>storage apple price</frog>

 The price of milk is
<frog>storage milk price</frog>

</body>
</html>;
The contents between the pairs of tags <frog>

and </frog> are Froglingo expressions. When the
file is uploaded to Froglingo database, it is stored as
a set of assignments:
store.html 1 = “<html>
<body>

Welcome to my store

The price of apple is ”;

store.html 2 = storage apple price;
store.html 3 =”

 The price of milk is “;
store.html 4 = storage milk price;
store.html 5 =”

</body>
</html>”;
When the HTML file is sent to the web clients as the
responses, the terms originally between the pairs of
tags <frog> and </frog> are evaluated and
replaced with their normal forms.
A HTML file embedded with Froglingo

expression in database is uniformly stored as data
and can be as complex as a business application
needs. For other relevant features including
recursively set-oriented query expressions and
parameters passing with HTML files, please see the
reference [8].

6 DATA EXCHANGE AGENT

A typical application software in the traditional
technologies stores data in a relational DBMS,
processes data with the objects (user-defined data
structures) of programming language, and transfers
data in a third format (data communication protocol,
such as XML). Years ago, the data parsing and
conversions between the different data formats were
done by writing code as a part of application
program. Now, we utilize off-the-shelf data
exchange agents (such as Hibernate) to do the
common task: message parsing and data conversion

based on application-specific conversion rules
defined by developers.
Froglingo uses the single format – the EP data

model for data storage, data process, and data
transformation. Therefore, there is no need to
perform data conversion using an agent. Here is a
sample data communication in Froglingo by using
the built-in operator print:
Print College �

College admin (SSD John) enroll =

‘9/1/2008’;

College admin (SSD John) Major =

College CS;

College CS CS100 (College admin (SSD

John)) grade = “F”;

7 ACCESS CONTROL

An application program, where a relational DBMS is
used, also needs to specify data access controls (or
called user entitlements) against the relational data.
This is necessary because the data access control, in
the correspondence of total recursive functions,
cannot be expressed by the relational data model, but
by programming language. This becomes no issue in
Froglingo due to its equivalence to a class of total
recursive functions. In addition, Froglingo offers a
set of built-in operators, stemming from the
dependent relationships, to specify data access
controls as if a file system specified file access
controls.
In an integrated environment such as at a

corporate level with multiple applications, an off-
the-shelf security product, such as Microsoft Active
Directory for Windows-based applications, IBM
Tivoli Access Manager or RSA ClearTrust for web-
based applications, is utilized to coordinate
corporate level security policies. Given the
traditional technologies, it simplifies the
management of data access controls among the
multiple applications by utilizing a centralized
database. When the applications in an integrated
environment establish a trusted relationship and
communicate with each other in Froglingo, the off-
the-shelf security products don’t have a place in the
architecture of Frolingo either.

8 CONCLUSION

The functions of the multiple software components
in the architecture of the traditional technologies
have never been segregated. In addition to the
primary copy in DBMS, for example, an employee

ID discussed in Section 3 may need to be duplicated
and re-processed in almost every other component,
i.e., application program, data exchange agent, and
data access controls.
Froglingo is a monolith powered by nothing but

high-order functions. It is a monolith for every
software application. It is a monolith consolidating
the multiple components of the traditional
technologies.

Application
Business Logic

Access Control

Webpage generator

Web Server
HTTP Parser

APIs

Business

Data DBMS

Froglingo
DBMS

HTTP Parser

Business Data

Business Logic

Access Control

Webpage generator

Data Exchange

Agent

Froglingo System Architecture

Traditional Software Architecture

Legends:

A on-shelf tool

Application Program

Data Storage

The consolidation itself improves the

productivity of software development and
maintenance. In addition, we have concluded in the
article [5] that Froglingo reaches the greatest
possible ease when we assumed that 1) a data model
is easier to use than a programming language in the
development and maintenance of those applications
expressible in the data model; 2) if one data model is
more expressive than another data model, the former
is easier than the latter in the development and
maintenance of those applications where a
programming language is involved. The easiness
further suggests that Froglingo improves the
productivity.

References

1 G. Hillebrand, P. C. Kanellakis, “Functional

Database Query Languages as Typed Lambda

Calcluli of Fixed Order”, ACM

SIGMOD/PODS 94.

2 P. Loucopoulos, K. Lyytinen, K. Liu, T. Gilb,

L.A. Maciaszek. “Project Failures: Continuing

Challenges for Sustainable Information

Systems”, Enterprise Information Systems VI,

1-8, 2006 Springer.

3 A. Ohori, P. Buneman, V. Breazu-Tannen.

“Database Programming in Machiavelli – a

polymorphic language with static type

inference”. In ACM SIGMOD, 1989, page 46 –

57.

4 K. H. Xu, J. Zhang, S. Gao. “High-Ordering

Functions and their Ordering relations”. The

Fifth International Conference on Digital

Information Management, 2010.

5 K. H. Xu, J. Zhang, S. Gao. “An Assessment on

the Easiness of Computer Languages”. The

Journal of Information Technology Review,

2010.

6 K. H. Xu, S. Gao, J. Zhang, R. R. McKeown.

“Let a Data Model be equivalent to a Class of

Total Recursive Functions”. The International

Conference on Theoretical and Mathematical

Foundations of Computer Science (TMFCS-10),

2010.

7 K. H. Xu, J. Zhang, S. Gao. “Assessing

Easiness with Froglingo”. The Second

International Conference on the Application of

Digital Information and Web Technologies,

2009.

8 K. H. Xu, J. Zhang. “A User’s Guide to

Froglingo, An alternative to DBMS,

Programming language, Web Server, and File

System”.

http://www.froglingo.com/froglingoguide10.pdf

, January 2010.

9 K. H. Xu. “EP Data Model, a Language for

Higher-Order Functions”. Manuscript

unpublished, March 1999.

http://www.froglingo.com/ep99.pdf.

10 K. H. Xu and B. Bhargava. “An Introduction to
Enterprise-Participant Data Model”. The

Seventh International Workshop on Database

and Expert Systems Applications, September,

1996, Zurich, Switzerland, page 410 - 417.

