
Appendices – Supplementary Material
A. Related work

While LLMs have achieved remarkable performance
in NLP that has changed our daily life, the statis-
tical based machine learning approaches have been
continuously adopting various technologies, such as
Transformers’ chain of thought, to increase the ca-
pacity in reasoning and aim to approach human’s in-
telligence, termed as Artificial General Intelligence
(AGI) in literature [Merrill and Sabharwal(2024)].
In parallel, Froglingo is a symbolic and PAC learn-
able approach toward the same direction. Though
not in practice but theoretically, Froglingo has a
clear advantage over LLMs that it has the control-
lable precision toward NLP because it is a symbolic
and PAC learning approach.

Another relevant effort from statistical ma-
chine learning is source code generation using LLM
[Brown et al.(2020), Jiang et al.(2023)]. On the
other hand, Froglingo doesn’t generate program-
ming language code but execute it’s own Turing-
complete expressions (see Sample #30 in Appendix
for an example). When the former is dedicated to
code generation, the latter, as a single system, is
also aimed to generate NL.

The computing power of a PAC learnable in
terms of computability is the primary factor to de-
termine how much a machine can learn toward NLP
while reasoning from non-PAC learnable program-
ming language may help on certain targeted tasks.
We know the class of conjunctions of boolean lit-
erals is PAC learnable [Kearns and Vazirani(1994)]
and a class of bounded functions is PAC learnable
[Xu(2025), Xu(2024)]. The practice of statistical
machine learning like LLMs has demonstrated a
massive portion of the computing power of Turing
machines, as we have observed. But it is still an
open question on how much the computing power
is exactly, especially when the convergence in sta-
tistical approaches is not guaranteed. The bot-
tom line is that a class of partial recursive func-
tions represented by a Turing-complete machine
cannot be effecitively PAC learnable [Gold(1967)].
There are many different notions of learning be-
side the PAC learnability, such as online learn-
ing [Littlestone(1987)] and learning through enu-
merating a sequence of languages in a known

language class [Kleinberg and Mullainathan(2024),
Li et al.(2025)]. We focus on the PAC learnability
because it is the most relevant to NLP.

B - Froglingo language specification

In Section 2, we introduced EP terms, denoted as
the set E:

Definition 1 The set of EP terms E containing
identifiers only are defined as following:

m ∈ F =⇒ m ∈ E

m,n ∈ E =⇒ (m n) ∈ E

where F is a set of identifiers aimed to represent
bounded functions that are definable through an EP
database. (Note there are an arbitrary number of
identifiers and only a finite number of them can ap-
pear in an EP database.) In [Xu(2017)], EP was
also introduced with a set of constants C, aimed
to represent partial recursive functions definable by
the Turing machine including integers and mathe-
matical functions like the multiplication and a fac-
torial function. The terms allowed to be in an EP
database is the set E1:

m ∈ F =⇒ m ∈ E1

m ∈ E1, n ∈ (E1 ∪C) =⇒ (m n) ∈ E1

where the behavior of applying a constant to an-
other term was not considere, i.e., c m for c ∈ C
and m ∈ E1, was not allowed in an EP database.

In this section, we extend EP to Froglingo that
allows constants to be defined with their behav-
iors. The notion of constants in Froglingo is meant
more than ground values like an integer 23 and Tur-
ing complete expressions constructed on the top of
built-in mathematical operations like plus and mul-
tiplication. We use C1 to denote the constants
based on built-in mathematical operations. It is also
meant Froglingo expressions constructed on the top
of variables that demonstrate the computation be-
haviors of the Froglingo reductions. We use C2 to
denote this set of constants. We will note later that
C2 has nothing more than bounded functions.

1

To support constants, we need to introduce vari-
ables, placeholders for values constants can be ap-
plied to. There are two kinds of variables: one is
local variable such as $x for fac $x and the other is
global variables, also serving as types, such as the
built-in integer type for the entire integers and a
user defined person type.

Because identifiers, types, and constants share
a single set of tokens when they are named in a
Froglingo database, we rename the symbol F in Sec-
tion 2 to be G, abbreviating the phrase “ground to-
kens”, and keep the symbol F for its members, again
called identifiers, to represent bounded functions de-
finable in an EP database. An EP database is now
called a Froglingo database that is extended with
Turing-complete expressions (C1) and Froglingo ex-
pressions representing bounded functions (C2).

When a ground token is defined into a
database by the built-in operator schema, e.g.,
schema person;, the token becomes a type. We
use T to denote all such types, e.g., person ∈ T.
Given a type, we can further define a subtype using
schema, e.g., boy isA person.

A type’s instance is introduced to database by
the built-in command create and the built-in oper-
ator isA, e.g., create Jacob isA boy to create Jacob
tagged with the type boy. When an instance is cre-
ated into database, it becomes an identifier, a mem-
ber of the set F, e.g., Jacob ∈ F.

When a token is to be admitted to database
at the first time and it is not intended to be de-
clared as a constant, a type, or an instance, e.g.,
create PNC account where PNC has already been
admitted to database as an instance of type bank
and account has not been in database yet, it is au-
tomatically categorized as an identifier.

We further use V to denote a set of variables.
We useC to denote the union of the 2 classes of con-
stants we discuss earlier, i.e., C = C1∪C2. Now, we
are ready to define Froglingo by starting from the
most general form: a set E2, to serve as potential
Froglingo assignees in a database:

Definition 2 The Froglingo terms E2 to be as-
signees in a database:

m ∈ F ∪T ∪C =⇒ m ∈ E2

m ∈ E2, n ∈ (E2 ∪V) =⇒ (m n) ∈ E2

where each variable is a ground token preceded with
$ and the ground token can be repeatedly used

across a database because a variable is local to a
preceding term, i.e., when m n ∈ E2, m cannot
be a variable but n can be. When an application
m n ∈ E2, so are its sub terms m and n. We also
call m a left most sub term.

When a variable $x appears in a term m ∈ E2,
it can optionally restricted by a boolean expression
in the form of

$x : [bool-expression]

where bool-expression is a sequence of binary ex-
pressions connected by the boolean operator and
or or, and each binary expression has mathemati-
cal binary operators like ’+’ as well as EP’s tran-
sitive relational operators like {=+ and operands
from E3 to be defined next. For example, we
may define tax $x : [$x ≤ 200000] := (0.3 ∗ $x);
tax $y : [$y > 200000] := (0.4 ∗ $x);

When we allow types to be in E2, it is not only
to constrain variables with the types, but more to
allow the types to reference entities, such as “this
boy” is actually reference a specific instance of the
boy type. The set C2 is empty when a database
is initiated but it keeps growing when the database
grows (see the database definition later in detail).
The set C1 is a fixed set of objects, e.g., integer
and one of its members 23, no matter they are in a
database or not.

Only a term m ∈ E2 can appear in a Froglingo
database as an assignee. When a term m ∈ E2 and
later m ∈ D, a subterm n ∈ m is also said in m and
D, i.e., n ∈ m and n ∈ D respectively.

To introduce a Fraglingo assignment, we need to
define another set E3 to serve as assigners:

Definition 3 The Froglingo terms E3 to be assign-
ers in a database:

m ∈ F ∪T ∪C ∪V =⇒ m ∈ E3

m,n ∈ E3 =⇒ (m n) ∈ E3

where a variable can be a leftmost subterm of a E3

term, which is not allowed in E2.
E3 includes all possible terms in Froglingo and

are potential assigners in a Froglingo database. To
simplify the discussion, an assigner with a sequence
of expressions (as an example was given in Section
3) is not considered in this paper.

Given a termm ∈ E2 orm ∈ E3, we use FV (m),
where FV abbreviates “Free variables”, to denote

2

all types and variables in m, i.e., FV (m) = {v : v ∈
m or v ∈ T ∪V}, where v ∈ m denotes that v is a
subterm in m.

Definition 4 A Froglingo assignment is in the
form of m := n, where m ∈ E2, n ∈ E3, FV (n) ⊆
FV (m). We denote all such assignments as A, i.e.,
m := n ∈ A.

Definition 5 Froglingo database: A database, de-
noted as D, consists of a finite set of terms m ∈ E2

and a finite set of Froglingo assignments m := n ∈
A, such that each element is entered in the following
methods:

1. given m ∈ G and the command:

(a) schema m; or

(b) schema m isA n; where n ∈ T,

then m ∈ D and m ∈ T.

2. given m ∈ E2 and the command:

(a) create m;, then m ∈ D

(b) create m isA n; where n ∈ T, then
m ∈ D and m has the type n.

Further,

(a) if c v ∈ m (c v is a subterm of m), where
v ∈ V, then we categorize c ∈ C if c
was not in D before, or we recategorize
c ∈ C when it had been categorized as an
identifier before.

(b) if n ∈ m and n ∈ T, then n remains to
have its own type.

(c) otherwise, for all rest n ∈ m and n ∈ G,
we categorize n to be an identifier, i.e.,
n ∈ m and n ∈ F

3. given an assignment m := n ∈ A:

(a) inventory m according the steps 1 and 2
above.

(b) simply inventory each subterm e sequen-
tially in the order it appears in n and
keep all necessary parentheses (and) as
they are.

(c) ensure FV (n) ⊆ FV (m). Otherwise,
abort the data entering process.

(d) for any sub term q ∈ n and q ∈ G, en-
sure q has already been in D, i.e., q ∈ D,
by the time q is to be inventoried as part
of the assigner in D. Otherwise, abort
the data entering process.

(e) finally, committee the request to have
m := n ∈ D.

In Definition 5.2.(a), we introduced user de-
fined constants. A ground token can be turned to
be a constant such as fac and tax that we dis-
cussed earlier. An application also can be a con-
stant, such as bank account is a constant when
we have bank account $x : [$x isA person]. We
allow a constant to have two variables such as
multi has two variables when multi integer $y :
[$y isA integer] := (integer ∗ $y), which is equiv-
alent to multi $x $y := ($x ∗ $y). We also al-
low a non-variable term to follow a constant, e.g.,
person (bE is) $p : [$p isA person] S mother :=
person (verB mother) $p, where S is a non-variable
identifier following a variable. (mother in the as-
signee is not a variable thought it is a type. In this
context, mother is just a token and doesn’t play any
role in the meaning of the sentence because the as-
signer doesn’t reference the mother in the assignee
while it has verB mother which is meant differ-
ently.)

To simply our discussion, we assume that the
NLP system to be built only receives queries about
entity instances after completing the learning pe-
riod, where NL querying utterance often use types
referencing instances such as “the man” in addition
to “John”. Now, we need to define a set of terms al-
lowed to be inputs in corresponding to NL querying
utterance:

Definition 6 Terms in a correspondence to NL
querying utterance, E4:

m ∈ F ∪T ∪C =⇒ m ∈ E4

m,n ∈ E4 =⇒ (m n) ∈ E4

Definition 7 Terms without types, E5:

m ∈ F ∪C =⇒ m ∈ E5

m,n ∈ E5 =⇒ (m n) ∈ E5

Definition 8 Froglingo Normal Form - terms
NF (D) to be reduced to: A term n is an normal
form if and only if

3

1. n is null, i.e, n ≡ null, where null is a special
identifier in F, or

2. n ∈ E5, n ∈ E2, n ∈ D, and for any q such
that n := q ̸∈ D.

It’s clear that the set NF (D) is finite provided
D consists of a finite number of terms in E2 and a
finite number of assignments.

Given any term m ∈ E4 under a database D,
we are now going to reduce it to a normal form in
NF (D). Before we define Froglingo reduction rules,
we need to introduce another notation ENV, abbre-
viating “environment” that is commonly needed in
programming language, which is originally initiated
as null, i.e., ENV = null, to memorize intermediate
computing results. Given a term c v ∈ E2 where c
is either a ground token or an application without
a variable in it and v is a variable, we say a term
c a ∈ E4 matches c v if a meets v’s constraint when
v is defined with a boolean expression as the con-
straint. A term c a ∈ E4 always matches c v if v
is type free, i.e., not defined with any constraint.
When c a matches c v, we use (c v) {a/v} to denote
the state of the match and the new term having
the instances of the variable v substituted with the
value a. We remember this state by assigning it to
an intermediate value ENV, i.e., ENV = (c v) {a/v}.
When we continue to process c a b ∈ E4 to match
c v u where u ∈ V and c v u ∈ D, we will assign a
new state to ENV, i.e., ENV = (c v u) {a/v, b/u},
when b meets u’s constraint. We use ENV.term
refering to the matched term and ENV.subs refer-
ring the sequence of variable and value pairs, e.g.,
given ENV = (c v u) {a/v, b/u}, we have ENV.term
= (c v u) and ENV.subs = {a/v, b/u}.

Even when we have found that a leftmost sub-
term n of a given m ∈ E4 is identical to a term
q ∈ D and q ∈ E2, i.e., n ≡ q and there are no vari-
ables in n, we still need ENV to memorize q about
where the reduction process has gone so far, i.e.,
ENV = q{}.

Definition 9 (Froglingo reduction) Given a
database D and a term m ∈ E4 with a context
(discourse) where coreference information such as
an entity vs. its type (and its type’s ancestors) is
available, we have the following Froglingo reduction
rules:

1. m ∈ C =⇒ m ⇒ m.

2. m ∈ D,m ∈ F =⇒ m ⇒ m.

3. m ̸∈ D,m ∈ F =⇒ m ⇒ null.

4. when m ∈ T, search the context to find an
entity e that has m as its immediate type or
an ancestor type. If there is not such entity
identified, concludes the given m query is dis-
connected from the existing context and return
m ⇒ null. Otherwise, m ⇒ e.

5. In the case of m ≡ a b. By induction, we as-
sume a has been matched to a term a′ ∈ D and
a′ ∈ E2, where a′ is memorized in an environ-
ment ENV 1, i.e., ENV 1.term ≡ a′. Further
by induction, we assume b has been matched to
a term b′ ∈ D and b′ ∈ E2, where b′ is memo-
rized in another environment ENV2. If ENV2
̸∈ NF (D), we conclude m ⇒ null. Otherwise,

(a) ∃ p ∈ NF (D) such that p ≡ ENV 2.term
and a′ p ∈ D and a′ p ∈ E2, then we
successfully found a match and memorize
ENV3 = (a′ p) {ENV 1.subs}, and re-
turn m ⇒ ENV 3.

(b) if there is a variable v such that a′ v ∈
D and a′ v ∈ E2, and further ENV2
meets v’s constraint, then we successfully
found a match and memorize ENV3 =
(a′ v) {ENV 1.subs ∪ ENV 2.subs}. Re-
turn m ⇒ ENV 3.

(c) if there is no variable v such that ENV2
meets v’s constraint, then we assign
ENV3 = null and return m ⇒ null.

6. When m := n ∈ D, we evaluate m by follow-
ing steps above and obtain a return environ-
ment ENV. Then we substitute the local vari-
ables and the global types appearing in n with
the values memorized in ENV, i.e., we obtain
n{ENV.subs}. Then we initiate ENV = null
for n{ENV.subs}, evaluate it by following the
steps 1 to 5 above and obtain another envi-
ronment ENV2. If ENV 2.term ∈ NF (D)
(then ENV 2.subs should be null), then return
m ⇒ ENV 2.term. Otherwise, m ⇒ null.

We use the symbol →F to denote a multi-step
reduction based on ⇒, e.g.,m →F mn when we have
m ⇒ m0, m0 ⇒ m1, ..., and mn−1 ⇒ mn.

4

The reduction defined above forces a term m ∈
E4 under a database D to be mapped to a nor-
mal form in NF(D). Therefore a database represent
a (partial) bounded function though not all terms
m ∈ E4 are guaranteed to have a normal form.

Lemma 1 A database D in Froglingo, when the
built-in constants C1 are not considered, represents
bounded functions (while not all terms in E4 are
guaranteed to have a terminated reduction for a nor-
mal form).

Proof Definition 9 defines a reduction process that
reduces a term in E4 to a normal form in NF (D)
for a given database D, where the size of NF (D) is
finite. □

B.1 Type-free Froglingo

When all the variables v ∈ D are not constrained
by a boolean conditional expression, which are also
meant the elements in C1 are type free, we call such
a Froglingo system defined earlier is type free, de-
noted as F0.

F0 can fully express the closed lambda terms
Λ0 [Barendregt(1984)] syntactically. For each closed
lambda terms M ∈ Λ0 in the form of λ x.N , there
is a mapping function g such that

g(λ x1.M) = m1, where m1 $x1 := g(N{$x1/x1}) ∈ A

g($x) = $x

g(M N) = g(M) g(M)

During the conversion, each λ is replaced with a
unique identifier in a correspondence to the variable
that is converted to a unique variable in Frogling
with a $ preceded. For example the lambda term
λ x.(x x) is converted to the Froglingo expression:
m $x := $x $x. The β-reduction in the lambda cal-
culus is equivalent to the assignment := and a re-
duction step that is only in a correspondence to :=
in Definition 9 in Froglingo. For example when Ω ≡
(λ x.(x x)) (λ x.(x x)) →β (λ x.(x x)) (λ x.(x x)),
m m ⇒ m m.

Therefore, Froglingo F0 (excluding EP) and the
lambda calculus would be isomorphic if Froglingo
didn’t take the normal form definition in Definition
8 and the reduction strategy in Definition 9, but
took the lambda calculus normal form, head nor-
mal form, and weak head normal form definitions.

Nevertheless, not all terms in E4 can be effec-
tively reduced to a normal form in NF(D):

Lemma 2 The reduction strategy of F0, as de-
fined in Definition 9, is not strongly normalizing,
i.e., there is some m ∈ E4 such that m cannot be
F − reduced to a normal form n ∈ NF (D).

Proof The reduction on m m doesn’t terminate,
where m $x := $x $x. □

The syntactical form E2 of F0 is not fully in the
form of EP terms E (the one given in Section 2,
and alternatively given in Definition 1) of EP. To
declare that EP can carry the syntactical form of
Turing-complete expressions, we simply introduce
the additional symbols from constants C1, types T,
and variables V to EP such that EP has the syn-
tactical forms of E2 and E3. At the same time, EP
is added with additional reduction rules:

Definition 10 Additional reduction rules for EP
when we say EP carries Turing complete expres-
sions:

∀m ∈ C ∪V ∪T, ∀n ∈ E2 =⇒ m n ⇒ null

The additional reduction rules in conjuction
with the F − reduction in Definition 9 is applica-
ble and equivalent to EP’s D−reduction given in
Section 2 (and also given in [Xu(2017)]). Then we
say:

Proposition 1 Froglingo expressions are in the
form of EP expressions.

Proof Taking the database definition (Definition
5), the normal form definition (Definition 8 which is
exactly the same normal form definition for EP) of
Froglingo, and taking an EP expressions (E4 with-
out types), the reduction rules (Definition 9) for
Froglingo and the further reduction rules (Definition
10) are equivalent to EP’sD−reduction rules (given
in Section 2 and formally in [Xu(2017)]). Note that
the Froglingo assigner definition E3 allows more ex-
pressions than the assigner definition for EP does.
However, the reduction results from the two assigner
definitions are the same. □

No matter what constraints are applied to vari-
ables, the Froglingo database definition (Definition
5) contains the definition for EP (as given in Section
2, and formally in [Xu(2017)]):

Proposition 2 EP is included within Froglingo re-
gardless Frogling is typed or type-free.

Proof It is clear from Definition 2 to 9 as E1 is
contained in E2. □

5

B.2 Typed Froglingo

When all or some variables defined in E2 are as-
signed with boolean conditional expressions as con-
straints, we call Froglingo typed, denoted as F1

(note we can say: F1 − EP − C1 = C2, where
F0 can be in the place of F1 as well). The typed
Froglingo may not have to guarantee every term in
E4 to be effectively reduced to a normal form, but
it provides a tool to facilitate the development of
Froglingo expressions that will always halt in exe-
cution. In this sense, Froglingo is a programming
language with a type system. Note that when we
call F1 typed, it should be different from the typed
lambda calculus [Barendregt(1984)] that guarantees
a lambda expression in the typed lambda calculus
to be effectively reduced to a normal form.

In Lemma 1, we said that Froglingo F1 without
C1 represents bounded functions. It doesn’t meant
we have a learning algorithm to construct Froglingo
expressions. Instead, we say that Froglingo expres-
sions are target concepts for a learning algorithm
to approximate and converge to and what the al-
gorithm constructs are EP expressions in an EP
database.

Theorem 1 A Froglingo database is PAC learn-
able provided it doesn’t including constants that take
built-in types as variables that have infinite domain,
i.e., F1 −C1 is PAC learnable.

Proof Without the constants C1, F1 only produces
bounded functions according to Lemma 1. A class of
bounded functions is PAC learnable according to the
result from [Xu(2025)]. Therefore, we say a class of
Frogingo databases, or informally saying a Froglingo
database, without C1 is PAC learnable. □

Appendix C - Parsing and Mapping tem-
plates

When we says a Froglingo database without C1 is
learnable in Theorem 1, we implies that it may not
be efficiently PAC learnable. This is because the
size of a Froglingo expression can be as long as a
user like to. For examle, we may have an expres-
sion like f $x1 : [...] $x2 : [...] ... $xk : [...], where
k ≥ 1. Even we have a finite number of entities in a
database, say n entities, the constant f would have
a instance space of nk, which grows exponentially
in the size of the expression (translated to an expo-
nential logarithm of the cardinality of the class of

such Froglingo expressions), causing a database not
efficiently PAC learnable [Xu(2025)]. An analogy
would be a vector of words in statistical machine
learning, where each element of the vector can be a
word selected from a vocabulary.

In Froglingo, we break down utterance into
smaller pieces: a complex sentence is broken
down to individual simple sentences. A mod-
ifier such as adjective, adverb, and preposi-
tion phrase is converted to a simple sentence
that is related to an object that is modi-
fied. For example, “John helped a old man
who was sick” would be parsed to a structure:
John (verB helped) (((articlE a) (adJ old) man)
(whO who (bE was) (adJ sick))). It would
be initially saved in database but eventually
broken down with John (verB helped) p0010,
p0010 (bE was) old, p0010 (bE was) sick, where
p0010 is an identifier for the man who was sick. Al-
though a longer structure than the standard simple
sentence of the “subject-verb-object” structure may
be necessary sometimes, the majority of knowledge
stored in database are stored in the standard sim-
ple sentence structure form. The shortened sentence
structure form is applied to parsing templates too.

Instances of parsed sentences and parsing tem-
plates with the shortened sentence structure take
less database space for the purpose of NLP. In terms
of the PAC learning theory, the learned EP database
and the parsing templates that are inventoried with
less memory demonstrate more powerful learnabil-
ity. An analogy is that an application embedded
into an Euclidean space with a less dimensionality
is easier to learn than an application that needs
more dimensionality when being embedded to an
Euclidean space.

Formally, we assume a parsing template has a
fixed size in average, e.g., two: one for subject and
the other for object while verb is always filled with
a verb instance. In other words, a parsing template
has a typical structure like person (verB help) $x2 :
[...], and the instance space of a template is n2.

Lemma 3 Parsing templates (and the correspond-
ing mapping teampltes, i.e., parsing templates are
assignees and mapping templates are assigners) are
efficiently PAC learnable.

Proof Parsing and mapping templages are
Froglingo assignments which are PAC learnable ac-
cording to Theorem 1. Because the term size of

6

a parsing template is constant, the size of its in-
stance space, translated to the logarithm of the
cardinality of the class of such parsing templates,
is in polynomial. This determines that parsing
and mapping templates are efficiently PAC learn-
able [Natarajan(1989), Kearns and Vazirani(1994),
Xu(2025)] □

Theorem 2 Provided the assumption that knowl-
edge is isomorphic to a bounded function, NL utter-
ance are efficiently PAC learnable.

Proof EP databases are PAC learnable and
some EP database are efficiently PAC learnable
[Xu(2025)]. Lemma 3 says parsing templates are ef-
ficient PAC learnable, therefore, the EP expressions
in an EP databases, or simply say EP databases,
that are guided by and converging to the parsing
templates must be efficient PAC learnable. Because
of the assumption that knowledge is isomorphic to a
bounded function, we conclude that knowledge (or
equivalently NL utterance) is efficiently PAC learn-
able. □

Appendix D - Organizing knowledge into
the space of a bounded function

Theoretically, we have the following conclusion im-
mediately:

Theorem 3 Provided that knowledge is isomorphic
to a bounded function, all the objects in knowledge
can be inventoried in an EP database and the rela-
tionships among the objects can be calculated.

Proof Because of the assumption that knowledge
is isomorphic to a bounded function and because
an EP database represents a bounded function, we
immediately have: knowledge can be organized into
the space of a bounded function, i.e., the objects
in knowledge can be inventoried in an EP database
and the relationships among the objects can be cal-
culated by the EP reduction rules. □

This theorem says that there is a mapping from
NL utterance to an EP database. In the reality,
however, this mapping process will be tedious be-
cause each word, particularly those frequently used

words, behaves differently and needs to be modeled
differently. In Section 7, we discussed, as an exam-
ple, how the word “sport”, defined as a type sport,
penetrates into relevant utterance while it means
a significant portion of our daily life but its coun-
terpart in Froglingo has to play a “low profile” role.
When we say “sport” plays a “low profile” role in the
machine readable form of Froglingo, we meant that
it appears to have very few sub types and almost “no
instances”, which is contrasting to the type person
that is rich in the numbers of its sub types and in-
stances. When the type person is defined, it also
has a lot of pre-existing information such as a person
can talk, has a body, and etc.. When the type sport
is defined, can we think of any pre-existing infor-
mation we can attach to it in Froglingo (but not in
NL) and is there any instances of sport? The answer
appears to be no. Thinking of it from a different
angle, however, it really doesn’t matter because one
can learn the meaning of “sport”, though itself not
being defined with any information, through soccer
that is defined as a subtype of sport, through “John
played soccer yesterday”, “Jenny run in a New York
Marathon”, and etc.. As a matter of fact, sport is
rich too, though itself not being defined with any
information, because soccer is its sub type, John
and Jen’s actions are its instances, and etc.. We
perceive sport differently from person most likely
because we take the world entities as the informa-
tion ground and abstract words like “sport” are the
information not on the ground.

Appendix E - A user interface support-
ing both Froglingo expressions and natu-
ral language

This supplementary material serves as a demonstra-
tion only, which may contain inaccurate informa-
tion. But through this section, readers may have a
brief understanding on how a symbolic NLP process
works and what are the concerns needed in tackling
NLP challenges with such a symbolic approach.

In the discussion below, the operator isA is used
indiscriminately between a type (created by schema
and an instance (created by create), but the differ-
ences are implied by English words, such as car (a
type) vs. Joe (an instance).

ID Templates, part of Learning

Algorithm

Predictors, automati-

cally generated

Effect Description

7

Once up on a time there lived a poor widow and her son Jack.

1 person isA thing;

wife isA person;

widow isA wife;

None No immediate impact

yet, but any instances

including p0001 in Row

#3 with the type widow

can be predicted as a

wife, person, and thing

through the lifecycle of

the NLP process.

Before the three templates en-

tered, the database was empty

except for thing the only user de-

fined data representing the sole

root type.

2 adverB (once up on a time) :=

there is $t: [$t isA time] where

$t start < $t end and $t end <

’1/1/1000’;

t0001 isA time;

(where an internal

structure is created for:

tp0001 start <

tp0001 end <

’1/1/1000’).

The L mode process ac-

tually started an inquiry

first by executing the ex-

pression there is It

created the data because

it didn’t find any rel-

evant data in the new

context that was estab-

lished for the Jack and

Bean Stalk forktale.

The node t0001 contains par-

tial information because its start

and end are not assigned with an

exact date. A time always has a

start time and an end time for a

period. When the start and end

times are the same, a time be-

comes a point of time. The value

’1/1/1000’ is randomly chosen

for a demonstration purpose to

reference a time in the past.

3 family isA thing;

a widow := there is $f: [$f isA

family], $p: [$p isA person]

where $f $p isA widow;

p0001 isA person; f0001

isA family; f0001 p0001

isA widow;

p0001, f0001, and f0001

p0001 reflect the ba-

sic information from the

sample text, an interpre-

tation from human expe-

rience.

The word widow must be involved

with a group of people, family.

The f0001 family is created to

have p0001 and later jack and

c0001(a cow) as members.

4 adJ poor $p: [$p isA person] :=

there is $f:[$f isA family] where

($f $p != null and $f (bE be)

(ajD poor));

f0001 (bE be) (adJ

poor);

The inquiry who is

poor? would have an

answer by matching

expressions like f0001

(bE be) (adJ poor).

Adjectives like poor is seman-

tically more complex, involving

statistics. No additional adjec-

tives are discussed in this table.

Additionally, we manage to say

Jack’s family is poor, instead of

saying Jack’s mom is poor.

5 her son := (coreF her) S son; No data is created, but a

interim syntax transfor-

mation from her son to

p0001 S son.

No effect, only a syntax

transformation

coreF abbreviates coreference.

coreF her retrieves the widow in

the story. S abbreviates the ’s

symbol after a person’s name.

Therefore her son is transformed

as the widow’s son

6 son isA person;

mother isA person;

person S son : = there is $f: [$f

isA family], $s: [$s isA person]

where $f person isA mother and

$f $s isA son;

p0002 isA person;

f0001 p0002 isA son;

f0001 p0001 isA

mother;

p0002 is the new data

added in database, refer-

ring to Jack. Also spec-

ify that the widow is a

mother.

The phrases like her son have

a fixed syntactical form. They

are defined once and reused for

later to parse other text. In

the 3rd assignment of the “Tem-

plate” column, person and son

are global types and acting as

variables.

7 name isA thing;

person name : = (person namE

== name);

p0002 namE := jack; jack from now on is a

coreference to p0002,

i.e., coreF jack :=

p0002.

The text son Jack matches the

2nd template. Jack is catego-

rized as a name while others are

possible, e.g., a machine. All

text from users are converted to

small cases while capital cases

are memorized separately.

8 there (verB live) person :=

person (verB live);

p0001 (verB live) (preP

in) t0001;

p0002 (verB live) (preP

in) t0001;

The entire English sen-

tence is now not mapped

to two EP terms, each

represents the state of

being living without de-

tailed semantics for now

The parser splits the text into

two sentences because of the con-

junction word and. Therefore,

there are two corresponding EP

terms.

8

9 husband isA person;

widow (dO do) (noT not) (verB

live) (preP with) husband :=

there is $f: [$f isA family]

where widow {+ $f and !

(there is $h : [$h isA husband]

where $h {+ $f);

no new data is cre-

ated because there is

no text in corresponding

this template. This tem-

plate is optional to give a

constraint that a widow

doesn’t not have or live

with a husband.

This constraint may not

necessarily be enforced.

But It can be invoked for

validation in an I mode.

We could add more semantics by

adding more templates like this

one to enrich the understanding

of this sentence.

One day, Jack’s mother told him to sell their only cow.

10 adverB (one day) := there is

$t: [$t isA day] where (coreF

(one day)) start < $t and $t <

(coreF (one day)) end;

t0002 (where an internal

structure is created for

t0001 end ≤ t0002 start

≤ t0001 end, and t0002

end - t0002 start = 24

hours)

coreF (one day) is

mapped to be “Once

upon a time” that was

recorded earlier. t0002

is created for a period of

time within once upon a

time.

The phrase One day can be a fu-

ture day or a past day but unsure

exactly which day it would be

when it serves as an adverb in a

sentence. In the given sentence,

it is a past tense and within the

time period t0001 set by Once

up on a time. coreF (one day)

finds out the tense of the sen-

tence first, e.g., the past tense

in this case, and then searches

a previously defined time period

constraining one day.

11 coreF name := there is $p: [$p

isA person] where $p namE ==

name;

No data is created coreF jack returns

p0002.

Jack may not only refers to a

person but also others such as a

tool to lift a car. Therefore Jack

was tried to be parsed in differ-

ent categories before confirming

it is the name for p0002.

12 person S mother : = there is $f:

[$f isA family], $p: [$p isA per-

son] where ($f person isA son

or $f person isA daughter) and

$f $p isA mother;

No data is created f0001 p0001 is returned

as Jack’s mother, where

Jack is an instance of

person.

Since the L mode process found

the instance f0001 p0001, it

doesn’t create a new one but re-

trieve the existing one.

13 animal isA thing;

livestock isA animal;

cow isA livestock;

No data is created. No immediate impact

yet

However, any instances includ-

ing c0001 in Row #15 with the

type cow can be predicted as

a livestock, animal, and thing

through the lifecycle of the NLP

process.

14 coreF their; No data is created f0001 is returned.

Like other coreferences,

coreF their is deter-

mined by a built-in pro-

cess

coreF they returns Jack and his

mother, but coreF their returns

f0001, something shared by both

Jack and his mother.

15 family S cow := family cow isA

livestock;

c0001 isA cow

f0001 c0001 isA live-

stock

c0001, f0001 c0001 re-

flect the basic informa-

tion from the original

text their cow

In the L mode, the process tried

to find a cow instance in f0001

and created c0001 because no

one was found.

16 person (verB tell) $p: [$p isA

person] Infinitive;

person (verB sell) $t : [$t isA

thing];

p0001 tell jack (jack sell

c0001 ((PreP at) No-

time)); Note the action

represented by tell is im-

plicitly modified by a

time within the given

One day. Therefore the

sentence is actually in

past tense because the

system can tell.

The constructed data

is a predictor, which

represents an action

taken by Jack’s mother.

Subsequent queries can

be answered such as what

did Jack’s mother tell

Jack?, Who told Jack to

sell their cow?, etc..

Infinitive is a built-in operator

indicating the following text is

an infinitive phrase, i.e., to do

.... The built-in node Notime

indicates that jack sell c1000 is

not a fact yet as it may or may

not happen. This sentence with

the verb sell, converted from the

infinitive clause, will be further

updated to make the sell a fact

in Row #28.

9

17 desirE 1 := desire; desirE 2 :=

like; desirE 2.5 := want, desirE

3 := hint; desirE 4 := encour-

age; desirE 5 := tell; desirE 6:

= ask; desirE 7 := command;

desirE 8 := enforce};

No data was generated Facing the phrase “Jack’s mother

told him to ...”, we optionally

construct a template desirE that

places all verbs related to “de-

sire” in a sequence to reflect the

degree of desires. This tem-

plate helps to correlate similar

sentences together to find para-

phrase sentences.

Jack went to the market and on the way he met a man who wanted to buy his cow.

18 coreF name := there is $p: [$p

isA person] where $p namE ==

name;

No data is created coreF jack returns

p0002.

The same process as discussed in

#11.

19 location isA thing;

market isA location

No data was created No immediate impact

yet

However any instances including

m0001 in Row # 20 with the

type market can be predicted as

a market, location, and thing

through the lifecycle of the NLP

process.

20 the market := there is $m: [$m

isA market];

Note a market would be given the

same definition as our process

doesn’t rely on a or the vigor-

ously

m0001 isA market m0001 reflects the basic

information of the orig-

inal text the market, an

interpretation from hu-

man experience.

While this template is defined

based on human experience, it

can also be derived by the sen-

tence Jack went to the market,

where the market can be rea-

soned as a location, where there

is a template like the one in #21.

21 person (verB go) (preP from)

$l1: [$l1 isA location] (preP to)

$l2: [l2 isA location] := (update

person geoLoc := $l2 geoLoc);

l0002 isA location;

f0001 geoLoc := l0002 ;

p0002 geoLoc :=

m0001;

l0002 refers to Jack’s

home location, a dump

node without informa-

tion

There should be a standard geo-

graphical (and time) data calcu-

lation to construct the first and

second assignments on the Pre-

dictor column. The update com-

mand in the template enforces an

update for both L and O modes

22 adverB (on the way (preP from)

$l1: [$l1 isA location] (preP

to) $l2: [$l2 isA location]) :=

there is $l: [$l isA location]

where $l is between $l1 and

$l2;

l0003 isA location;

where l0003 is between

l0002 and m0001 ;

the geographical dis-

tance should be imple-

mented in a standard

geographical calculation

package

23 articlE a man = there is $p: [$p

isA person]; Note a man can be

defined with more attributes but

we simply define it as a person

just for demonstration purpose.

p0003 isA person; A template for “the

man” would be the same

one for “a man”, as our

process doesn’t differen-

tiate “a” from “the” to

tolerate human errors.

However, the parser would pre-

fer to create a new person be-

cause of “a man” is given. Other-

wise, considering “the man” be-

ing Jack himself would make the

sentence “Jack met the man”,

where “the man” is Jack, not

meaningful.

24 person (verB meet) $p: [$p isA

person] (preP at) location :=

((person geoLoc == location)

and ($p geoLoc == location));

p0002 geoLoc := l0003;

p0003 geoLoc := l0003;

The template enforces

the geoLoc of the two

persons to be changed

The template can be enriched

with more attributes, but the

same location the two persons

met is the highlight of this tem-

plate.

25 person (verB want) infinitive;

person (verB buy) $t: [$t isA

thing];

p0003 (verB want)

(p0003 (verB buy)

c0001 ((preP at) No-

time));

his cow is mapped to

c0001 based on the sim-

ilar process we discussed

earlier

person (verB want) infinitive

is very similar to person (verB

tell) $p: [$p isA person] in-

finitive and they can be corre-

lated using the desirE template

in #17.

10

Jack took the magic beans and gave the man the cow. Note: in our discussion, we skipped the conversations between Jack and the

man, where the man’s 5 magic beans would be traded to Jack for Jack’s cow. To simplify our discussion, we assume only one bean

and the following data have been generated: f0002 isA family; f0002 p0003; bean isA thing; b0001 isA bean; b0001 (bE be) (adJ

magic); f0002 bean; where we consistently set up an organization, such as a family, a person belongs to.

26 person (verB take) thing from

$p: [$p isA person] := Botran

($p (verB give) person thing);

No data is generated. The text Jack took the

magic beans is to be con-

verted to p0003 (verB

give) p0002 b0001 in

#27.

It defines that a person takes

a thing from another is equiva-

lent to that the second person

gives the first person the thing.

The original text doesn’t have

the phrase from the man but the

template gives the parser a hind

to find it.

27 person (verB give) $p1 : [$p1

isA person] $t: [�isA thing]

:= (person geoLoc == $p1

geoLoc),

delete coreF (family person) $t,

create coreF (family $p1) $t;

coreF (family person) :=

select $f: [$f isA family] where

$f person != null;

f0001 b0001 and

f0002 c0001 were

added into database,

and f0002 b0001 and

f0001 c0001 are re-

moved from database.

The results come from

the intermediate ex-

pressions: p0003 (verB

give) p0002 b0001;

p0002 (verB give)

p0003 c0001;

The template is aimed

to first validate that the

persons and the good to

be exchanged are next

to each other, e.g., the

geographical coordinates

are the same. Then it

update the belongings of

both Jack and the man

in their family accounts.

When a sentence implies actions

like “give”, we use the Froglingo

update commands in template

explicitly to enforce the action

for both L and O modes. Also

the built-in term coreF can be

user-defined this time.

28 person (verB sell) $g: [$g

isA thing] := there is $buyer:

[$buyer isA person] where per-

son (verB give) $buyer $g;

No data was generated

as there is no text to

trigger an execution on

it

This template would

help to validate Did Jack

sell his cow?, which

is related to the word

“sell” in the sentence

“Jack’s mother told him

to sell their only cow”

at an I mode

An extra step to demonstrate

that new information can be de-

rived from the sample text by us-

ing the template.

29 person (verB buy) $g: [$g

isA thing] := there is $seller:

[$seller isA person] where

$seller (verB give) person $g;

No data was generated Not used in this demon-

stration. This template

would help to answer

the question: Did the

man buy his cow?

An extra step to demonstrate

that new information can be de-

rived from the sample text by us-

ing the template.

What does the function fac take 5 to produce? Note: though natural language itself is ambiguous, there are some text that can

precisely express vigorous mathematical expressions.

30 multiplication $n1: [$n1 isa

number] $n2: [$n2 isa number]

= ($n1 multi $n2);

fac (verB take) $n:[$n isA

number] (preP to) (verB

produce) $m:[$m isA num-

ber] = Botran (”if” $n

”is 0, ” $m ”is 1 or” $m”

is the multiplication of” $n

”with what fac takes”

($n − 1) ”to produce; ”);

No data is generated in

database, but respond

with an answer of 120.

The answer to the given

text is 120. The tem-

plate acts precisely as a

factorial function

References

[Barendregt(1984)] H. P. Barendregt. 1984. The
Lambda Calculus - its Syntax and Semantics.
North-Holland.

[Brown et al.(2020)] Tom B. Brown, Benjamin
Mann, Nick Ryder, Melanie Subbiah, Jared
Kaplan, Prafulla Dhariwal, Arvind Neelakan-
tan, Pranav Shyam, Girish Sastry, Amanda

Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon
Child, Aditya Ramesh, Daniel M. Ziegler, Jef-
frey Wu, Clemens Winter, Christopher Hesse,
Mark Chen, Eric Sigler, Mateusz Litwin, Scott
Gray, Benjamin Chess, Jack Clark, Christo-
pher Berner, Sam McCandlish, Alec Radford,
Ilya Sutskever, and Dario Amodei. 2020. Lan-
guage Models are Few-Shot Learners. NeurIPS

11

2020.

[Gold(1967)] E.M. Gold. 1967. Language Identifi-
cation in the Limit. Information and Controls,
10, 447-474 (1967).

[Jiang et al.(2023)] X. Jiang, Y. Dong, L. Wang,
Z. Fang, Q. Shang, G. Li, Z. Jin, and W.
Jiao. 2023. Self-planning Code Generation with
Large Language Models. ACMTrans. Softw.
Eng. Methodol., Vol. 1, No. 1, Article . Pub-
lication date: October 2023.

[Kearns and Vazirani(1994)] M.J. Kearns and U.V.
Vazirani. 1994. An introduction to computa-
tional learning theory. The MIT Press.

[Kleinberg and Mullainathan(2024)] J. Klein-
berg and S. Mullainathan. 2024. Language
generation in the limit. NeurIPS 2024,
arXiv:2404.06757.

[Li et al.(2025)] J. Li, V. Raman, and A. Tewari.
2025. Generation through the lens of learning
theory. 38th Annual Conference on Learning
Theory (COLT 2025).

[Littlestone(1987)] N. Littlestone. 1987. Learning
quickly when irrelevant attributes abound: A
new linear-threshold algorithm. Machine Learn-
ing, 2:285–318, 1987.

[Merrill and Sabharwal(2024)] W. Merrill and A.
Sabharwal. 2024. The expressive power of
transformers with chain of thought. Inter-
national Conference on Learning Representa-
tions.

[Natarajan(1989)] B. K. Natarajan. 1989. On
Learning Sets and Functions. Machine learn-
ing 4, 67-97, 1989.

[Xu(2017)] K. Xu. 2017. A class of bounded func-
tions, a database language and an extended
lambda calculus. publisher of Theoretical Com-
puter Science, Vol. 691, August 2017, Page 81
- 106.

[Xu(2024)] K. Xu. 2024. Outline of a PAC Learn-
able Class of Bounded Functions Including
Graphs. The 7th International Conference
on Machine Learning and Intelligent Systems
(MLIS 2014).

[Xu(2025)] K. Xu. 2025. Classes of bounded func-
tions that are semantically equivallent to Tur-
ing machine are PAC learnable. To present
in the 38th Annual Conference on Learning
Theory (COLT 2025) - Theory of AI for Sci-
entific Computing Workshop, June 30–July
4, 2025 in Lyon, France. Preprint: DOI:
10.13140/RG.2.2.28499.49443.

12

