
Outline of a symbolic and PAC-learning approach to instruct a Turing-complete
system in natural language

Anonymous submission

Abstract

A machine’s capacity of interacting in natural language and
processing in its full Turing-complete computing power is our
ultimate expectation in natural language processing (NLP). In
this paper, we introduce Froglingo, a Turing-complete lan-
guage system, that is a symbolic approach with a Proba-
bly Approximately Correct (PAC) learnability toward NLP,
knowledge representation, as well as software development.
We discuss a semantic parser that is a side-product of learning
from sample utterance, i.e., the parser is mainly comprised
of a set of syntactical parsing and semantic mapping tem-
plates that are accumulated when the sample utterance are
received and processed. Froglingo’s PAC learnability guar-
antees a convergence of such accumulation processes to an
ultimate machine that would interact with others in natural
language. Froglingo’s symbolically rigorous reasoning guar-
antees noise free, i.e., the machine never say yes when the an-
swer is no. We further propose a user interface for Froglingo
that accepts natural language beside its own system language.
At an early stage, Froglingo mostly accepts Froglingo expres-
sions to construct data. Later, Froglingo can continue data
construction mostly using text.

1. Introduction
Statistical based machine learning approaches toward natu-
ral language processing (NLP), particularly large language
models (LLMs), have been gratefully and deeply impacting
our daily life. Our ultimate expectation on NLP, however, is
a machine’s real-time capacity of both interacting with sur-
roundings in natural language as if it was a person and rea-
soning in the full power of Turing machine, e.g., executing
Turing-complete expressions for specific software applica-
tions. We almost have had the former but not quite yet as
statistical machine learning doesn’t have a guarantee on a
controllable precision, i.e., a learned program (e.g., LLM)
doesn’t converges to its targeted function for a designed pre-
cision. We have the latter on the infrastructure of today’s
information technologies that are built on the top of pro-
gramming languages, but not on the learned programs, e.g.,
LLMs.

Integrating symbolic computing with statistical machine
learning, i.e., placing a representation of Turing-complete
expressions into the same Eucliean space where a LLM
is running, called knowledge (or simply a graph) injection

or embedding, has been a challenge practically and theo-
retically (Apidianaki 2022; Berant, Dagan, and Goldberger
2012; Bordes et al. 2011; Cai, Zheng, and Chang 2017;
Nickel, Tresp, and Kriegel 2012; Seshadhri et al. 2020).
Particularly, Turing-complete expressions that themselves
are not PAC learnable (Gold 1967) are too complex to be
injected (bent, precisely converted) to a representation in
an Euclidean space with a further dimensionality reduction
without losing information.

The Enterprise-Participant (EP) data model is a database
language and equivalently a data structure. It represents a
class of bounded functions that is both PAC learnable (Xu
2025) and semantically equivalent to Turing machine, i.e.,
EP can do whatever a Turing machine can do within a given
time and space. In other words, although EP cannot finitely
express Turing-complete expressions, e.g., f(x) = x + 1,
as a programming language can, it can record and process
a finitely measurable properties of the Turing-complete ex-
pressions, i.e., {(0, 1), (1, 2), ..., (n, n + 1)} for a n > 0
(Xu 2017). EP drives the PAC learnability, or informally
say EP databases (expressions) are PAC learnable, because
an algorithm exists to take a finite set of randomly selected
sample EP expressions and to automatically construct an EP
database that supports more meaningful EP expressions than
the sample expressions themselves. While statistical ma-
chine learning has its unique applications like pattern recog-
nition, the EP driven learnability persists on keeping the re-
alizability assumption, i.e., guarantees a learned EP database
converges to its targeted database for a designed precision.
EP is a symbolic computing because it is a formal language
that rigorously computes bounded functions. Although EP
is not as expressive as a Turing-complete programming lan-
guage, EP can be used to construct certain applications like
NLP, because of its PAC learnability, that are challenges to
programming languages.

Having an infinite domain and a finite co-domain is a
unique characteristics of a bounded function. An directed
and cyclical graph expressed in an EP database, for exam-
ple, is interpreted as a bounded function, where the infi-
nite set of all possible paths is the domain and the finite set
of the vertexes is the co-domain. This gives us an oppor-
tunity to represent knowledge, including natural language
(NL), in an EP database, and further map NL utterance to
a machine readable form of knowledge. We can say a set

of Turing-complete expressions exist to represent knowl-
edge. Practically however it is impossible because knowl-
edge is constantly changing and unnecessary to construct
a program that represents such a function because knowl-
edge is a collection of syntactical and semantic phenomena
including intertwined text, (para)phrases, coreferences, sen-
tences, objects and the relationships among the objects in the
real-world. Then we make an assumption:

Assumption 1. knowledge is isomorphic to a bounded func-
tion.

Human beings roughly view the world with a finite num-
ber of entities (in a correspondence to a finite co-domain in
EP) but communicate with each other with infinitely pos-
sible utterance (in a correspondence to an infinite domain
in EP). Given this assumption, we say that we can accumu-
late knowledge into an EP database which will eventually
converge to an ultimate bounded function interpreting the
knowledge.

In the assumption, knowledge is referred to everything,
including Turing-complete Froglingo expressions that are in
the form of EP expressions but evaluated to be a semanti-
caly bottom value null in EP. The only exception is that
knowledge doesn’t include the Turing machine with infi-
nite type and space, i.e., knowledge doesn’t have non-finitely
representable outputs of Turing-machine computing process
with the hypothesis of infinite time and space (or an infinite
length of utterance is not part of NL).

In this paper, we introduce Froglingo, a Turing-complete
language system that extends the type and variable free EP
language system with types and variables. Froglingo is im-
plemented with the function of a semantic parser to parses
utterance to syntactical structures and maps the syntactical
structures to the utterance’s meanings. When receiving a
sample utterance, Froglingo also receives parsing and map-
ping instructions from external sources like developers for
the given sample. At the earlier stage parsing and mapping
instructions are given in Froglingo system language, later
more in natural language, and eventually no longer needed
to process continuous utterance (Section 8).

With the approach of accumulating templates through
processing sample utterance, the parser has a controllable
precision that is aimed to be eventually as high as what hu-
man being has (Section 5 and 6).

Processing sample utterance is also a process of accumu-
lating knowledge in Froglingo. Accommodating knowledge
from various domains together is another critical ability a
true NLP system must support all kinds of applications. In
Section 7, we discuss such an ability Froglingo has.

As a Turing-equivalent language system, Froglingo is ac-
tually a typed system for EP, i.e., a set of parsing and map-
ping templates actually represents a bounded function, a re-
stricted subset of the bounded function an EP database can
inventory without types. Therefore, the parsing and mapping
templates are also PAC learnable, a mathematical foundation
to support the discussion in Section 5 and 6. A Froglingo ex-
pressions can be Turing-complete. We say they can be gen-
erated through utterance instructions because they are in the
form of EP expressions. All of these are discussed in Ap-

pendix B to D that gives proofs to the conclusions excerpted
in Section 3, 6, and 7.

In Section 2, we give an high-level overview of the EP
data model. See (Xu 2017; Xu, Zhang, and Gao 2010)
for more information. In Section 3, we briefly introduce
Froglingo and a formal discussion is provided in Appendix
B. In Section 4, we use examples to demonstrate how the
learnability is applied to natural language processing (NLP).
Appendix A also gives related work.

2. The EP data model and transitive relations
Identifiers are the most basic building blocks in EP. Like in
programming languages, we can choose alphanumeric to-
kens as identifiers, such as abc123, abc, and more often we
take words from a natural language vocabulary as identifiers,
such as hello, John, sport, law, and person. The entire set
of identifiers, in a correspondence to the set of integers, is
denoted as F.

An EP term, or briefly term, is either an identifier or an
application, i.e., using E to denote the entire set of terms, in
a correspondence to the set of integers, we have:

m ∈ F =⇒ m ∈ E

m,n ∈ E =⇒ (m n) ∈ E

For example, x x, (a b c) (d e a (d t a)) are legiti-
mate terms where x, a, b, c, d, e, t ∈ F. By terms alone,
we can represent containment relationships. For example,
the hierarchical structure of geographical locations can
be expressed: Massachusetts Boston Somerville and
Manhattan (Wall Street).

The containment relationships among subterms of
a given term are tree-structured. The first kind is
the relation of a term being contained within one
of its leftmost subterms, denoted as {+. For exam-
ple, we have: Massachusetts Boston Somerville {+
Massachusetts Boston {+ Massachusetts. The second
kind is the relation of a term being contained within one of
its rightmost subterms, denoted as {-. For example, we have
Manhattan (Wall Street) {- (Wall Street) {- Street.
Further the relations {+ and {- are extended to have tree-
structured transitive relations {=+ and {=- respectively.

An EP database, or briefly database and denoted as D,
is a finite set of terms and a finite set of assignments such
that for each assignment p := q ∈ D, where p, q ∈ E, the
constraints are met: 1) p has only one assigner, i.e., p :=
q and p := q′ ∈ D =⇒ q ≡ q′; 2) a proper subterm of
p cannot be an assignee, i.e., p := q ∈ D =⇒ ∀x ∈
SUB+(p) [∀m ∈ E [x := m ̸∈ D]]; and 3) q can not be an
assignee, i.e., p := q ∈ D =⇒ ∀a ∈ E [q := a ̸∈ D].

Here are a few sample databases:

• {a b := b; b a := a; b c := c}, for a directed and cyclical
graph with connections from a to b, from b to a, and from
b to c.

• {College John major := College math;
College math math100 (College John) grade
:= A}, for a college administration database.

• {Jessie (verB drove) home :=
Jessie (verB came) home (preP by car)}, for an En-
glish paraphrase presented in EP.

The examples above tell us that we use terms to repre-
sent real world entities such as a person John and a college
College, a sentence structure like the last example above,
and relationships among entities such as Jessie’s home is
related to Jessie by the verbs verB drove. We further use
assignments to relate two sentences together such as the last
example database says that the assignee is meant to be the
assigner.

A database D has a finite set of EP normal forms, denoted
as NF (D). A term n ∈ E is an normal form if and only if

1. n is null, i.e, n ≡ null, where null is a special identifier
in F, or

2. n is a term in D and not an assignee, i.e., n ∈ D and
∀b ∈ E [n := b ̸∈ D].

Given a database D, we have one-step reduction rules, de-
noted as ⇒:

1. An assignee is reduced to the assigner, i.e., a := b ∈
D =⇒ a ⇒ b

2. An identifier not in the database is reduced to null, i.e.,
a ∈ F, a ̸∈ D =⇒ a ⇒ null

3. If a and b are normal forms and a b ̸∈ D, then a b is
reduced to null, i.e., a, b ∈ NF (D), a b ̸∈ D =⇒
a b ⇒ null

4. null a =⇒ null for any a ∈ E

5. a ⇒ a′, =⇒ C[a] ⇒ C[a′], where C[] denotes a
context, i.e., given any term e ∈ E, we have C[e] ∈ E
and e is a subterm in C[e].

Let a ⇒ a0, a0 ⇒ a1, . . . , an−1 ⇒ an for a number n ∈
N. We say that a is effectively, i.e., in finite steps, reduced
to an, denoted as a →D an, and further we say that a and
an are equal, denoted as a == an.

A term a has a normal form b if b is in normal form and
a →D b.

Here are a few sample reductions to their normal forms
under the example databases provided at the end of Section
2: a b a →D a, a b c →D c, c b →D null, college John
major math100 (college John) grade →D

A, and Jessie (verB drove) home →D

Jessie (verB came) home (preP by car).
Any term m ∈ E has one and only one normal form and

the reduction system is strongly normalizing, i.e., there is
another term n ∈ NF (D) such that m →D n. The set of all
the normal forms NF (D) is finite, i.e., |NF (D)| ≤ s for a
given s ∈ N.

An EP database is interpreted as a bounded function that
is recursive and has a finite co-domain while an infinite do-
main. Let f : X → Y be a function, where X has an ar-
bitrary number of objects and Y a finite number of objects,
let A ⊆ X and a be a special object in Y , i.e., a ∈ Y , and
further let

f(x) = b, where b ∈ Y and b ̸= a, if x ∈ A

= a if x ∈ X\A.

Then we say f is bounded, particularly when A ≡ X . When
A is finite, i.e., A ⊂ X , we say f has a finite support,
or simply we say f is finite. A finite function is bounded,
but a bounded function may not be finite as it potentially
has an infinite domain X . Further, a bounded function is al-
ways recursive, i.e., the computation on f(x) terminates and
f(x) ∈ Y for any x ∈ X .

By saying a function being bounded, we mean that under a
given EP database D, potentially an arbitrary number of EP
expressions are meaningful. For example, the EP database
defining a directed cyclic graph earlier has infinite paths, i.e.,
the terms a b, b a, a b a, ..., a b...a b will be reduced to
non null value. Even a path is not cyclic, we also call it
derivable information. For example, we have a b c →D c.
These derivable (or later called fresh) information from an
EP database is the source of the PAC learnability of a class
of bounded functions.

From the equality relation ==, additional
pre-ordering relations are available. One of those rela-
tions, denoted as (=+, can be used to express if there is a
path or cycle between two vertexes. For example, we have
a (=+ c →D true to verify a path from a to c, a (=+ b and b
(=+ a →D true to verify a cycle between a and b, and c
(=+ a →D false to verify there is no path from c to a.

Like the rationale data model, EP has a
set-oriented operations using the operators select and
there is. For example, the expression select $x where $x
{=+ Massachusetts would retrieve all the terms,
including Massachusetts, Massachusetts Boston,
and Massachusetts Boston Somerville, that have
Massachusetts as a leftmost subterm. The expression
there is $x where c (=+ $x would inquire if there is a
vertex that has a direct connection from c, which would be
responded with the answer of false based on the sample
graph database provided earlier.

3. Froglingo and more transitive relations
Like in other programming languages, Froglingo has built-
in types integer, real, string, date, and etc. as well as
variables, that makes Froglingo a Turing-equivalent lan-
guage. For example, the factorial function can be expressed
as fac $n : [$n isA integer and $n ≥ 0] := ($n ×
(fac ($n − 1))), where n, an identifier, preceded with $, is
a variable, and isA is a built-in operator for the transitive
relation: if a isA b and b isA c, then a isA c. (Note that the
operator isA is different from the tree-structure relation op-
erator {+, and it can only be supported by Froglingo because
EP is type free.)

We are more interested in user-defined types because we
can infer among types along with the operator isA. A type is
in the form of an EP term as well, for example car, vehicle,
and person. A type and an object instance are differenti-
ated by different built-in commands: schema and create re-
spectively. For example, we can have schema vehicle and
schema person to declare types vehicle and person, and
create joe to declare an object instance joe. We can fur-
ther use isA to associate a type with another type, or a type
with an instance. For example: schema car isA vehicle and

create joe isA person. This definition in a database would
allow us to infer that car and vehicle are paraphrases in the
text: “John just bought a new car. The vehicle is powerful”.

Inferences among sentences are also supported
in Froglingo. For example, we can specify two
rules (templates) when action had been de-
clared as a type: improvement isA action, and
person (verB paint) house isA improvement.
When we have an instance:
joe (verB painted) ((coreF his) house), where the
built-in coreF abbreviates “coreference”, we can infer
the equivalence while paint and improvement are not
paraphrases: joe (verB improved) ((coreF his) house).

Many inferences in the real world are not based on rules
from common knowledge but rather on individual instances.
Froglingo supports a sequence of terms as an assigner.
Froglingo uses assignments with a sequence of terms as an
assigner to support such inferences. For example:
John (verB took) (delimiT a) vacation :=

John (verB visited) Jen,
John (verB spent) ((delimiT a) day)
((preP on) beach);

John (verB visited) Jen :=
John (verB gave) Jen ((delimiT a) gift),
John (verB had) dinner ((preP (together with)) Jen);

An assignee above is an abstraction and the corresponding
assigner is a sequence of sub actions that give the details
of the abstraction. When an abstraction is equivalent to its
sub actions, we can infer from the abstraction to a specific
action, for example, from the assignments above, one can
infer “John visited Jen” from “John took a vacation”, and
inversely we can speculate: “John took a vacation” when one
hears “A gentleman gave Jen a gift”. These inferences are
also called predictions in the PAC learnability.

In summary, we use types to represent real world cate-
gories such as person. An identifier that is used as a type is
no longer an EP term representing an entity instance. An EP
term can also represent other part of speeches such as verbs
like verB drove, prepositions like preP at, adjectives like
adJ happy, and etc.). Variables are placeholders for nouns,
numbers, and strings.

The identifiers representing Turing-complete expressions,
such as fac for the factorial function, are restrictively not
EP terms as well. They were called EP constants, denoted
as a set C in (Xu 2017). Applying a constant to an arbitrary
EP term always yields null, e.g., fac 3 →D null where
fac 3 is a legitimate EP term in (Xu 2017). In Froglingo,
however, this is no longer a case, e.g., fac 3 →F 6,
where →F is denoted a reduction not under EP but under
Froglingo. The constant set of C in EP is the mathematical
ground for Turing-complete expressions to be constructed
through learning because these expressions are EP expres-
sions equivalent to null in EP:

Proposition 1. Froglingo expressions are in the form of EP
expressions.

When not taking a built-in type like integer, a vari-
able in Froglingo can only take instances from a finite set
of terms defined in Froglingo. Therefore, a database with

Froglingo expressions, say a Frogingo Database, doesn’t in-
ventory more than what a type and variable free EP database
does, when the built-in types with infinite domains are not
considered:
Theorem 1. Froglingo database are PAC learnable pro-
vided it doesn’t including constants that take built-in types
as variables that have infinite domain.

4. Fresh information from sample utterance
The instance space of the EP-driven learnability presented
in (Xu 2025) is the EP terms E. This doesn’t help us prac-
tically because there are not pre-existing EP expressions.
However, we can map utterance to EP terms (expressions)
first and then apply the converted EP terms to the learnabil-
ity. In this section, we give a few examples in natural lan-
guage to demonstrate this idea that the EP-driven learnabil-
ity can actually be applied to the instance space of natural
language.

A primary task of learning from utterance using Froglingo
is to implement a parser that can map utterance to Froglingo
expressions that represent the syntactical structure of the
given utterance. Instead of a formal grammar, we use
Froglingo expressions, called rules or templates, serving as
a semantic parser for both syntactical parsing and seman-
tic mapping. For the geographical containment relationships
described in Section 2, for example, we can have the fol-
lowing template: location (bE be) part (preP of) $x :
[$x isA location] := there is $y : [$y isA location]
where $y {=+ $x and $y {- location, where location
is a type for a geographical location, such as Florida,
Miami, and Florida Miami, $x and $y are variables
typed as location. When a sentence like: “Somerville is
part of Boston” is to be parsed, the template above would
guide the parser to break the utterance into the EP expres-
sion: Somerville (bE is) part (preP of) Boston.

The template above guides the syntactical structure
Somerville (bE is) part (preP of) Boston to be reduced
(mapped) to: there is $y : [$y isA location] where $y
{=+ Boston and $y {- Somerville;

Froglingo works in at least two modes as to be fur-
ther discussion in Section 8: a learning (L) model and
an operation (O) mode. When it is in L mode, it cre-
ates new data that would meet the where clause, i.e., add
Boston Somerville isA location as a new fact into the
database, where Boston Somerville {=+ Boston 1.

With the same template, the same construction pro-
cess would be able to receive additional utterance
such as “Boston is part of Massachusetts”, which
causes the database to be updated to have the term
Massachusetts Boston Somerville isA location. Now
the database supports “Somerville is part of Massachusetts”,
which is a new piece of information. Reconstructing the
database from the two separate sentences is a learning pro-
cess enhanced from the learning algorithm on the instance
space of EP terms.

1When Froglingo is in O mode, it would try to retrieve
data $y from database to see if it meets the condition: $y {=+
Boston and $y {- Somerville.

We also allow text to be part of an assigner. For exam-
ple: person (verB drive) home := Botran (person
“come home by car”). This assignment defines a rule
that “a person drives home” is equivalent to “a per-
son comes home by car”, where we assume a template
person (verB come) home (preP by) car has already
being constructed in the database. The identifier Botran
is a built-in term (operator) that obtains an instance of
type person, e.g., Jessie, that is passed from the as-
signee at the left hand side, concatenates and adjusts the
assigner to a text, e.g., “Jessie comes home by car”,
and parses the text back to a term in Froglingo, e.g.,
Jessie (verB comes) home ((preP by) car). As a re-
sult, the following conversation would be newly meaning-
ful to the NLP process: “Did Jessie come home by car?”,
“Yes, Jessie drove home”. Given the text “Jessie came home
by car” is a sample the NLP process learns, the text “Jessie
drove home” is a prediction of the NLP process.

Learning through utterance can also be applied to types.
When we define cat isA animal and tiger isA cat, we will
have tiger isA animal.

Breaking complex sentences into simple sentences is an-
other way of learning (note a complex sentence is always
broken down to multiple simple sentences in Froglingo). For
example, the sentence “Joe with a hat walked on a street” is
broken into two EP expressions: Joe (verB wore) h0001
and Joe (verB walked) ((preP on) s0001, where
h0001 isA hat and s0001 isA street, both the sentences
“Joe wore a hat” and “Joe walked on a street” will be recog-
nized and are predictions.

5. Parser
A formal grammar is a top-down approach toward parsing,
i.e., it always starts with a root non-terminal that is aimed
to represent all possible sentences in a language, e.g., the
root symbol S in S → NP V P , where S depends on NP
and V P to further break down each sentence to a machine
readable form. However, this top-down approach is diffi-
cult and has not yet produced a grammar to closely repre-
sent the grammatical phenomena of natural language (Bar-
ton, Berwick, and Ristad 1987; Shieber 1985; Gazdar et al.
1985).

Contemporary semantic parsers map the meanings of ut-
terance to a logic (machine readable) form. Such a logic
form is in expressiveness either limited such as SQL (Jiang
and Cai 2024) or too powerful to halt in computation such as
the lambda calculus (Poon 2013). Although statistical ma-
chine learning has advanced parsing technologies that led
popular applications in our daily life, such as language trans-
lation, question answering, and code generation, it is still a
challenge to produce a parser that would be as reliable as
a human being. Missing the realizability assumption of the
Possibly Approximately Correctly (PAC) learnability is one
of the causes, i.e., some sample data cannot be correctly la-
beled, causing a constructed hypothesis may not converge to
its target program.

Collecting parsing templates from sample utterance is a
bottom-up approach. A parsing template contains variables
and (or) types for entity instances that are represented by

phrases or clauses such as Joe and the man with ahat. A
template may include individual verbs, such as verB walk,
verB drive, and bE is. However, a template doesn’t include
a variable or a type for verbs.

Although strategically different, the bottom-up parsing
approach leverages many well-studied parsing techniques
from formal grammatical approaches. Adopting the chart-
based parser techniques (Allen 1995) can guarantee the time
complexity of the parser in Froglingo is not more than K∗n3

in the worst case, where n is the length of a given sentence
and K is a constant depending on a specific algorithm.

The parser accepts a sentence only if the parsed structure
is consistent with the up-to-date database. One of the most
important inquiries the parser performs is to find out if there
is data (a set of EP terms) in the database that represents an
entity or a category that a noun phrase in a given sentence is
mapped to. Given a database defines PNC isA bank, where
bank has already defined as a type, and given John’s bank
account is represented as PNC account John balance :=
1000, for example, we will be certain that the
phrases “John’s PNC Bank account” is mapped to
PNC account John. Given a database having the set:
{Family John;Family House (bE is) (preP in F lorida);
Builder (verB built) (Family House) (preP in 2025); }
where Family, John, House, and Builder are instances
defined with types of organization, person, house,
and organization respectively, as another example, will
certainly support the phrase “John’s newly built Florida
residence”.

6. Ambiguity
As a recall, we approach NLP using Froglingo by process-
ing a collection of sample utterance. For each randomly se-
lected utterance, we give Froglingo expressions as the cor-
responding parsing rule/templates that maps the utterance
to EP expressions as the syntactical structure of the given
utterance. We further enhance the Froglingo expressions de-
fined earlier to have a mapping rule that maps the syntactical
structure of the utterance to another set of EP expressions as
the meaning of the utterance. For each parsing decision, i.e.,
on which parsing rule to choose or if a new rule is needed
for a coming utterance, the system references the database
to confirm a utterance makes sense to the up-to-date knowl-
edge stored in the database. Therefore, even if a utterance
has a perfect grammatical structure and makes a full sense
in the real world, the system may not recognize (read) it, as
if a child didn’t understand what an adult was talking about.
This process is critical to maintain the realizability assump-
tion of the PAC learnability and ensure that the database for
knowledge will eventually converge. It is also critical to re-
solve and many times to avoid the challenges from natural
language ambiguity that are important to linguistics and phi-
losophy but unnecessary to most of NLP applications.

Even with the flexibility of the bottom-up approach
in parsing, can we still end up with a difficulty not
being able to represent certain grammatical structures
by collecting parsing rules from sample utterance? The
answer is no. First, let’s mathematically replace all

variables and types with their instances in a pars-
ing rule, e.g., replace person with Jessie, Joe, ...,
Zack in person (verB drive) home and we end up
with multiple parsing rules Jessie (verB drive) home,
Joe (verB drive) home, ..., Zack (verB drive) home.
Assuming only a finite number of objects is our concern in
representing the world knowledge, we still end up with a fi-
nite number of parsing rules if we replace the variables and
the types with their instances in all collected parsing rules.
Therefore, the rules without types and variables would be
still effective and most critically precise in parsing utterance.
We say such a parsing is precise because for each utterance:
1) if it is unique in meaning regardless of its context, we
give its unique grammatical structure as it is; 2) if it is am-
biguous in syntax, such as “Joe saw the girl with a binocu-
lars”, we can give its syntactical structure based on what the
speaker intended, i.e., referencing the Froglingo database for
its true meaning before deciding its syntactical structure; 3)
if it is ambiguous in semantics, such as “Joe got what he
wanted” that is unique in syntax but could mean many things
in meaning, we can still search the database for the context:
who “Joe” is, What object Joe wanted and got, and if “got”
is a “took”, “received”, or “purchased”; and 4) if it is am-
biguous in pragmatics, such as “put the coffee on the table”
while there are two tables next to each other as people often
purposely or unconsciously say, we have to raise a question
for clarification after a search on the database concludes the
ambiguity.

Can we express the utterance that are not context free
such as cross-serial dependencies in Swiss German (Shieber
1985)? We don’t attempt to develop a parsing rule in
Froglingo to represent arbitrary layers of the cross-serial de-
pendencies, in a contrast to a context sensitive grammar. But
we can develop a finite number of layers of the dependen-
cies, e.g., the 3rd or 4th, which is an approximation to the
context sensitive grammar but should be practically suffi-
cient.

Now, let’s come back to the reality: we still need vari-
ables and types in parsing rules. Can we adequately manage
those variables and types to precisely parse utterance? The
answer is yes. If a variable or type originally defined in a rule
has unexpected instances, e.g., person (verB wear) hat
where we like hat to be red only, we can redefine it as
person (verB wear) $h : [($h isA hat) and
($h color == adJ red)]. If there are some extremely dif-
ficult utterance to be syntactically broken down, we can al-
ways roll back individual instances instead of variables and
types, although the effort appears to be tedious.

In summary, ambiguities does not have to hinder the per-
formance of the parsing process in Froglingo as if they didn’t
bother human beings in their communication. While we can-
not describe a precise mapping from all the utterance to pars-
ing templates (unless we had already sampled all necessary
utterance for a convergence) to explicitly demonstrate this
argument, the following conclusion certainly strengthens it:

Theorem 2. Provided the assumption that knowledge is iso-
morphic to a bounded function, NL utterance are efficiently
PAC learnable.

Given the assumption, in other words, accumulating ran-
domly selected sample utterance eventually converges to a
machine that communicates with its surroundings in NL as
if it was a human being.

7. Ontology
Like ambiguity, ontology is another area Froglingo’s bottom
up approach has to tackle to accumulate and eventually con-
verge all the phenomena of the real world but not possibly
and necessarily resolve many open questions that have been
discussed over the entire ontology history.

First of all, we believe the information about entities, i.e.,
concrete objects, in the real world, such as a person named
John, the tree in the front of my house, the water in my cup,
etc. that exist in the default dimensions of time and space, is
the information ground that other information should even-
tually land on. In other words, other information are about
entities such as a physical object’s weight and color, peo-
ple’s sentiment, and relationships among entities, a meeting,
sports, law, an entity’s sub components, a biological cell,
and a natural language. We assume that all of these informa-
tion must be correlated together in the space of a bounded
function that can be mathematically supported in a physi-
cal EP database. In reality, we can only inventory pieces of
such information that are randomly selected regardless of
which piece in what order is entered, where each piece may
not immediately but ultimately be able to be related to oth-
ers along the information collection process in a database.
For example, a database can first reflect “John’s bank ac-
count was reduced from $1000 to $950” before reflecting
“John had spent $50 to buy a dinner”, which enables the
machine to correlate the two events. A database also often
needs to inventory partial information, e.g., “John went to
New York City with another person”, where the phrase “an-
other person” is a partial information, i.e., an instance typed
as person without further information.

In Froglingo, we use the transitive relation isA to cate-
gorize things in the worlds, where the relation isA forms
a Directed Acyclic Graph (DAG), instances are end (leaf)
nodes, and types are intermediate or root nodes. For con-
venience, we may always have only one root node, such
as named thing. While a child type or instance has more
specific information than its parent does (i.e., a child in-
herits its parent in programming language), a parent (or
ancestor) can serve as a coreference to a child and there-
fore the parent would act on the behalf of the child. For
example, we can express: schema animal isA thing,
schema person isA animal, and create John isA person
to form a chain: John isA person isA animal isA thing.
This chain would allow the utterance “the person said ...”
(and “the animal said ...” as well though not perfectly
fit) in the context that “John said ...”, where “the per-
son” actually refers to John. When we define another type
schema cat isA animal, the utterance “the animal said ...”
is invalid because “a cat said ...” would never happen, as the
type cat is constructed without the ability of speaking, in
the context that “A cat meowed” and “the animal” actually
refers to the cat. Note we define person’s ability of speaking
by defining schemaperson(verBspeak).

A single entity, particularly those entities human beings
often interact with, has a lot of different words or phrases
used to categorize it. We have to properly arrange them
all into a DAG eventually if not necessarily immediately.
After the type person is defined, for example, we need
to further place words “woman”, “female”, “mother”, and
etc. into DAG. We can have the following tentative type
structure: female isA animal, woman isA person,
mother isA female, Mary isA mother, and
Mary isA woman. How do we relate Mary defined
earlier to “the lady” in “The New York City welcomed
Mary, a lady coming from Florida”? The answer is to add
another type: lady isA woman.

DAG along is not sufficient to define all the prop-
erties of a type. For example, mother can be en-
hanced to be related to other entities by the template:
animal (bE be) $a : [$a isA animal] S mother :=
person (verB mothers) $a, where “S” denotes the
mark “’s” in for example “Joe’s mother”. Statistical
data also enhance properties of types. For example, af-
ter we have pal isA man, we may have the template:
person (bE be) $p : [$p isA person] S pal :=
person (verB chatted) (preP with) $p (adverB often),
where adverB often would trigger the machine to guess
who are the pals in “John went to bar with his pals” by cal-
culating statistical data about John’s connections with other
people. (Note that statistics will play a big role in defining a
large number of adjectives and adverbs, which is not further
discussed here.)

Actions (i.e., the meaning of a sentences) can be also cate-
gorized. We use the built-in relation isA to facilitate the cat-
egorization process at the action level. For example, “John
plays soccer. He loves sport”, where we simply relate the
two sentences by defining types: schema sport isA thing
and schema soccer isA sport. We also use action nouns to
explicitly categorize a sentence using isA, such as improve-
ment categorizing painting a house as discussed in Section 3.
Not every action can be and needs to be categorized. “John
run yesterday” which could be meant for sport or something
else such as for escaping from being arrested. But an action
may be eventually categorized by providing additional con-
text, such as “John run in New York Marathon yesterday”.

The bottom line is that we have the following conclusion:

Theorem 3. Provided that knowledge is isomorphic to a
bounded function, all the objects in knowledge can be in-
ventoried in an EP database and the relationships among
the objects can be calculated.

where “objects” refer to particulars, universals, concrete ob-
jects, abstract objects, and etc. in ontological theories.

8. Natural language along system language
Like in statistical machine learning, Froglingo consists of
two major components: 1) a learning model - A learning al-
gorithm encoded in Froglingo expressions and 2) a predic-
tor - generated EP assignments in a database (hypothesis)
from positive utterance samples. A learning model consists
of a parser and a set of templates - Frogling expressions rep-
resenting the core of the learning algorithm. The learning

model uses the parser to parse utterance and references the
templates to generate the predictor. Given any positive sam-
ple utterance, developers can start to write templates against
sample utterance. A predictor can be used anytime as soon
as it is generated. The more sample utterance are provided,
the richer model and predictor will be. When the system is
accumulated with certain amount of templates, additional
templates may no longer needed even more sample utter-
ance is needed to further enrich the learning model and the
predictor. At this point, we would say that the NLP system
“fully understands” a natural language, and that individuals
without a software development experience would be able to
operate in both L and O modes, driving knowledge accumu-
lation and giving instructions in natural language for tasks
that are required to be reliably executed.

In Appendix E, we focus on L mode using 4 sentences,
including the first 3 from the famous folktale “Jack and
Bean Stalk”, to demonstrate how developers (users) inter-
act with the Froglingo-based NLP system using both NL
and Froglingo expressions to construct a database represent-
ing knowledge. The fourth example show how the factorial
function can be described in NL and converted to an EP
expression that is convertible to null in EP but a Turing-
complete expression in Froglingo.

9. Conclusion

Provided that knowledge is isomorphic to a bounded func-
tion, we showed 1) a parser exists to parse utterance as ac-
curate as human being does, and 2) the world knowledge
can be inventoried in an EP database and the relationships
among the objects in knowledge can be calculated. We pro-
vided many examples, observations, and critical strategies
that support the assumption leading to the two conclusions
above. We finally proposed an interface for the Froglingo
NLP that accepts NL beside of system language during the
NL learning process.

Instead of the word “sentence”, we used the word “ut-
terance” in this paper in terms of NLP. We meant the text
that can be processed includes not only grammatically cor-
rect sentences, but also various utterance including gram-
matically incorrect sentences and slangs. EP can model any
language structures without a formal grammar. In addition,
many similarity operations are supported by certain EP op-
erators (Xu, Zhang, and Gao 2010).

Unlike a statistical machine learning approach, the sym-
bolic approach to the bottom-up parsing rules needs man-
ual development, at least supervising if a statistical machine
learning can help automatically collect parsing and mapping
rules.

EP data cannot directly be applied to the modern statis-
tical machine learning technologies, though a mapping be-
tween the two may be developed. The latter uses similarities
on geometric measures such as distance or cosine functions
among objects that are embedded to a Euclidean space to
represent their relationships. The former uses transitive rela-
tions among the symbolic objects to calculate their relation-
ships.

References
Allen, J. 1995. Natural Language Understanding, second
edition. The Benjamin/Cummings Publishing Company,
Inc.
Apidianaki, M. 2022. From word types to tokens and back:
a Survey of approaches to word meaning representation and
interpretation. Computational Linguistics (2023) 49 (2):
465–523.
Barton, G.; Berwick, R.; and Ristad, E. 1987. Computa-
tional Complexity and Natural Language. The MIT Press
Classics.
Berant, J.; Dagan, I.; and Goldberger, J. 2012. Learning
entailment relations by global graph structure optimization.
publisher of Computational Linguistics, 38(1):73-111.
Bordes, A.; Weston, J.; Collobert, R.; and Bengio, Y. 2011.
Learning structured embeddings of knowledge bases. Pro-
ceedings of the Twenty-Fifth AAAI Conference on Artificial
Intelligence.
Brown, T. B.; Mann, B.; Ryder, N.; Subbiah, M.; Kaplan, J.;
Dhariwal, P.; Neelakantan, A.; Shyam, P.; Sastry, G.; Askell,
A.; Agarwal, S.; Herbert-Voss, A.; Krueger, G.; Henighan,
T.; Child, R.; Ramesh, A.; Ziegler, D. M.; Wu, J.; Winter,
C.; Hesse, C.; Chen, M.; Sigler, E.; Litwin, M.; Gray, S.;
Chess, B.; Clark, J.; Berner, C.; McCandlish, S.; Radford,
A.; Sutskever, I.; and Amodei, D. 2020. Language Models
are Few-Shot Learners. NeurIPS 2020.
Cai, H.; Zheng, V.; and Chang, K. 2017. A Comprehensive
Survey of Graph Embedding: Problems, Techniques and Ap-
plications. IEEE Transaction on Knowledge and Data Engi-
neering, Sept. 2017.
Gazdar; Klein; Pullum; and Sag. 1985. Generalized Phrase
Structure Grammar. Harvard University Press, Cambridge.
Gold, E. 1967. Language Identification in the Limit. Infor-
mation and Controls, 10, 447-474 (1967).
Jiang, P.; and Cai, X. 2024. A Survey of Seman-
tic Parsing Techniques. Symmetry 2024, 16, 1201.
https://doi.org/10.3390/sym16091201.
Jiang, X.; Dong, Y.; Wang, L.; Fang, Z.; Shang, Q.; Li, G.;
Jin, Z.; and Jiao, W. 2023. Self-planning Code Genera-
tion with Large Language Models. ACMTrans. Softw. Eng.
Methodol., Vol. 1, No. 1, Article . Publication date: October
2023.
Kearns, M.; and Vazirani, U. 1994. An introduction to com-
putational learning theory. The MIT Press.
Kleinberg, J.; and Mullainathan, S. 2024. Language gener-
ation in the limit. NeurIPS 2024, arXiv:2404.06757.
Li, J.; Raman, V.; and Tewari, A. 2025. Generation through
the lens of learning theory. 38th Annual Conference on
Learning Theory (COLT 2025).
Li, Q. 2025. Position: Transformers Have the Potential to
Achieve AGI.
Littlestone, N. 1987. Learning quickly when irrelevant at-
tributes abound: A new linear-threshold algorithm. Machine
Learning, 2:285–318, 1987.

Merrill, W.; and Sabharwal, A. 2024. The expressive power
of transformers with chain of thought. International Confer-
ence on Learning Representations.
Nickel, M.; Tresp, V.; and Kriegel, H. 2012. Factoriz-
ing YAGO – Scalable Machine Learning for Linked Data.
WWW2012 – Session: Creating and Using Links between
Data Objects. April 2012, Lyon, France.
Poon, H. 2013. Grounded Unsupervised Semantic Parsing.
Proceedings of the 51st Annual Meeting of the Association
for Computational Linguistics, pages 933–943, Sofia, Bul-
garia, August 4-9 2013.
Seshadhri, C.; Sharma, A.; Stolman, A.; and Goel, A.
2020. The impossibility of low rank representation for
triangle-rich complex network. The Proceedings of National
Academy of Sciences, March 2020.
Shieber, S. 1985. Evidence against the context-freeness of
natural langauge. Linguistics and philosophy 8 (1985) 333-
343, Reidel Publishing Company.
Xu, K. 2017. A class of bounded functions, a database lan-
guage and an extended lambda calculus. publisher of The-
oretical Computer Science, Vol. 691, August 2017, Page 81
- 106.
Xu, K. 2024. Outline of a PAC Learnable Class of Bounded
Functions Including Graphs. The 7th International Confer-
ence on Machine Learning and Intelligent Systems (MLIS
2014).
Xu, K. 2025. Classes of bounded functions that are seman-
tically equivallent to Turing machine are PAC learnable. To
present in the 38th Annual Conference on Learning The-
ory (COLT 2025) - Theory of AI for Scientific Computing
Workshop, June 30–July 4, 2025 in Lyon, France. Preprint:
DOI: 10.13140/RG.2.2.28499.49443.
Xu, K.; Zhang, J.; and Gao, S. 2010. Higher-level functions
and their ordering-relations. The Fifth International Con-
ference on Digital Information Management, 2010.

