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ABSTRACT: The EP (Enterprise-Participant) data model is a 
language homomorphic to and semantically equivalent to a class 
of total recursive functions. It takes a unique position in the fields of 
programming languages and database management. Mathemati-
cally, it enables a programming language to achieve the greatest 
possible ease of use in software development and maintenance. 
(This assumes that a programming language incorporated with a 
higher expressive data model was easier than another one with 
a lower expressive data model, or no data model at all.) Practi-
cally, Froglingo -- a programming language incorporated with the 
EP data model is a monolith that consolidates multiple software 
components of traditional software architecture. In addition, Fro-
glingo is untyped, i.e., programmers write application programs 
without a necessity of user-defined types. Finally, Froglingo is a 
novel approach to many challenges facing traditional technologies, 
including feature scalability, user interface flexibility, and similarity. 
In this paper, we show with further clarity the concept of ease of 
use by proposing a mathematical definition for the concept of data 
models and by relating Froglingo with other programming language 
through the analysis of types and higher-order functions. 
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1. Introduction

Many database applications were written in programming 
languages in the 1960s and 1970s, and are still in operation. 
The use of database management system (DBMS) came 
to database application software around the 1970s. It 
significantly improves the productivity in software development 
and maintenance. The data models, i.e., the mathematical 
underpinnings of DBMSs, complement programming languages 
with three essential characteristics: 1) a data model offers set-
oriented operations to update and query data, 2) each operation 
always terminates, and 3) like a data type, a data model is 
a language homeomorphic to an algebra, i.e., programmers 
specify what a program is in terms of business requirements, 
but don’t necessarily specify how it will be implemented.

The traditional data models, i.e., the relational data model 
and the hierarchical data model, cannot express all desired 
business data. Hierarchical data, for example, can be folded 
into a relation, but its containment relationships cannot be 
captured by the relational data model with the expressive 
power of the relational algebra [3]. Another example would be 
relationships among the vertices in a directed graph, (e.g., is 
there a path from A to B?), which cannot be captured in both 
the relational data model and the hierarchical data model. As 
a result, database applications continuously require intense, 
though relieved, development and maintenance work, which 
could be avoided if a more expressive data model were real-
ized and leveraged.

The EP (Enterprise-Participant) data model is semantically 
equivalent to a class of total recursive functions (abbreviated 
as a total-recursive-equivalent data model in this paper) [25]. 
The equivalence says that programmers are not allowed to 
construct an application program that may not terminate on 
an input. At the same time, it says mathematically that any 
meaningful application programs, i.e., those with the seman-
tics falling into the class of total recursive functions, could be 
expressed in the EP data model with the hypothesis of infinite 
space and time. 

The EP data model is a data model because it possesses the 
three above-mentioned essential characteristics. To demonstrate 
the significance of the EP data model being both a data model 
and a language semantically equivalent to a class of total recur-
sive functions, the authors of the articles [27 and 23] suggested 
an objective view on easiness. This view contends that: 1) a 
data model is easier to use than a programming language in the 
development and maintenance of those applications expressible 
in the data model, 2) if one data model is more expressive than 
another data model, the former is easier than the latter in the 
development and maintenance of the applications where a pro-
gramming language is involved, and 3) a programming language, 
by incorporating with a total-recursive-equivalent data model, is 
the easiest to use in software development and maintenance. In 
these articles, Froglingo, incorporated with the EP data model 
with an implementation [28], was therefore determined to be the 
easiest programming language. Calling Froglingo the easiest 
programming language to use has the following practical implica-
tions: 1) Froglingo is a monolith that consolidates multiple software 
components of traditional software architecture [26], 2) The EP 
data model is a consistent tool to manage as much finite data as 
a business application needs [25 and 27], and 3) The EP data 
model arranges business data in a manner such that a rich set of 
built-in operators are available to use [24]. 

In this paper we press the notion of easiness further with the 
following contributions:
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1. Taking Froglingo as a complete programming language, we 
examine how it adopts procedural statements of imperative 
programming languages in conjunction with the EP data 
model to specify business logic, and provides built-in facili-
ties to interact effectively with users and to communicate 
with other applications. 

2. Through an analysis of an application system implemented 
in Froglingo (an award recipient in the ICCBR 2010 
Computer Cooking Contest), we observe that Froglingo, 
as a untyped system, is a novel approach to many 
challenging issues facing traditional technologies, 
including feature scalability, user interface flexibility, and 
similarity.

3. We propose a mathematical definition to formalize the 
concept of data models. Through the definition, we 
show that we can clearly see the differences between 
programming (or other specialized) languages and 
data models, and the differences among data models 
themselves. 

4. We review typed and untyped systems, and conclude that 
Froglingo is untyped. Unlike the other untyped systems, 
Froglingo is the safest tool to use. Unlike all the other 
systems, Froglingo fully utilizes the properties of the class 
of total recursive functions that enable it to be a novel 
methodology approaching many challenging issues facing 
traditional technologies.

The last 2 contributions above show with further clarity the 
concept of ease of use.

In Section 2, we introduce the EP data model. In Section 3, we 
describe the features of Froglingo beyond the EP data model. 
In Section 4, we analyze the recipe advisor in Froglingo that 
participated in the ICCBR 2010 Computer Cooking Contest. In 
Section 5, we give the related work, including the proposal for 
a mathematical definition of the concept of data models and a 
discussion on types.

2. EP Data Model

In traditional data models, an entity is either dependent 
on one and only one other entity, or independent from 
the rest of the world. The functional dependency in the 
relational data model and the child-parent relationships in 
the hierarchical data model are typical examples. These 
are restrictions, and they don’t reflect the extent to which 
the complexities of the real world can be managed using 
a computer.

The logic of the EP data model is that if one entity is dependent 
on other entities, then those entities are precisely two in number. 
Drawing terminology from the structure of an organization or 
a party as in article [29], one such entity is called enterprise 
(such as organization and party), the other is called participant 
(such as employee and party participant), and the dependent 
entity is called participation. An enterprise consists of multiple 
participations. Determined by its enterprise and its participant, 
a participation yields a value, and this value is in turn another 
enterprise.

2.1 Terms and Databases
The EP data model will be described as a formal language. 
We will discuss terms, assignments, and databases in this 
sub section, and normal forms and reductions in Section 
2.2. In section 2.3, we will introduce the set of operators 
stemming from the ordering relations among managed 
data.

Definition 2.1
Let P be a set of identifiers, and C a set of constants where 
null is a special constant. The set of terms T is formed by the 
following rules:

1. A constant is a term, i.e., c ∈ C ⇒ c ∈ T
2. An identifier is a term, i.e., a ∈ P ⇒ a ∈ T 
3. The application of a term to another is a term, i.e.

m ∈ T, n ∈ T ⇒ (m n) ∈ T  

For example, the expressions 3.14, “a string”, an_id, (f 1), 
((country state) county), and ((a b) (c d)) are terms. The entire set 
T can be called the Herbrand universe of the EP data model.

Given m, n, q ∈ T, we introduce the following notations:

Notation 2.2
1.  Terms m and n are called sub-terms of the application (m n). 

A term is also a sub-term of itself.
2.  If q is a sub-term of m or n, then q is also a sub-term of the 

application (m n).
3.  Term m is called the left sub-term and a leftmost sub-term of 

the application (m n), and n the right sub-term and a rightmost 
sub-term of the application (m n). 

4.  If q is a leftmost sub-term of m, then q is also a leftmost 
sub-term of the application (m n). Similarly, if q is a rightmost 
sub-term of n, then q is also a rightmost sub-term of the ap-
plication (m n).

5.  The parentheses surrounding an application can be omitted 
when the right sub-term is not another application. 
For 
Example, ( f 3), ((country state) county), and ((a b) (c d )) can 
be rewritten the following way: f 3, country state county, and a 
b (c d) correspondingly.

6.  Given an expression m ≡ n, the symbol ≡ indicates that the 
two symbols m and n are identical.

Many notations from the lambda calculus have been adopted 
in the EP data model. Unlike the lambda calculus, however, 
the EP database has identifiers and doesn’t have variables. 
(Froglingo does have variables as discussed in Section 3.)

A term can be assigned with another term.

Definition 2.3
Given m, n ∈ T, the form m = n is an assignment. Here, m is 
called the assignee and n the assigner. All the assignments in 
a given T make up a set: A = { m = n | m ∈ T, n ∈ T }.

Now we are ready to introduce the definition of an EP database:

Definition 2.4
An EP database D is the union of a set of terms T ⊂ T and a 
set of assignments A ⊂ A, i.e., D = T ∪ A, such that the following 
things are true:  
1.  If an application m n is in D, the left sub-term m must not be a con-

stant and the right sub-term n must not have an assigner, i.e.,
m n ∈ D ⇒ m ∈ (T - C) ∩ ∀k ∈ T, (n = k) ∉ D

2.  If an assignment (m = n) is in D, m cannot be the left sub-term 
of another term in D, i.e.,

(m = n) ∈ D ⇒ ∀t ∈ T, m t ∉ D
3.  The database D must have no circular set of assignments, i.e., 

m0 = m1, m1 = m2, …, mn-1 = mn ∈ D, here n ≥ 1 ⇒ mn = m0 ∉ D.

The above restrictions force users to enter those and only those 
business data that are semantically equivalent to a class of total 
recursive functions [25].
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The following example is an EP database for the “Social Security 
Department” in the United States and for a central administration 
office in a college. In the “Social Security Department” (SSD), 
each resident has a social security number (SSN), a name, and 
a birth date. In the college, a resident registers as a student, 
the college has departments, each department offers classes, 
and each class has students.

Example 2.5
A school administration database: 
SSD.gov John SSN = 123456789;
SSD.gov John birth = ‘6/1/1990’;
SSD.gov John photo.jpg = …; /* a binary stream*/
college.edu admin (SSD.gov John) enroll = ‘9/1/2008’;
college.edu admin (SSD.gov John) Major = college.edu CS;
college.edu CS CS100 (college.edu admin (SSD.gov John)) 
grade = “F”;

Note that college.edu and SSD.gov are also identifiers, and an 
assigner can be an image file. 

According to Definition 2.4, the subterms in the assignee and 
assigner of a database, e.g., SSD.gov, John, and SSD.gov John 
must be in the database too. We don’t show them here because 
it is clear and implied by the following propositions:

Proposition 2.6
1.  If an application is in a database, so are its left sub-term and 

its right sub-term, i.e. 
m n ∈ D ⇒ m ∈ D ∩ n ∈ D

2.  If an assignment is in a database, so are its assignee and 
assigner, i.e. 

m = n ∈ D ⇒ m ∈ D ∩ n ∈ D

With the EP data model, one may express directed graphs with 
circles. Here is an example: 

Example 2.7
A directed graph with a cycle: 

v1 v2 = v2;
v2 v1 = v1;
v2 v3 = v3;

2.2 Normal Forms and Reduction
Given a database, each term in the Herbrand universe T can 
be reduced to a normal form.

Definition 2.8 
Given a database D, the set of normal forms NF is defined as 
follows:

1. All the constants are normal forms, i.e.,
  c ∈ C ⇒ c ∈ NF

2.  All the terms in D that don’t have assigners are normal forms 
by themselves, i.e.,

  t ∈ D – A ⇒ t ∈ NF

For example, terms “F”, SSD.gov, and SSD.gov John are normal 
forms, but not SSD.gov John birth in Example 2.5.

Definition 2.9
Given a database D, we have the one-step evaluation rules, 
denoted as →

1. An identifier not in D is reduced to null, i.e., 
   p ∈ P ∩ p  ∉ D ⇒ p → null

2. An assignee in D is reduced to its assigner, i.e., 

  (m = n) ∈ D ⇒ m → n

3. If m, n ∈ NF, and m n ∉ D, then m n is reduced to null, i.e.,

  m, n ∈ NF, m n ∉ D ⇒ m n → null

4.  The application of two terms is reduced to the application of 
their normal forms, i.e.,

  m, n ∈ T, m → m’, n → n’ ⇒ m n → m’ n’.

Definition 2.10 
Let m, n ∈ T, and D a database. If there is a finite sequence l0, 
…, lq ∈ T, where q ≥ 0, such that m ≡ l0,, l0 → l1, …, lq-1 → lq, lq ≡ 
n, then 

1.  m is effectively, i.e., in finite steps, reduced to n, written as 
m →EP n.

2.  If m1 →EP n and m2 →EP n, then we say that m1 is equal to m2, 
denoted as m1 == m2. The relation == is the complete set of the 
equations derivable from the environment of D.

Example 2.11 
Below are a few equations from the databases in Examples 
2.5 and 2.7: 

SSD.gov John SSN == 123456789;
(College.edu Admin (SSD.gov John) Major) == College.edu CS;

v1 v2 v1 == v1;
v1 v2 v1 v2 v1 == v1 v2 v1;

With the concepts defined so far, the EP data model was 
proved as a consistent, sound, and complete language that 
takes a class of total recursive functions as its semantics [25]. 
Therefore, each term in T can be effectively reduced to one 
and only one normal form with a given database. Intuitively, an 
EP database is interpreted as a set of higher-order functions, 
and the entire class of higher-order and total recursive func-
tions can be represented by an EP database provided that the 
space for a database was unlimited. The proof in [25] further 
showed that each term or assignee in an EP database has a 
corresponding higher-order function. Mathematically, this cor-
respondence is called a homomorphism. This will be further 
discussed in Section 5.1.

2.3 Ordering Relations
There is a rich set of ordering relations among higher-order 
functions, and therefore also among the terms in a database. 
Before introducing the individual ordering relations, we provide 
in Figure 1 below an alternative presentation of the database 
in Example 2.5.

CS admin

CS100
Major

enroll
‘9/1/08’

SSD.gov

John

birth
‘6/1/90’

SSN
123456789

grade
“F”

Legends:

application points up to function

application points to argument

assignee points to assigner

an application

college.edu

photo.jpg

Figure 1. Graphical Presentation of School Admin. DatabaseFigure 1. Graphical Presentation of School Admin. Database
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In Figure 1 above, we started to use the words “function” and “argu-
ment” interchangeably in place of EP terms. We will see in Section 
5 that EP terms are homomorphic to higher-order functions.

An application depends both on its function and on its argument 
as well as the sub-terms of the function and the argument. This 
leads to the development of the following relations:

Definition 2.12 
1. Given a term (m n) ∈ T, we define the relation “has the left 
sub-term”, denoted as m n {+ m; and the relation “has the right 
sub-term”, denoted as m n {- n, i.e., 

{+ = {<m n, m> | m, n ∈ T };
{-  = {<m n, n> | m, n ∈ T }.

2. Given a term m in a database D, let l, s, r are a leftmost sub-
term, a sub-term, and a rightmost sub-term of m accordingly, 
then the operators {=+, {=-, and {= in the following expressions 
are defined such that the expressions are evaluated to be true: 
m {=+ l, m {=- r, m {= s. In other words:

  {=+ = {<m, l> | m ∈ D and l is a leftmost sub-term of m}
  {=- = {<m, r> | m ∈ D and r is a rightmost sub-term of m}
  {= = {<m, s> | m ∈ D and s is a sub-term of m}

Here are the sample expressions with the value of true: 

SSD.gov John birth {+ SSD.gov John;
SSD.gov John birth {=+ SSD.gov;
SSD.gov John birth {=- birth;
College.edu CS CS100 (College admin (SSD.gov John)) {=- John;
birth {= SSD.gov John birth; 
John {= SSD.gov John birth. 

Because it exists independently, the normal form, resulting 
from an application, doesn’t have to depend on the function 
and the argument of the application. However, a normal form 
is derivable from an application; therefore, it is derivable from 
the function, from the argument, and from the sub-terms of the 
function and the argument. This leads to the development of a 
few pre-ordering relations.

Definition 2.13 
1. Let m, n, q ∈ T and D a database, if m n == q, then the 
operators (+ and (- in the following expressions are defined 
such that the expressions q (+ m and q (- n are evaluated to be 
true. In other words,

(+ = {<q, m> | ∀m ∈T, ∃n, q ∈T such that m n == q under D}

(- = {<q, n> | ∀n ∈T, ∃m, q ∈T such that m n == q under D}

2. Let m, q, l, s, r ∈ T, D a database, m == q, l is a leftmost sub-
term of m, s is a sub-term of m, and r is a rightmost sub-term of 
m. Then the operators (=+,(=-, and (= in the following expres-
sions are defined such that the expressions are evaluated to 
be true: q (=+ l, q (=- r , and q (= s. In the other words:

  (=+ = {<q, l> | ∀l ∈T, ∃m, q ∈T such that 
       l is a leftmost sub-term of m, and m == q under D}

  (=- = {<q, r> | ∀r ∈T, ∃m, q ∈T such that 
       r is a rightmost sub-term of m, and m == q under D}

  (= = {<q, s> | ∀s ∈T, ∃m, q ∈T such that 
       s is a sub-term of m, and m == q under D}

Note that the relations were defined over the entire Herbrand 
universe. The implementation of Froglingo, however, only con-
siders database D as the domain of the relations.

Example 2.14
Given the databases in Example 2.5 and 2.7, here are a few 
Boolean expressions with true values:

“F” (+ College CS CS100 (College admin (SSD.gov John));
“F” (=+ College CS CS100;

“F” (=- SSD.gov John;
“F” (= College.edu admin;

v2 (=+ v1; v1 (=+ v2;
v1 (= v2;

The pre-ordering relations appear irrelevant to the queries 
supported in traditional database technologies. However, they 
were found useful in the following examples.

Example 2.15
Given the data presentation in Example 2.7 for a directed 
graph, 

1. The query “if there is a path from v1 to v3” is expressed 
as: v3 (=+ v1. It is evaluated to be true since v3 == v2 v3 == 
(v1 v2) v3. 

2. The query “if there is a circle between v1 and v2” is 
expressed as: v1 (=+ v2 and v2 (=+ v1. It is evaluated to 
be true because v1 == v2 v1 and v2 == v1 v2.

3. The query “find all the vertexes that has a path from v1” 
is expressed as: select $v where $v (=+ v1. It is evaluated 
to be v1, v2, and v3. Here the identifier select...where... is a 
built-in facility structure for a set-oriented operation.

3. Froglingo

With the EP data model that is equivalent to a class of total 
recursive functions, we minimize our dependency on a 
programming language. But a programming language is still 
needed. First, constructing arbitrary functions for both queries 
and business logic on top of a managed data set requires 
a programming language. Although the built-in operators 
introduced in Section 2.3 can be used to construct many 
useful queries, they don’t exhaust all the queries that are 
required for practicality and that are within a class of total 
recursive functions. Viewing an EP database as a finite set 
of higher-order functions, in addition to the built-in operators 
in Section 2.3, there are still an infinitely many total recursive 
functions that are potentially demanded by applications. (The 
notion of the equivalence of the EP data model to a class of 
total recursive functions implies that all the total recursive 
functions could be expressed in the EP data model provided 
that there were infinite time and space [25]. For practicality, 
however, the EP data model always expresses finite data. 
Therefore, a programming language is still needed to 
express infinite data with finite expressions. The practicality 
of the EP data model is comparable to the practicality of a 
programming language that theoretically expresses a class 
of partial recursive functions with the hypothesis of infinite 
time and space, but practically expresses a finite set of partial 
recursive functions.)

Second, some business data may be expressed more con-
veniently as business logic. By business data, we normally 
mean finite properties. By business logic, we emphasize its 
finite presentation for mostly infinite properties. To express 
the opening hours of a shopping center, e.g., from 9:00 am 
to 9:00 pm except on weekends, one may prefer not to repeat 
the same schedule 5 times for 5 workdays in a database, 
but instead to specify it only once. Representing this type 
of business data demands programming language or other 
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specialized language systems such as those called constraint 
databases [19].

In this section, we introduce the rest of the concepts beyond 
the EP data model of Froglingo.

3.1 Variables
A variable in Froglingo is represented by an identifier preceded 
by the symbol “$”. For example, $a_variable, and $student. It 
is a new type of terms.

Definition 3.1 
1.  Let V be a set of variables. A variable is a term, i.e., v ∈ V 

⇒ v ∈ T.

2.  If a variable is in the assigner of an assignment in a database, 
it must be in the assignee.

3.  If a variable is in a term in a database, it cannot be the left-
term of a sub-term in the given term.

With the addition of variables, we can have the following valid 
assignments in a database: 

Example 3.2 
fac 0 = 1;

fac $n = ($n * (fac ($n - 1))); 
fun $x 1 $y = ($x + $y);
fun $x 2 $y = ($x * $y);

Below are a few query expressions and reduction results: 
fac 4  24;

fun 3 2 4  12;
Note that the reduction rules in Definition 2.9 are enhanced with 
variables and not discussed here.

Semantically, the expressions above are equivalent to a 
database having infinite assignments: fac 0 = 1; fac 1 = 1; 
fac 2 = 2; fac 3 = 6; …. This demonstrates that variables 
semantically add nothing new to the EP data model, but 
syntactically to the finite expressions for possible infinite 
entities (semantics).

A variable can be restricted within a domain to prevent 
unwanted data from being its instances and (or) to prevent 
an operation from not terminating. For example, the follow-
ing expressions can be used to represent the tax rule: The 
tax rate is 20% if a salary is less than $100,000, and 40% 
otherwise.

Example 3.3
 tax $s1:[$s1 >= 0 and $s1 < 100000] = ($s1 * 0.2);

 tax $s2 = ($s2 * 0.4);

The data represented by the terms containing variables obeys 
the ordering relations; therefore, the corresponding built-in 
operators are applicable to variables [24].

3.2 Sequential Terms
The EP data model and variables are mathematically 
sufficient to make Froglingo semantically equivalent to a 
class of partial recursive functions. To express multiple 
actions triggered by single events, and to perform user 
input checking, the procedural statements in imperative 
programming languages are adopted, and called sequential 
terms. 

A sequential term is a sequence of terms separated by commas 
‘,’. Sequential terms can only serve as assigners. 

Definition 3.4 
1. The set of sequential terms S is formed by the following rules: 
t ∈ T ⇒ t ∈ S; t ∈ T ∧ s ∈ S ⇒ s ‘,’ t ∈ S.

2.  An assignment in a database is extended to allow its assigner 
to be a sequential term.

A money transfer between two bank accounts is expressed 
as follows:

Example 3.5 
transfer $money =

 (update account2 = (account2 - $money)), 

 (update account1 = (account1 + $money));

In the example above, we assumed two pre-defined accounts, 
such as account1 = 100 and account2 = 300. In addition, the 
identifier update is a built-in operator that updates assignees’ 
assigners. The entire expression associated with an update op-
eration is also called a term. There are other built-in operators, 
create and delete, that are not introduced but are assumed here. 
Note that sequential terms, update operations, and set-oriented 
operations like the one in Example 2.15.3 are implemented to 
return values too. The returned values are a set of pre-defined 
constants [28]. 

The administrator of the college college.edu, as another example, 
can construct a function register that accepts class registration 
requests from students. Given a requester and a course as the 
inputs of a request, a sample constraint is that the request is 
accepted only if the requester, through her “signature” (a built-
in term to be converted to her own user account), hasn’t yet 
registered for the course:

Example 3.6
register $usr:[$usr isa signature] $class = 

register_validate
 ($class (college.edu admin $usr) == null)
 $usr 
 $class;

The term SSD.gov john is a sample instance of the variable 
$usr. The term college.edu CS CS210, if CS210 is another class 
offered by the college, is a sample instance of the variable 
$class. The Boolean expression with the operator == is to test 
if the requester has already registered the class. The function 
register_validate is further defined as

Example 3.7
register_validate false $usr $class = 
 “The registration was not successful. 
 You must have registered the class already.”;

register_validate true $usr $class = 
 “You have successfully registered the class”,
 (create $class (college.edu admin $usr));

3.3 Built-in facilities
An application program in a traditional programming language, 
where a relational DBMS is used, needs to have application-
dependent data access control (also called user entitlement) 
against the relational data. This is necessary because the 
data access control, in the correspondence of total recursive 
functions, cannot be expressed by the relational data model, 
but only by the programming language. This is not an issue in 
Froglingo with the EP data model. Froglingo has a built-in facility 
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addusr to create user accounts. A user account itself is a term, 
and it is more than a term. A user cannot access a database 
unless he/she is logged into a user account by providing a 
password. For example, the term college.edu, SSD.gov, and 
SSD.gov John can be added to the database in Example .2.5 
as user accounts. 

An EP database can be viewed as a hierarchical structure under 
the relation {+; therefore, the data in an EP database is divided 
into private spaces for individual users according to {+ as if it 
was a file system. The owner of a user account, e.g., a term h, 
is the administrator for the entire space under the user account 
h, i.e., all the assignees (terms) t such that t {+ h.

Analogous to the concept of paths in a file system, the EP term 
for an assignee in an EP database serves as the name of the 
assignee; therefore, the concept of a current working directory 
in a file system is adopted to allow users to navigate through 
data with the guide of the ordering relation {+. Consequently, 
an assignee can be named differently, depending on where a 
user stands. In the school administration database in Example 
2.5, for example, the assignee SSD.gov John has actually a dis-
tinguished name //SSD.gov John. When a person logs into it as a 
user account, the system will prompt the distinguished name in 
the coming command line: [//SSD.gov John].

This means that the system takes the user account as the home 
working stand by default, and the assignee SSD.gov John birth, 
having the distinguished name //SSD.gov John birth, will have a 
relative name birth. 

The owner of a user account can freely create new data, re-
move, or change data under the user account. The owner has 
the freedom to construct as many functions as he/she wants, 
as if a user had the freedom to manage as many files as he/
she wanted.

Users share their data by granting an access privilege, the 
only privilege after the administrator privilege assigned to 
an owner originally. Assuming that the function register in 
Example 3.6 is created under the user account college.edu, 
then the owner of the account can issue the following com-
mand:

[//college.edu] grtacc register anyone;

With the built-in operator grtacc, it grants the user account 
anyone (a built-in account in Froglingo for any user) the access 
privilege to the assignee with the distinguished name //college.
edu register. Note that the access privilege doesn’t necessarily 
mean a read-only permission. Instead, the user account that 
is granted the access privilege to a function impersonates the 
owner of the function in executing the application of the function 
to a user provided the argument. Therefore, a call to the func-
tion register from any student may cause the system to create 
new data in database. 

The system interaction with users in Froglingo is extended to 
use web browsers across a network. For example, a user can 
call the function register through a HTTP request message via 
a web browser:

http://college.edu/register signature (%2F%2Fcollege.edu CS 
cs201)

Here the entire string is a URI embedding the previous com-
mand. In the URI, “%2F” is the hex code for the character ‘/’ 
required by the URI syntax. 

Note that web pages, i.e., HTML documents, possibly em-
bedding Froglingo expressions, are stored as data in EPda-
tabase.. 

4. Case Study

Data structures in traditional programming languages help to 
organize business data and help to detect errors. The classes 
and subclasses in object-oriented programming languages 
further improve the productivity of software development by 
code reuse through the concept of inheritance. Instead of types, 
the EP data model is untyped, i.e., every thing is modeled as 
higher-order functions without a user-defined type. See Section 
5.2 for more discussion about types.

In this section, we introduce a food recipe advisor written in 
Froglingo, which was the aforementioned award recipient in the 
ICCBR 2010 Computer Cooking Contest [22]. Through the recipe 
advisor, Froglingo demonstrated the following characteristics: 
1) a high feature scalability, i.e., easy to adapt to new business 
requirements, 2) a search ability based on both key words and 
phrases against ordered data in the database, 3) a flexible user 
interface indiscriminately accepting diverse application objects, 
4) a consistent way of preserving similarities.

4.1 Knowledge Representation
User-defined data types, once established in traditional 
technologies, become the infrastructures of application systems, 
and are difficult to change when it is necessary to adapt to 
new business requirements. It becomes more evident in 
emerging application areas such as knowledge management 
and artificial intelligence where initial understandings of a 
problem are often imperfect and refined knowledge may render 
existing understanding obsolete [16]. In the CBR (Case-Based 
Reasoning) domain of cooking [15], for example, we may 
simply represent cooking knowledge as a list of ingredients. 
But this is just the beginning of cooking knowledge acquisition 
process. Beyond ingredients, we may have to consider cooking 
equipment, ingredient volume, food preparation steps and sub 
steps, and heating factors as they relate to the changes in flavor, 
texture, aroma, color, and nutritional content.

In Froglingo, every object is represented in higher order func-
tion regardless of whether it is a data type definition, a simple 
object, or a complex object. We demonstrate in this subsection 
that the uniformed presentation of data in the EP data model 
helps application upgrades and new feature enhancement (and 
therefore increases feature scalability).

An ingredient may have an ingredient type, and an ingredi-
ent type may have its parent type. Sometimes, an ingredient 
may belong to multiple types. Here are a few examples in EP 
terms:
 meat beef (short loin);
 meat chicken;
 vegetable artichoke;
 broth (meat chicken);
 broth vegetable;

The preparation method is also important in cooking. The meth-
ods bake, grill, steam, and stir fry are typical. Preparing a dish 
normally involves multiple methods and therefore a sequence 
of preparation steps, and each step may have its sub-steps. 
All of these can be represented in Froglingo. But just for dem-
onstration, only one preparation method is considered for a 
recipe in the case study.

Many ingredients and dishes have different origins. For ex-
ample, curry is an Indian ingredient, a wok is an East Asian 
cooking utensil, and a Fajita beef is a Mexican dish. To support 
this sort of diversity, we inventory a list of food origins. Here 
are a few examples:
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Asian Chinese Szechuan;
French Dijon;
Irish Kilkenny;

Ingredients may have multiple names. Here are a few 
samples:

lichee = lichi; 
chile = hot pepper; 

Now let’s talk about recipes. A recipe is represented by an as-
signment in Froglingo. Here are a few examples:

(flour (all purpose)) sugar yeast salt milk egg bake 
 = world class waffle;

(flour (all purpose)) sugar yeast salt shortening bake 
 = batter white bread;

(meat chicken) cheese seasoning (sauce salsa) bake Italian
 = spicy parmesan chicken;

In the first example, the recipe “World Class Waffle” is a 
baked food and has the ingredients in the order that appears 
in the original recipe book: all-purpose flour, sugar, yeast, 
salt, milk, and egg. We simply take the sequence and place 
them in the order as an EP term. If we know its cooking 
method and (or) its origin, we just simply append them to 
the previous EP term. 

Because the first two recipes above have the same in-
gredient sequence at the beginning: all-purpose flour, 
sugar, yeast, and salt, the sequence is stored only once, 
and therefore is called a shared ingredient sequence. The 
shared ingredient sequence is a factor used to determine 
if two recipes are similar. (This similarity is to be discussed 
further in Section 4.3.)

All the information is represented so far in a consistent 
manner, i.e., in higher-order functions. See Figure 2 for a 
graphical view. The consistency helps to add new functional-
ity to the top of existing data with minimum effort. Here is an 
example that represents a dinner consisting of an appetizer, 
a main dish, and a dessert, which would normally be repre-
sented by different classes in object-oriented programming 
language: 

dinner (salad potato) (spicy parmesan chicken) (cake lemon);

To express a set of dinners with alternative starters, main 
dishes, and desserts, at a restaurant owner’s discretion, it 
may be convenient to use variables instead of enumerating the 
permutations. The following sample expression is equivalent to 
a set of dinners including the one defined earlier:

dinner $s:[$s {=+ salad or $s {=+ soup]

 $m: [$m {=+ chicken or $m {=+ marinate]  

 $d: [$m {=+ cake];

Despite the variables, the above expression preserves the 
ordering relations discussed in Section 2.3.

4.2 User Interface and Queries
Categorizing and representing business data in different data 
types may require end users to enter query inputs in different 
entry fields through a graphical user interface (GUI). For 
example, a customer may want to find all the Italian foods with 
baked chicken. In such a case, a recipe system in traditional 
technologies may provide a GUI with three entry fields 
corresponding to the three internal data types: ingredients 
including chicken, origins including Italian, and cooking methods 
including bake. The separation at user interface level may not 
be desired in many circumstances, especially when end users 
have limited knowledge about business domains.

Froglingo supports a user interface quite differently. In the 
sample screenshot of Figure 3, the interface allows users to 
enter a list of phrases or words delimited by a comma, and each 
phrase or word can be preceded with the word “no” for negation. 
Phrases and words for different types of objects can be entered 
in a single field without regard to any particular order. 

Comparable to the search ability of traditional technologies 
based on key words against textual documents, Froglingo sup-
ports searches based on both key words and phrases against 
a structured database. A phrase, e.g., “all-purpose flour” from 
the user interface discussed earlier, is initially translated into a 
combinatory term in Froglingo, e.g., flour (all purpose). This trans-
lation process is the same one used for knowledge collection 
discussed in Section 4.1 (and it is automated via a parser).

This interface is primarily supported by a single built-in opera-
tor {= internally. The following expression, for example, can be 
automatically converted from the query string in Figure 3: 

select $dish where $dish {= flour (all purpose) and 

 $dish {= bake and $dish {= Italian and 

 $dish {= vegetable and not $dish {= sauce tomato;

The expression above will retrieve all the terms (assignees) in 
a database that have sub terms flour (all-purpose), bake, Ital-
ian, vegetable (and therefore vegetable artichoke), but not sauce 
tomato. 

The same interface is equally applicable to dinners, more 
complex objects than recipes. When customers enter a string: 

bake

meat

chicken

seasoningsugar

cheese

flour all

purpose

yeast
salt

shortening

milk

egg

sauce

salsa

world

class

waffle

spicy

parmesan

chicken

batter

white

bread

Italian

Figure 2. Graphical Presentation of Cooking Knowledge Database
Figure 2. Graphical Presentation of Cooking Knowledge Database

Figure 3. A user interface indiscriminately taking diverse inputs
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“dinner, no soup, chicken, lemon cake”, for example, the system, 
having the function dinner defined in Section 4.2, will retrieve 
all the “dinners” that are generated dynamically to have three 
components: a starter, a main dish, and a dessert. The system 
doesn’t have the concept of dinner, but it has the term dinner 
from the key word “dinner” in the inquiry string. In each selected 
dinner, soup must not be any of the three components (therefore 
the starter must be a salad), chicken must be an ingredient of 
at least one component (since chicken is never a part of cake, 
it obviously cannot be a part of dessert), and lemon cake must 
be the dessert. 

4.3 Similarity
In many business applications, we are required to compare 
similarities among business objects. For example, if a restaurant 
doesn’t have an exact dish that the customer wants, he/she 
may want to order a similar dish. Ranking objects by weights, 
e.g., a calculated weight for a dish based on an aggregate 
function over the pre-assigned weights of its ingredients, is 
a common approach. This works for many applications. The 
weighted approach is a quick solution in traditional technologies 
when managed objects are not easily arranged in a way that 
allows them to be related to each other structurally. Taking 
the recipes that are represented by sequences of ingredients 
as an example, we are able to arrange ingredients in classes 
and subclasses through which one can tell their similarities. 
For example, salmon and flounder are two subclasses of the 
super-class fish, and therefore they are similar. But there is not 
an easy way in traditional technologies to relate two recipes 
so that their similarities can be revealed structurally, although 
individual ingredients may be indexed separately. 

Recipes in Froglingo are stored structurally. Given the recipe 
database in Figure 2, for example, the three recipes are simi-
lar because all of them are related by bake; and the recipe 
“world class waffle” is similar to “batter white bread” because 
they share the same ingredient sequence: all-purpose flour, 
sugar, yeast, and salt. If the recipe “batter white bread” is 
desired but the ingredient shortening is not available, then 
the system would choose the recipe “world class waffle” as 
the substitute. 

The structure, i.e., ordering relations among higher-order 
functions, offers a novel approach to preserve naturally the 
similarities among recipes. Since the EP data model is untyped, 
the structural view on similarity can be consistently applied to 
other business applications where revealing similarities are 
required. 

5. Related Work

At the beginning of this paper, we said that decidability, set-
oriented operations, and homomorphism were the three 
essential features of data models. In Section 5.1, we will use 
an algebraic approach to give a mathematical definition for data 
models. The purpose is to understand better the related work in 
data models and database management, and further to support 
the concept of ease of use proposed in [27 and 23].

In sections 5.2 and 5.3, we discuss the related work in program-
ming languages.

5.1 Data Models
There is no commonly accepted definition for the concept of 
data models; however, it is certain that a data model is a data 
type. Integers, arrays, records, and linked lists are the common 
data types in programming languages. Viewing a data type as 
an algebra, i.e., a set of values and a set of operations on the 

values, in the context of semantics [8], one cannot ignore the 
fact that a computer language must exist to expresses the data 
type. Because of this, we promote another view that a data type 
is a language in which each syntactical expression of a data 
type has a correspondence in its semantics. Mathematically, 
this correspondence is called a homomorphism. Because of the 
homomorphism, the syntactical aspect of a data type is also 
an algebra. In the rest of this subsection we call the syntactical 
aspect of a data type the syntactical algebra, and the semantics 
the semantic algebra.

A clear motivation for studying data types by promoting ho-
momorphism is to ease the development and maintenance 
of business applications because data types support better 
business data organization, error checking, and built-in opera-
tor utilizations [8]. Note that the concept of homomorphism is 
not applicable to a generic programming language because 
of errors, side-effects, and non-determinism [8]. In addition, 
local variables as a core constructor of an imperative program-
ming language don’t have immediate correspondences to the 
semantics, i.e., those outlined in the business requirements of 
business applications. 

It is always desirable that a program written in a language ter-
minates. Put differently, it is always desirable for each operation 
in semantic algebra to halt on arbitrary input. Because of this, 
equivalently, it is desirable for the homomorphism of a data 
type to be decidable, i.e., it can be determined effectively (in a 
finite number of steps) if an entity in the semantic algebra cor-
responds to a given element in the syntactical algebra. In the 
work [8], it equivalently says that each element in the semantic 
algebra is reachable from the syntactic algebra of a given data 
type. This is true for primitive types like integers and for ag-
gregate types like arrays in generic programming languages. 
Considering the broad scope of the set of data types defined in 
[8], including functions, however, it is clear that not every data 
type has a decidable homomorphism. 

To distinguish a data model from a data type, we say that a 
data model has decidable homomorphism. 

Offering set-oriented operations is another unique feature of a 
data model. To satisfy this requirement, we further differenti-
ate a data mode from a data type by saying that the semantic 
algebra of a data model includes at least one relation. In 
summary,

Definition 5.1.1 
A data model is a language with a decidable homomorphism 
to an algebra including at least one relation.

Which systems are data models? First, the relational data 
model is a data model. The relational algebra is both the 
syntactical and semantic algebra of the relational data model. 
(The homomorphism becomes an isomorphism.). Referenc-
ing the relational algebra alone to define the relational data 
model is sufficient because alternative languages such as 
the algebra calculus can be syntactically converted to the 
relational algebra. 

We can say formally here that the hierarchical data model 
is a data model. There are many hierarchical structure sys-
tems, such as file systems in operating systems, X.500 [21], 
and XML (Extensible Markup Language). Essentially these 
systems offer hierarchical structures. A hierarchical structure 
was clearly described in [12] as a parent-child relationship, 
denoted as PCR. To define the concept of the PCR relation-
ships in the language set by Definition 5.1.1, we introduce an 
alternative definition:
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Definition 5.1.2 
A relation R over a set S is a parent-child relation (PCR) if, for 
each pair <x, y> in R, the following conditions are satisfied:

1.  There is not another pair <z, y> in R, where x and z are dis-
tinguished elements in S.

2.  If there is a chain of pairs <x, e1>, < e1, e2>, …, < en-1, en> in 
R, then it is impossible for y to be identical to any one of the 
elements x, e1, e2, …, en-1, and en in S.

The first condition says that a child entity can only have one 
parent. The second condition says that a child cannot be its 
ancestor. A hierarchical structure is a PCR relation. Equivalently, 
a hierarchical structure is a dependent relation:

Definition 5.1.3 
Given a PCR relation over a set S, the dependent relation DEP 
is defined as: 

1. For each x in S, <x, x> is in DEP, 

2. If <x, y> is in PCR, then <x, y> is in DEP, and 

3. If <x, y> and <y, z> are in DEP, then <x, z> is in DEP.

We can now simply define that the hierarchical data model 
as a hierarchical structure system homomorphic (or even 
isomorphic) to an algebra including a PCR relation or a DEP 
relation.

An alternative and intuitive semantic algebra for the hierarchical 
data model can be an algebra constructed purely on the inclu-
sion operation of the set theory. Given a hierarchical structure: 
C→B, D→B, B→A, E→A, where A is the root, and each arrow 
“→” is the link from a child to a parent, for example, there is an 
isomorphic structure: {o1, o2, o3, { o1, o2}, {{ o1, o2}, o3}}. 

The EP data model is a data model. The entire set of EP-terms 
defined in Definition 2.1 are the syntactical (word) algebra. A da-
tabase defined in Definition 2.4 and the reduction rules defined 
in Definition 2.9 are the axioms. The normal forms are mapped 
to the elements in the applicative structure for the corresponding 
class of total recursive functions, and the EP data model exactly 
expresses a class of total recursive functions [25]. In addition, 
the EP data model has the built-in operators such as {+ which 
are in correspondence with a relation among the higher-order 
functions in the applicative structure.

The definition for the concept of data models emphasizes the 
aspects of both syntax and semantics because not all the op-
erations are allowed to be in the algebras of data models. For 
example, the function: “find all the paths between A and B in 
a graph” cannot be a part of an algebra because this function 
doesn’t terminate for a graph having a cycle including vertices 
A and B.

Given an algebra having its set of values closed on its opera-
tions, on the other hand, we cannot be certain that there is a 
language exactly expressing the algebra. We use Datalog to 
express transitive closure, e.g., the entire pairs of vertices in 
a (cyclic) graph such that each pair represents a path from 
one vertex to another. However, a transitive closure may not 
be completely reachable by Datalog. (The article [2] shows 
that the existence of a path whose length is a perfect square 
between two nodes is not expressible in Datalog.) This says 
that Datalog cannot serve as the syntactical aspect of a data 
model that takes transitive closure as the semantic algebra. 
Many of research interests in network-based (also called graph-
based) structures, such as the work in [5, 20, 13, 7, and 14], 
seek a language as well that has a decidable homomorphism 
to transitive closure.

5.2 Types
Type (also called data type) is one of the most important 
terminologies in the field of programming languages. To highlight 
the differences of Froglingo from traditional programming 
languages, we claimed in Section 4 that Froglingo is untyped. 
The phrase “untyped” delivers mixed messages in the field. 
First, it promotes declarativeness. On the other hand, it is a 
tag of a naked machine with bit streams in memory [6], that 
is practically too vulnerable and too tedious to be accessed 
directly from developers, and thereafter that is protected by a 
typed programming language. As a matter of fact, the phrase 
“untyped” is more often connected with the lambda-calculus 
where self-application is allowed, i.e., applying a function to itself 
[4]. Self-application demonstrates a flexibility for developers, 
and at the same time a danger of a non-termination process.

In sections 5.2.1 and 5.2.2, we intuitively discuss what typed 
programming languages are and what untyped programming 
languages are, and we further distinguish the differences be-
tween those untyped systems for partial recursive functions 
and the untyped Froglingo that has a type equivalent to a 
class of total recursive functions. In Section 5.2.3, we revisit 
the concepts discussed earlier by proposing a precise defini-
tion for types.

5.2.1 Typed Systems
Being typed is an essential characteristics of traditional 
programming language in practice. A variable (or an object in an 
object-oriented programming language) is typed by assigning a 
type explicitly. A procedure (or a method in an object-oriented 
programming language) is typed by assigning types to its 
parameters and its return value. A type in a typed system can 
be a built-in data type such as integers and strings, or can 
be a user-defined data type. (Note that some programming 
languages support the procedures that take other procedures 
as values through parameters. In such a case, the entire set 
of procedures can be viewed as a type; still there is currently 
no programming language yet that allows a user-defined type 
with members of procedures.)

The first role of types in a programming language is error-
checking. For example, a compiler reports an error after 
detecting an attempt to add a string with an integer, and an 
application system rejects an update operation if there is an 
attempt to add a student record into a set of employee records. 
Error-checking through types helps developers in debugging 
and maintains data integrity. 

Secondly, types play a role of abstraction, i.e., segregating their 
lower-level implementation details from their signatures (i.e., ab-
breviated syntactical forms designating the types). For example, 
a developer would not worry about how an integer is represented 
in a machine, but would simply declare a variable tagged with the 
built-in data type integer. A developer wouldn’t worry about how 
a method in a Java class was implemented by his co-workers, 
but would simply call the method for his own task. 

Another implication of type abstraction is that the instances of 
types always have names, i.e., abbreviated syntactical forms 
designating the instances. A variable has its variable name, and 
a procedure has its signature. (Again, the names are the abbre-
viations, and not the complete expressions of the instances.)

The third role types play is to improve system performance by 
static typing during compiling time. 

Now let’s see what a typed system has missed. We will see in 
Section 5.2.3 that a type in a typed system always represents 
a strict subset of the semantics (a class of total recursive 
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functions) of a typed system (a programming language), and 
a typed system potentially can have infinitely many types that 
are user-definable. Because of this, there is no type in a typed 
system that possesses the complete properties of the class of 
total recursive functions. In other words, some valuable proper-
ties in the class of total recursive functions cannot be carried by 
the types that can be implemented practically. (For example, so 
far, there hasn’t been a type yet in a typed system that has the 
ordering relations discussed in Section 2.3). Lacking powerful 
built-in operators that are derivable from the properties of the 
class of partial recursive functions makes the sharing of some 
application-independent code difficult. As demonstrated in Sec-
tion 4, the lack of such powerful built-in operators may hinder 
typed systems’ ability to address many challenges in the fields 
of knowledge management and artificial intelligence. 

5.2.2 Untyped Systems
Given the understanding that a typed system is one in which 
individual elements need to be assigned (tagged) with types 
and potentially there are infinite many user-definable types, we 
say that an untyped system is one in which there is only one 
type. Because of this, there is no need to tag a type to individual 
elements in an untyped system [6]. The pure lambda calculus is 
a well-known untyped system. The EP data model is untyped. 
The primitive (built-in) types in programming language, e.g., 
integers and strings, are untyped by themselves. An untyped 
system, e.g., the lambda calculus, remains to be untyped after 
it incorporates another primitive untyped system, e.g., integers 
[6]. (In this case, one untyped system serves as constants. The 
syntax of one untyped systems is different from the syntax of the 
other, and therefore tagging types to elements is not necessary 
unless a static typing during compile time was required for 
performance purpose.) 

In this paper, we are interested in two kinds of untyped systems: 
the untyped systems which take a class of partial recursive 
functions as the semantics, and the untyped system, i.e., the 
EP data model (and therefore Froglingo), which takes a class 
of total recursive functions as its semantics. In the following 
subsections, we discuss why the former ones need to be 
adapted with typed systems for programming practice and the 
latter doesn’t need to.

5.2.2.1 Partial Recursive Functions
The lambda calculus is a untyped system that take a class 
of partial recursive functions as semantics. Functions are the 
only type in the semantic algebra, and lambda expressions are 
the only type in the syntactic algebra. An implemented system 
for the lambda calculus would do error-checking by reporting 
errors when developers enter sequences of symbols that don’t 
assemble lambda expressions. It would provide abstractions 
by automatically calculating the normal form when developers 
provide valid lambda expressions even the developers had 
no knowledge about the beta reduction rule. (This is why we 
conclude that the lambda calculus is a type.)

Due to the fact that the homomorphism from lambda expres-
sions to partial recursive functions is not decidable, however, 
there is not an effective algorithm that arranges the lambda 
expressions in orders according to the properties of the class 
of partial recursive functions. (In contrast, integers can be 
divided into odd numbers and even numbers, and a class of 
total recursive functions can be arranged in orders in the EP 
data model as discussed in Section 2.3). As a result, it is not 
possible to semantically arrange lambda expressions in orders. 
The orders, in the place of types in typed systems, would help 
to manage business objects with different properties.

5.2.2.2 Total Recursive Functions
Instead of partial recursive functions, the EP data model focuses 
only on total recursive functions. The EP data model is untyped 
because the EP terms are the only form of the syntactical 
algebra and the total recursive functions are the only form of 
the semantic algebra. 

Analogous to integers, the EP terms in a given database are 
arranged in orders. The ordering relations discussed in Section 
2.3, in the role of the types of typed programming languages, 
can be used to specify the constraints for business objects. 
Example 3.3, Example 3.6, and the expression for dinner at 
the end of Section 4.1 are sample expressions embedding 
constraints for business objects. Note that the constraints are 
not imposed by the EP data model, but by Froglingo which 
utilizes the ordering relations. The way of carrying business 
constraints in Froglingo is similar to the data schema in a da-
tabase management system. 

Froglingo is untyped too. Mathematically, there are still infinitely 
many types in Froglingo for those non-terminating functions 
beyond the EP data model. But it is not in the interest of prac-
ticality to develop a typed system in which each user-defined 
type is involved with non-termination process. 

5.2.3 What types are
 we say that a type is a language homomorphic to an algebra; 
therefore a type has a syntactical aspect and a semantic aspect. 
Similar to the relational algebra discussed in 5.1, primitive data 
types like integers and user-defined data types in programming 
languages are those whose syntactical algebras are seen as 
identical to the semantic algebras. Here, a type can be simply 
viewed as an algebra, i.e., a set of values and a set of operations 
on the values [8]. This is not the case in the EP data model 
where the homomorphism function depends on a specific 
database. Separating the syntactical aspect from the semantic 
aspect is also important for the lambda calculus, because its 
homomorphism is not decidable. 

In this paper, a type is viewed actually not more than a  
language.

In a typed programming language, in which a class of partial re-
cursive functions is expressible, we observe that a type, such as 
integers or a user-defined type, always represents a strict subset 
of the class. (The development of types is intended to avoid 
those values from the class that may cause non-termination, 
and to facilitate the management of those business objects with 
different properties.) Therefore, there are infinitely many types 
potentially definable and desirable by users [6]. User-defined 
types are the signals of typed systems.

5.3 Higher-Order Functions
Given an initial set, a function is defined as a binary relation, 
i.e., a set of pairs, on the set such that no two distinct pairs have 
the same first coordinate. The first coordinate of a pair is called 
an argument, and the second a value. When a function takes 
other functions as its arguments and (or) values, it is called a 
higher-order function. The lambda-calculus defines a class of 
higher-order and partial recursive functions. The EP data model 
defines a class of higher-order and total recursive functions. A 
class of higher-order functions is called an applicative structure 
[4 and 25].

Instead of primitive types such as integers only, taking a functions 
as a parameter and (or) a return value of another function provides 
an additional flexibility for developers in software development 
and maintenance. Analogously in English, for example, it would 
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be easier to say “Whom am I speaking with?” than to say “What 
is the name of the person with whom I am speaking?”. 

Typed systems (e.g., functional and some imperative pro-
gramming languages) have already supported the feature at a 
limited scope. To maximize the flexibility higher-order functions 
can provides, however, a language system shall define that 
higher-order functions is untyped. In the lambda calculus, for 
example, any lambda expression can be applied to another 
lambda expression. In the EP data model, we can have the 
following assignments an EP database:

 D A = 1;
 F D = D;
 F F = 3;
 F 2 = 5;

Here, F is a higher-order function because applying it to the 
function D returns function D. The untyped EP data model also 
allows self-application, e.g., F F which yields the return value 
3 in the above expressions. 

In the Haskell expression: compose f g x= f (g (x)), the function 
compose appears to be untyped, but actually typed [9]. Here, f 
and g are not functions but variables for functions. For example, 
applying the function compose to an integer, e.g., compose 4, or to 
itself is certainly not a defined operation. As another example, 
applying compose to a function always returns another function, 
but not an integer. 

6. Conclusion

Application software started with a monolith where a 
programming language was the only component in the 1960s. 
To achieve a better productivity and to adapt to a rapid change 
of business requirements, a typical database application 
today consists of multiple components including database 
management system, programming language, web server, 
data exchange server, and access control server. With the EP 
data model that is semantically equivalent to a class of total 
recursive function, a monolithic architecture becomes available 
again for database applications. The new monolith is not a 
physical combination of traditional multiple components, but a 
logical consolidation of functions out of the traditional multiple 
components. As the result, the new monolith is expected to 
improve productivity while it doesn’t lose functionality.

The EP data model is untyped. It is untyped with unique char-
acteristics such that it is a novel approach to many challenges 
facing traditional technologies. The untyped system consistently 
arranges business data in higher-order functions; therefore, an 
application system in Froglingo is easy to be adapted to new 
requirements. The high feature scalability should be particularly 
helpful in application areas such as knowledge management 
and artificial intelligence, where the initial understanding of a 
problem is often imperfect. The untyped system indiscrimi-
nately treats diverse application objects that would otherwise 
be defined as different data types in traditional technologies, 
and therefore allows users to specify their queries through a 
single entry field. The untyped system supports searches based 
on key words and phrases against a database and therefore 
allows users or software applications to approach precisely 
their final query results by starting with a few key words and 
phrases. The flexible user interface is expected to be particularly 
useful in the application areas of knowledge management and 
artificial intelligence, where there are great numbers of objects, 
and each object has hundreds and perhaps even thousands of 
attributes. The untyped system consistently stores common at-

tributes of multiple objects only once in database, and therefore 
preserves the similarities between the multiple objects. The 
ability to preserve (rather than mine) similarities is expected 
to be particularly helpful in the application areas of knowledge 
management and artificial intelligence, where similarity is an 
important concept.

A data model is defined to be a homomorphism from a language 
to an algebra such that the algebra includes at lease one relation 
and each operation of the algebra terminates on every input. 
This definition preserves the essence of the concept of a data 
model that database management systems started with in the 
1970s. It is the essence of keeping a programming language 
easy to use in software development and maintenance.

One may view a linked list as the easiest if he/she only needs to 
represent a sequence of objects; and a relational DBMS as the easi-
est if tables are the only concern. But to construct and to maintain 
arbitrary applications, and to communicate between applications, it 
has been assessed that Froglingo, incorporated with a total-recursive-
equivalent data model, achieves the greatest possible ease. 

In the paper, the notion of programming language was used 
always for a language that is Turing-complete. Therefore a 
language is not categorized as a programming language in 
this paper if it is not Turing-complete. Many strongly typed lan-
guages, such as Nominal System T [15], express strict subsets 
of total recursive functions. In the authors’ best knowledge, 
the EP data model is the first language exactly expressing a 
complete class of total recursive functions. 
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