
 Journal of Digital Information Management ❑ Volume 9 Number 4 ❑ August 2011 135

Journal of Digital
Information Management

ABSTRACT: The EP (Enterprise-Participant) data model is a
language homomorphic to and semantically equivalent to a class
of total recursive functions. It takes a unique position in the fields of
programming languages and database management. Mathemati-
cally, it enables a programming language to achieve the greatest
possible ease of use in software development and maintenance.
(This assumes that a programming language incorporated with a
higher expressive data model was easier than another one with
a lower expressive data model, or no data model at all.) Practi-
cally, Froglingo -- a programming language incorporated with the
EP data model is a monolith that consolidates multiple software
components of traditional software architecture. In addition, Fro-
glingo is untyped, i.e., programmers write application programs
without a necessity of user-defined types. Finally, Froglingo is a
novel approach to many challenges facing traditional technologies,
including feature scalability, user interface flexibility, and similarity.
In this paper, we show with further clarity the concept of ease of
use by proposing a mathematical definition for the concept of data
models and by relating Froglingo with other programming language
through the analysis of types and higher-order functions.

Categories and Subject Descriptors
D.3.2 [Language Classifications]; Data-flow languages: D.3.3
[Language Constructs and Features]; Data types and structures;
H.2 [Database Management]: Data models

General Terms: Programming languages, Froglingo, Data models
types, Computability, Algebra, Homomorphism

Keywords: Froglingo programming langauge, EP data model,
Higher-order functions, Total-recursive equivalence, Knowledge
management

Received: 11 February 2011, Revised 31 March 2011, Accepted 9
April 2011

1. Introduction

Many database applications were written in programming
languages in the 1960s and 1970s, and are still in operation.
The use of database management system (DBMS) came
to database application software around the 1970s. It
significantly improves the productivity in software development
and maintenance. The data models, i.e., the mathematical
underpinnings of DBMSs, complement programming languages
with three essential characteristics: 1) a data model offers set-
oriented operations to update and query data, 2) each operation
always terminates, and 3) like a data type, a data model is
a language homeomorphic to an algebra, i.e., programmers
specify what a program is in terms of business requirements,
but don’t necessarily specify how it will be implemented.

The traditional data models, i.e., the relational data model
and the hierarchical data model, cannot express all desired
business data. Hierarchical data, for example, can be folded
into a relation, but its containment relationships cannot be
captured by the relational data model with the expressive
power of the relational algebra [3]. Another example would be
relationships among the vertices in a directed graph, (e.g., is
there a path from A to B?), which cannot be captured in both
the relational data model and the hierarchical data model. As
a result, database applications continuously require intense,
though relieved, development and maintenance work, which
could be avoided if a more expressive data model were real-
ized and leveraged.

The EP (Enterprise-Participant) data model is semantically
equivalent to a class of total recursive functions (abbreviated
as a total-recursive-equivalent data model in this paper) [25].
The equivalence says that programmers are not allowed to
construct an application program that may not terminate on
an input. At the same time, it says mathematically that any
meaningful application programs, i.e., those with the seman-
tics falling into the class of total recursive functions, could be
expressed in the EP data model with the hypothesis of infinite
space and time.

The EP data model is a data model because it possesses the
three above-mentioned essential characteristics. To demonstrate
the significance of the EP data model being both a data model
and a language semantically equivalent to a class of total recur-
sive functions, the authors of the articles [27 and 23] suggested
an objective view on easiness. This view contends that: 1) a
data model is easier to use than a programming language in the
development and maintenance of those applications expressible
in the data model, 2) if one data model is more expressive than
another data model, the former is easier than the latter in the
development and maintenance of the applications where a pro-
gramming language is involved, and 3) a programming language,
by incorporating with a total-recursive-equivalent data model, is
the easiest to use in software development and maintenance. In
these articles, Froglingo, incorporated with the EP data model
with an implementation [28], was therefore determined to be the
easiest programming language. Calling Froglingo the easiest
programming language to use has the following practical implica-
tions: 1) Froglingo is a monolith that consolidates multiple software
components of traditional software architecture [26], 2) The EP
data model is a consistent tool to manage as much finite data as
a business application needs [25 and 27], and 3) The EP data
model arranges business data in a manner such that a rich set of
built-in operators are available to use [24].

In this paper we press the notion of easiness further with the
following contributions:

Froglingo, a Programming Language empowered by a Total-Recursive-Equivalent
Data Model

Kevin Xu, Jingsong Zhang, Shelby Gao
Bigravity Business Software
2306 Johnson Circle, Bridgewater
New Jersey, U.S.A
{kevin, jingsong, shelby}@froglingo.com

136 Journal of Digital Information Management ❑ Volume 9 Number 4 ❑ August 2011

1. Taking Froglingo as a complete programming language, we
examine how it adopts procedural statements of imperative
programming languages in conjunction with the EP data
model to specify business logic, and provides built-in facili-
ties to interact effectively with users and to communicate
with other applications.

2. Through an analysis of an application system implemented
in Froglingo (an award recipient in the ICCBR 2010
Computer Cooking Contest), we observe that Froglingo,
as a untyped system, is a novel approach to many
challenging issues facing traditional technologies,
including feature scalability, user interface flexibility, and
similarity.

3. We propose a mathematical definition to formalize the
concept of data models. Through the definition, we
show that we can clearly see the differences between
programming (or other specialized) languages and
data models, and the differences among data models
themselves.

4. We review typed and untyped systems, and conclude that
Froglingo is untyped. Unlike the other untyped systems,
Froglingo is the safest tool to use. Unlike all the other
systems, Froglingo fully utilizes the properties of the class
of total recursive functions that enable it to be a novel
methodology approaching many challenging issues facing
traditional technologies.

The last 2 contributions above show with further clarity the
concept of ease of use.

In Section 2, we introduce the EP data model. In Section 3, we
describe the features of Froglingo beyond the EP data model.
In Section 4, we analyze the recipe advisor in Froglingo that
participated in the ICCBR 2010 Computer Cooking Contest. In
Section 5, we give the related work, including the proposal for
a mathematical definition of the concept of data models and a
discussion on types.

2. EP Data Model

In traditional data models, an entity is either dependent
on one and only one other entity, or independent from
the rest of the world. The functional dependency in the
relational data model and the child-parent relationships in
the hierarchical data model are typical examples. These
are restrictions, and they don’t reflect the extent to which
the complexities of the real world can be managed using
a computer.

The logic of the EP data model is that if one entity is dependent
on other entities, then those entities are precisely two in number.
Drawing terminology from the structure of an organization or
a party as in article [29], one such entity is called enterprise
(such as organization and party), the other is called participant
(such as employee and party participant), and the dependent
entity is called participation. An enterprise consists of multiple
participations. Determined by its enterprise and its participant,
a participation yields a value, and this value is in turn another
enterprise.

2.1 Terms and Databases
The EP data model will be described as a formal language.
We will discuss terms, assignments, and databases in this
sub section, and normal forms and reductions in Section
2.2. In section 2.3, we will introduce the set of operators
stemming from the ordering relations among managed
data.

Definition 2.1
Let P be a set of identifiers, and C a set of constants where
null is a special constant. The set of terms T is formed by the
following rules:

1. A constant is a term, i.e., c ∈ C ⇒ c ∈ T
2. An identifier is a term, i.e., a ∈ P ⇒ a ∈ T
3. The application of a term to another is a term, i.e.

m ∈ T, n ∈ T ⇒ (m n) ∈ T

For example, the expressions 3.14, “a string”, an_id, (f 1),
((country state) county), and ((a b) (c d)) are terms. The entire set
T can be called the Herbrand universe of the EP data model.

Given m, n, q ∈ T, we introduce the following notations:

Notation 2.2
1. Terms m and n are called sub-terms of the application (m n).

A term is also a sub-term of itself.
2. If q is a sub-term of m or n, then q is also a sub-term of the

application (m n).
3. Term m is called the left sub-term and a leftmost sub-term of

the application (m n), and n the right sub-term and a rightmost
sub-term of the application (m n).

4. If q is a leftmost sub-term of m, then q is also a leftmost
sub-term of the application (m n). Similarly, if q is a rightmost
sub-term of n, then q is also a rightmost sub-term of the ap-
plication (m n).

5. The parentheses surrounding an application can be omitted
when the right sub-term is not another application.
For
Example, (f 3), ((country state) county), and ((a b) (c d)) can
be rewritten the following way: f 3, country state county, and a
b (c d) correspondingly.

6. Given an expression m ≡ n, the symbol ≡ indicates that the
two symbols m and n are identical.

Many notations from the lambda calculus have been adopted
in the EP data model. Unlike the lambda calculus, however,
the EP database has identifiers and doesn’t have variables.
(Froglingo does have variables as discussed in Section 3.)

A term can be assigned with another term.

Definition 2.3
Given m, n ∈ T, the form m = n is an assignment. Here, m is
called the assignee and n the assigner. All the assignments in
a given T make up a set: A = { m = n | m ∈ T, n ∈ T }.

Now we are ready to introduce the definition of an EP database:

Definition 2.4
An EP database D is the union of a set of terms T ⊂ T and a
set of assignments A ⊂ A, i.e., D = T ∪ A, such that the following
things are true:
1. If an application m n is in D, the left sub-term m must not be a con-

stant and the right sub-term n must not have an assigner, i.e.,
m n ∈ D ⇒ m ∈ (T - C) ∩ ∀k ∈ T, (n = k) ∉ D

2. If an assignment (m = n) is in D, m cannot be the left sub-term
of another term in D, i.e.,

(m = n) ∈ D ⇒ ∀t ∈ T, m t ∉ D
3. The database D must have no circular set of assignments, i.e.,

m0 = m1, m1 = m2, …, mn-1 = mn ∈ D, here n ≥ 1 ⇒ mn = m0 ∉ D.

The above restrictions force users to enter those and only those
business data that are semantically equivalent to a class of total
recursive functions [25].

 Journal of Digital Information Management ❑ Volume 9 Number 4 ❑ August 2011 137

The following example is an EP database for the “Social Security
Department” in the United States and for a central administration
office in a college. In the “Social Security Department” (SSD),
each resident has a social security number (SSN), a name, and
a birth date. In the college, a resident registers as a student,
the college has departments, each department offers classes,
and each class has students.

Example 2.5
A school administration database:
SSD.gov John SSN = 123456789;
SSD.gov John birth = ‘6/1/1990’;
SSD.gov John photo.jpg = …; /* a binary stream*/
college.edu admin (SSD.gov John) enroll = ‘9/1/2008’;
college.edu admin (SSD.gov John) Major = college.edu CS;
college.edu CS CS100 (college.edu admin (SSD.gov John))
grade = “F”;

Note that college.edu and SSD.gov are also identifiers, and an
assigner can be an image file.

According to Definition 2.4, the subterms in the assignee and
assigner of a database, e.g., SSD.gov, John, and SSD.gov John
must be in the database too. We don’t show them here because
it is clear and implied by the following propositions:

Proposition 2.6
1. If an application is in a database, so are its left sub-term and

its right sub-term, i.e.
m n ∈ D ⇒ m ∈ D ∩ n ∈ D

2. If an assignment is in a database, so are its assignee and
assigner, i.e.

m = n ∈ D ⇒ m ∈ D ∩ n ∈ D

With the EP data model, one may express directed graphs with
circles. Here is an example:

Example 2.7
A directed graph with a cycle:

v1 v2 = v2;
v2 v1 = v1;
v2 v3 = v3;

2.2 Normal Forms and Reduction
Given a database, each term in the Herbrand universe T can
be reduced to a normal form.

Definition 2.8
Given a database D, the set of normal forms NF is defined as
follows:

1. All the constants are normal forms, i.e.,
 c ∈ C ⇒ c ∈ NF

2. All the terms in D that don’t have assigners are normal forms
by themselves, i.e.,

 t ∈ D – A ⇒ t ∈ NF

For example, terms “F”, SSD.gov, and SSD.gov John are normal
forms, but not SSD.gov John birth in Example 2.5.

Definition 2.9
Given a database D, we have the one-step evaluation rules,
denoted as →

1. An identifier not in D is reduced to null, i.e.,
 p ∈ P ∩ p ∉ D ⇒ p → null

2. An assignee in D is reduced to its assigner, i.e.,

 (m = n) ∈ D ⇒ m → n

3. If m, n ∈ NF, and m n ∉ D, then m n is reduced to null, i.e.,

 m, n ∈ NF, m n ∉ D ⇒ m n → null

4. The application of two terms is reduced to the application of
their normal forms, i.e.,

 m, n ∈ T, m → m’, n → n’ ⇒ m n → m’ n’.

Definition 2.10
Let m, n ∈ T, and D a database. If there is a finite sequence l0,
…, lq ∈ T, where q ≥ 0, such that m ≡ l0,, l0 → l1, …, lq-1 → lq, lq ≡
n, then

1. m is effectively, i.e., in finite steps, reduced to n, written as
m →EP n.

2. If m1 →EP n and m2 →EP n, then we say that m1 is equal to m2,
denoted as m1 == m2. The relation == is the complete set of the
equations derivable from the environment of D.

Example 2.11
Below are a few equations from the databases in Examples
2.5 and 2.7:

SSD.gov John SSN == 123456789;
(College.edu Admin (SSD.gov John) Major) == College.edu CS;

v1 v2 v1 == v1;
v1 v2 v1 v2 v1 == v1 v2 v1;

With the concepts defined so far, the EP data model was
proved as a consistent, sound, and complete language that
takes a class of total recursive functions as its semantics [25].
Therefore, each term in T can be effectively reduced to one
and only one normal form with a given database. Intuitively, an
EP database is interpreted as a set of higher-order functions,
and the entire class of higher-order and total recursive func-
tions can be represented by an EP database provided that the
space for a database was unlimited. The proof in [25] further
showed that each term or assignee in an EP database has a
corresponding higher-order function. Mathematically, this cor-
respondence is called a homomorphism. This will be further
discussed in Section 5.1.

2.3 Ordering Relations
There is a rich set of ordering relations among higher-order
functions, and therefore also among the terms in a database.
Before introducing the individual ordering relations, we provide
in Figure 1 below an alternative presentation of the database
in Example 2.5.

CS admin

CS100
Major

enroll
‘9/1/08’

SSD.gov

John

birth
‘6/1/90’

SSN
123456789

grade
“F”

Legends:

application points up to function

application points to argument

assignee points to assigner

an application

college.edu

photo.jpg

Figure 1. Graphical Presentation of School Admin. DatabaseFigure 1. Graphical Presentation of School Admin. Database

138 Journal of Digital Information Management ❑ Volume 9 Number 4 ❑ August 2011

In Figure 1 above, we started to use the words “function” and “argu-
ment” interchangeably in place of EP terms. We will see in Section
5 that EP terms are homomorphic to higher-order functions.

An application depends both on its function and on its argument
as well as the sub-terms of the function and the argument. This
leads to the development of the following relations:

Definition 2.12
1. Given a term (m n) ∈ T, we define the relation “has the left
sub-term”, denoted as m n {+ m; and the relation “has the right
sub-term”, denoted as m n {- n, i.e.,

{+ = {<m n, m> | m, n ∈ T };
{- = {<m n, n> | m, n ∈ T }.

2. Given a term m in a database D, let l, s, r are a leftmost sub-
term, a sub-term, and a rightmost sub-term of m accordingly,
then the operators {=+, {=-, and {= in the following expressions
are defined such that the expressions are evaluated to be true:
m {=+ l, m {=- r, m {= s. In other words:

 {=+ = {<m, l> | m ∈ D and l is a leftmost sub-term of m}
 {=- = {<m, r> | m ∈ D and r is a rightmost sub-term of m}
 {= = {<m, s> | m ∈ D and s is a sub-term of m}

Here are the sample expressions with the value of true:

SSD.gov John birth {+ SSD.gov John;
SSD.gov John birth {=+ SSD.gov;
SSD.gov John birth {=- birth;
College.edu CS CS100 (College admin (SSD.gov John)) {=- John;
birth {= SSD.gov John birth;
John {= SSD.gov John birth.

Because it exists independently, the normal form, resulting
from an application, doesn’t have to depend on the function
and the argument of the application. However, a normal form
is derivable from an application; therefore, it is derivable from
the function, from the argument, and from the sub-terms of the
function and the argument. This leads to the development of a
few pre-ordering relations.

Definition 2.13
1. Let m, n, q ∈ T and D a database, if m n == q, then the
operators (+ and (- in the following expressions are defined
such that the expressions q (+ m and q (- n are evaluated to be
true. In other words,

(+ = {<q, m> | ∀m ∈T, ∃n, q ∈T such that m n == q under D}

(- = {<q, n> | ∀n ∈T, ∃m, q ∈T such that m n == q under D}

2. Let m, q, l, s, r ∈ T, D a database, m == q, l is a leftmost sub-
term of m, s is a sub-term of m, and r is a rightmost sub-term of
m. Then the operators (=+,(=-, and (= in the following expres-
sions are defined such that the expressions are evaluated to
be true: q (=+ l, q (=- r , and q (= s. In the other words:

 (=+ = {<q, l> | ∀l ∈T, ∃m, q ∈T such that
 l is a leftmost sub-term of m, and m == q under D}

 (=- = {<q, r> | ∀r ∈T, ∃m, q ∈T such that
 r is a rightmost sub-term of m, and m == q under D}

 (= = {<q, s> | ∀s ∈T, ∃m, q ∈T such that
 s is a sub-term of m, and m == q under D}

Note that the relations were defined over the entire Herbrand
universe. The implementation of Froglingo, however, only con-
siders database D as the domain of the relations.

Example 2.14
Given the databases in Example 2.5 and 2.7, here are a few
Boolean expressions with true values:

“F” (+ College CS CS100 (College admin (SSD.gov John));
“F” (=+ College CS CS100;

“F” (=- SSD.gov John;
“F” (= College.edu admin;

v2 (=+ v1; v1 (=+ v2;
v1 (= v2;

The pre-ordering relations appear irrelevant to the queries
supported in traditional database technologies. However, they
were found useful in the following examples.

Example 2.15
Given the data presentation in Example 2.7 for a directed
graph,

1. The query “if there is a path from v1 to v3” is expressed
as: v3 (=+ v1. It is evaluated to be true since v3 == v2 v3 ==
(v1 v2) v3.

2. The query “if there is a circle between v1 and v2” is
expressed as: v1 (=+ v2 and v2 (=+ v1. It is evaluated to
be true because v1 == v2 v1 and v2 == v1 v2.

3. The query “find all the vertexes that has a path from v1”
is expressed as: select $v where $v (=+ v1. It is evaluated
to be v1, v2, and v3. Here the identifier select...where... is a
built-in facility structure for a set-oriented operation.

3. Froglingo

With the EP data model that is equivalent to a class of total
recursive functions, we minimize our dependency on a
programming language. But a programming language is still
needed. First, constructing arbitrary functions for both queries
and business logic on top of a managed data set requires
a programming language. Although the built-in operators
introduced in Section 2.3 can be used to construct many
useful queries, they don’t exhaust all the queries that are
required for practicality and that are within a class of total
recursive functions. Viewing an EP database as a finite set
of higher-order functions, in addition to the built-in operators
in Section 2.3, there are still an infinitely many total recursive
functions that are potentially demanded by applications. (The
notion of the equivalence of the EP data model to a class of
total recursive functions implies that all the total recursive
functions could be expressed in the EP data model provided
that there were infinite time and space [25]. For practicality,
however, the EP data model always expresses finite data.
Therefore, a programming language is still needed to
express infinite data with finite expressions. The practicality
of the EP data model is comparable to the practicality of a
programming language that theoretically expresses a class
of partial recursive functions with the hypothesis of infinite
time and space, but practically expresses a finite set of partial
recursive functions.)

Second, some business data may be expressed more con-
veniently as business logic. By business data, we normally
mean finite properties. By business logic, we emphasize its
finite presentation for mostly infinite properties. To express
the opening hours of a shopping center, e.g., from 9:00 am
to 9:00 pm except on weekends, one may prefer not to repeat
the same schedule 5 times for 5 workdays in a database,
but instead to specify it only once. Representing this type
of business data demands programming language or other

 Journal of Digital Information Management ❑ Volume 9 Number 4 ❑ August 2011 139

specialized language systems such as those called constraint
databases [19].

In this section, we introduce the rest of the concepts beyond
the EP data model of Froglingo.

3.1 Variables
A variable in Froglingo is represented by an identifier preceded
by the symbol “$”. For example, $a_variable, and $student. It
is a new type of terms.

Definition 3.1
1. Let V be a set of variables. A variable is a term, i.e., v ∈ V

⇒ v ∈ T.

2. If a variable is in the assigner of an assignment in a database,
it must be in the assignee.

3. If a variable is in a term in a database, it cannot be the left-
term of a sub-term in the given term.

With the addition of variables, we can have the following valid
assignments in a database:

Example 3.2
fac 0 = 1;

fac $n = ($n * (fac ($n - 1)));
fun $x 1 $y = ($x + $y);
fun $x 2 $y = ($x * $y);

Below are a few query expressions and reduction results:
fac 4 24;

fun 3 2 4 12;
Note that the reduction rules in Definition 2.9 are enhanced with
variables and not discussed here.

Semantically, the expressions above are equivalent to a
database having infinite assignments: fac 0 = 1; fac 1 = 1;
fac 2 = 2; fac 3 = 6; …. This demonstrates that variables
semantically add nothing new to the EP data model, but
syntactically to the finite expressions for possible infinite
entities (semantics).

A variable can be restricted within a domain to prevent
unwanted data from being its instances and (or) to prevent
an operation from not terminating. For example, the follow-
ing expressions can be used to represent the tax rule: The
tax rate is 20% if a salary is less than $100,000, and 40%
otherwise.

Example 3.3
 tax $s1:[$s1 >= 0 and $s1 < 100000] = ($s1 * 0.2);

 tax $s2 = ($s2 * 0.4);

The data represented by the terms containing variables obeys
the ordering relations; therefore, the corresponding built-in
operators are applicable to variables [24].

3.2 Sequential Terms
The EP data model and variables are mathematically
sufficient to make Froglingo semantically equivalent to a
class of partial recursive functions. To express multiple
actions triggered by single events, and to perform user
input checking, the procedural statements in imperative
programming languages are adopted, and called sequential
terms.

A sequential term is a sequence of terms separated by commas
‘,’. Sequential terms can only serve as assigners.

Definition 3.4
1. The set of sequential terms S is formed by the following rules:
t ∈ T ⇒ t ∈ S; t ∈ T ∧ s ∈ S ⇒ s ‘,’ t ∈ S.

2. An assignment in a database is extended to allow its assigner
to be a sequential term.

A money transfer between two bank accounts is expressed
as follows:

Example 3.5
transfer $money =

 (update account2 = (account2 - $money)),

 (update account1 = (account1 + $money));

In the example above, we assumed two pre-defined accounts,
such as account1 = 100 and account2 = 300. In addition, the
identifier update is a built-in operator that updates assignees’
assigners. The entire expression associated with an update op-
eration is also called a term. There are other built-in operators,
create and delete, that are not introduced but are assumed here.
Note that sequential terms, update operations, and set-oriented
operations like the one in Example 2.15.3 are implemented to
return values too. The returned values are a set of pre-defined
constants [28].

The administrator of the college college.edu, as another example,
can construct a function register that accepts class registration
requests from students. Given a requester and a course as the
inputs of a request, a sample constraint is that the request is
accepted only if the requester, through her “signature” (a built-
in term to be converted to her own user account), hasn’t yet
registered for the course:

Example 3.6
register $usr:[$usr isa signature] $class =

register_validate
 ($class (college.edu admin $usr) == null)
 $usr
 $class;

The term SSD.gov john is a sample instance of the variable
$usr. The term college.edu CS CS210, if CS210 is another class
offered by the college, is a sample instance of the variable
$class. The Boolean expression with the operator == is to test
if the requester has already registered the class. The function
register_validate is further defined as

Example 3.7
register_validate false $usr $class =
 “The registration was not successful.
 You must have registered the class already.”;

register_validate true $usr $class =
 “You have successfully registered the class”,
 (create $class (college.edu admin $usr));

3.3 Built-in facilities
An application program in a traditional programming language,
where a relational DBMS is used, needs to have application-
dependent data access control (also called user entitlement)
against the relational data. This is necessary because the
data access control, in the correspondence of total recursive
functions, cannot be expressed by the relational data model,
but only by the programming language. This is not an issue in
Froglingo with the EP data model. Froglingo has a built-in facility

140 Journal of Digital Information Management ❑ Volume 9 Number 4 ❑ August 2011

addusr to create user accounts. A user account itself is a term,
and it is more than a term. A user cannot access a database
unless he/she is logged into a user account by providing a
password. For example, the term college.edu, SSD.gov, and
SSD.gov John can be added to the database in Example .2.5
as user accounts.

An EP database can be viewed as a hierarchical structure under
the relation {+; therefore, the data in an EP database is divided
into private spaces for individual users according to {+ as if it
was a file system. The owner of a user account, e.g., a term h,
is the administrator for the entire space under the user account
h, i.e., all the assignees (terms) t such that t {+ h.

Analogous to the concept of paths in a file system, the EP term
for an assignee in an EP database serves as the name of the
assignee; therefore, the concept of a current working directory
in a file system is adopted to allow users to navigate through
data with the guide of the ordering relation {+. Consequently,
an assignee can be named differently, depending on where a
user stands. In the school administration database in Example
2.5, for example, the assignee SSD.gov John has actually a dis-
tinguished name //SSD.gov John. When a person logs into it as a
user account, the system will prompt the distinguished name in
the coming command line: [//SSD.gov John].

This means that the system takes the user account as the home
working stand by default, and the assignee SSD.gov John birth,
having the distinguished name //SSD.gov John birth, will have a
relative name birth.

The owner of a user account can freely create new data, re-
move, or change data under the user account. The owner has
the freedom to construct as many functions as he/she wants,
as if a user had the freedom to manage as many files as he/
she wanted.

Users share their data by granting an access privilege, the
only privilege after the administrator privilege assigned to
an owner originally. Assuming that the function register in
Example 3.6 is created under the user account college.edu,
then the owner of the account can issue the following com-
mand:

[//college.edu] grtacc register anyone;

With the built-in operator grtacc, it grants the user account
anyone (a built-in account in Froglingo for any user) the access
privilege to the assignee with the distinguished name //college.
edu register. Note that the access privilege doesn’t necessarily
mean a read-only permission. Instead, the user account that
is granted the access privilege to a function impersonates the
owner of the function in executing the application of the function
to a user provided the argument. Therefore, a call to the func-
tion register from any student may cause the system to create
new data in database.

The system interaction with users in Froglingo is extended to
use web browsers across a network. For example, a user can
call the function register through a HTTP request message via
a web browser:

http://college.edu/register signature (%2F%2Fcollege.edu CS
cs201)

Here the entire string is a URI embedding the previous com-
mand. In the URI, “%2F” is the hex code for the character ‘/’
required by the URI syntax.

Note that web pages, i.e., HTML documents, possibly em-
bedding Froglingo expressions, are stored as data in EPda-
tabase..

4. Case Study

Data structures in traditional programming languages help to
organize business data and help to detect errors. The classes
and subclasses in object-oriented programming languages
further improve the productivity of software development by
code reuse through the concept of inheritance. Instead of types,
the EP data model is untyped, i.e., every thing is modeled as
higher-order functions without a user-defined type. See Section
5.2 for more discussion about types.

In this section, we introduce a food recipe advisor written in
Froglingo, which was the aforementioned award recipient in the
ICCBR 2010 Computer Cooking Contest [22]. Through the recipe
advisor, Froglingo demonstrated the following characteristics:
1) a high feature scalability, i.e., easy to adapt to new business
requirements, 2) a search ability based on both key words and
phrases against ordered data in the database, 3) a flexible user
interface indiscriminately accepting diverse application objects,
4) a consistent way of preserving similarities.

4.1 Knowledge Representation
User-defined data types, once established in traditional
technologies, become the infrastructures of application systems,
and are difficult to change when it is necessary to adapt to
new business requirements. It becomes more evident in
emerging application areas such as knowledge management
and artificial intelligence where initial understandings of a
problem are often imperfect and refined knowledge may render
existing understanding obsolete [16]. In the CBR (Case-Based
Reasoning) domain of cooking [15], for example, we may
simply represent cooking knowledge as a list of ingredients.
But this is just the beginning of cooking knowledge acquisition
process. Beyond ingredients, we may have to consider cooking
equipment, ingredient volume, food preparation steps and sub
steps, and heating factors as they relate to the changes in flavor,
texture, aroma, color, and nutritional content.

In Froglingo, every object is represented in higher order func-
tion regardless of whether it is a data type definition, a simple
object, or a complex object. We demonstrate in this subsection
that the uniformed presentation of data in the EP data model
helps application upgrades and new feature enhancement (and
therefore increases feature scalability).

An ingredient may have an ingredient type, and an ingredi-
ent type may have its parent type. Sometimes, an ingredient
may belong to multiple types. Here are a few examples in EP
terms:
 meat beef (short loin);
 meat chicken;
 vegetable artichoke;
 broth (meat chicken);
 broth vegetable;

The preparation method is also important in cooking. The meth-
ods bake, grill, steam, and stir fry are typical. Preparing a dish
normally involves multiple methods and therefore a sequence
of preparation steps, and each step may have its sub-steps.
All of these can be represented in Froglingo. But just for dem-
onstration, only one preparation method is considered for a
recipe in the case study.

Many ingredients and dishes have different origins. For ex-
ample, curry is an Indian ingredient, a wok is an East Asian
cooking utensil, and a Fajita beef is a Mexican dish. To support
this sort of diversity, we inventory a list of food origins. Here
are a few examples:

 Journal of Digital Information Management ❑ Volume 9 Number 4 ❑ August 2011 141

Asian Chinese Szechuan;
French Dijon;
Irish Kilkenny;

Ingredients may have multiple names. Here are a few
samples:

lichee = lichi;
chile = hot pepper;

Now let’s talk about recipes. A recipe is represented by an as-
signment in Froglingo. Here are a few examples:

(flour (all purpose)) sugar yeast salt milk egg bake
 = world class waffle;

(flour (all purpose)) sugar yeast salt shortening bake
 = batter white bread;

(meat chicken) cheese seasoning (sauce salsa) bake Italian
 = spicy parmesan chicken;

In the first example, the recipe “World Class Waffle” is a
baked food and has the ingredients in the order that appears
in the original recipe book: all-purpose flour, sugar, yeast,
salt, milk, and egg. We simply take the sequence and place
them in the order as an EP term. If we know its cooking
method and (or) its origin, we just simply append them to
the previous EP term.

Because the first two recipes above have the same in-
gredient sequence at the beginning: all-purpose flour,
sugar, yeast, and salt, the sequence is stored only once,
and therefore is called a shared ingredient sequence. The
shared ingredient sequence is a factor used to determine
if two recipes are similar. (This similarity is to be discussed
further in Section 4.3.)

All the information is represented so far in a consistent
manner, i.e., in higher-order functions. See Figure 2 for a
graphical view. The consistency helps to add new functional-
ity to the top of existing data with minimum effort. Here is an
example that represents a dinner consisting of an appetizer,
a main dish, and a dessert, which would normally be repre-
sented by different classes in object-oriented programming
language:

dinner (salad potato) (spicy parmesan chicken) (cake lemon);

To express a set of dinners with alternative starters, main
dishes, and desserts, at a restaurant owner’s discretion, it
may be convenient to use variables instead of enumerating the
permutations. The following sample expression is equivalent to
a set of dinners including the one defined earlier:

dinner $s:[$s {=+ salad or $s {=+ soup]

 $m: [$m {=+ chicken or $m {=+ marinate]

 $d: [$m {=+ cake];

Despite the variables, the above expression preserves the
ordering relations discussed in Section 2.3.

4.2 User Interface and Queries
Categorizing and representing business data in different data
types may require end users to enter query inputs in different
entry fields through a graphical user interface (GUI). For
example, a customer may want to find all the Italian foods with
baked chicken. In such a case, a recipe system in traditional
technologies may provide a GUI with three entry fields
corresponding to the three internal data types: ingredients
including chicken, origins including Italian, and cooking methods
including bake. The separation at user interface level may not
be desired in many circumstances, especially when end users
have limited knowledge about business domains.

Froglingo supports a user interface quite differently. In the
sample screenshot of Figure 3, the interface allows users to
enter a list of phrases or words delimited by a comma, and each
phrase or word can be preceded with the word “no” for negation.
Phrases and words for different types of objects can be entered
in a single field without regard to any particular order.

Comparable to the search ability of traditional technologies
based on key words against textual documents, Froglingo sup-
ports searches based on both key words and phrases against
a structured database. A phrase, e.g., “all-purpose flour” from
the user interface discussed earlier, is initially translated into a
combinatory term in Froglingo, e.g., flour (all purpose). This trans-
lation process is the same one used for knowledge collection
discussed in Section 4.1 (and it is automated via a parser).

This interface is primarily supported by a single built-in opera-
tor {= internally. The following expression, for example, can be
automatically converted from the query string in Figure 3:

select $dish where $dish {= flour (all purpose) and

 $dish {= bake and $dish {= Italian and

 $dish {= vegetable and not $dish {= sauce tomato;

The expression above will retrieve all the terms (assignees) in
a database that have sub terms flour (all-purpose), bake, Ital-
ian, vegetable (and therefore vegetable artichoke), but not sauce
tomato.

The same interface is equally applicable to dinners, more
complex objects than recipes. When customers enter a string:

bake

meat

chicken

seasoningsugar

cheese

flour all

purpose

yeast
salt

shortening

milk

egg

sauce

salsa

world

class

waffle

spicy

parmesan

chicken

batter

white

bread

Italian

Figure 2. Graphical Presentation of Cooking Knowledge Database
Figure 2. Graphical Presentation of Cooking Knowledge Database

Figure 3. A user interface indiscriminately taking diverse inputs

142 Journal of Digital Information Management ❑ Volume 9 Number 4 ❑ August 2011

“dinner, no soup, chicken, lemon cake”, for example, the system,
having the function dinner defined in Section 4.2, will retrieve
all the “dinners” that are generated dynamically to have three
components: a starter, a main dish, and a dessert. The system
doesn’t have the concept of dinner, but it has the term dinner
from the key word “dinner” in the inquiry string. In each selected
dinner, soup must not be any of the three components (therefore
the starter must be a salad), chicken must be an ingredient of
at least one component (since chicken is never a part of cake,
it obviously cannot be a part of dessert), and lemon cake must
be the dessert.

4.3 Similarity
In many business applications, we are required to compare
similarities among business objects. For example, if a restaurant
doesn’t have an exact dish that the customer wants, he/she
may want to order a similar dish. Ranking objects by weights,
e.g., a calculated weight for a dish based on an aggregate
function over the pre-assigned weights of its ingredients, is
a common approach. This works for many applications. The
weighted approach is a quick solution in traditional technologies
when managed objects are not easily arranged in a way that
allows them to be related to each other structurally. Taking
the recipes that are represented by sequences of ingredients
as an example, we are able to arrange ingredients in classes
and subclasses through which one can tell their similarities.
For example, salmon and flounder are two subclasses of the
super-class fish, and therefore they are similar. But there is not
an easy way in traditional technologies to relate two recipes
so that their similarities can be revealed structurally, although
individual ingredients may be indexed separately.

Recipes in Froglingo are stored structurally. Given the recipe
database in Figure 2, for example, the three recipes are simi-
lar because all of them are related by bake; and the recipe
“world class waffle” is similar to “batter white bread” because
they share the same ingredient sequence: all-purpose flour,
sugar, yeast, and salt. If the recipe “batter white bread” is
desired but the ingredient shortening is not available, then
the system would choose the recipe “world class waffle” as
the substitute.

The structure, i.e., ordering relations among higher-order
functions, offers a novel approach to preserve naturally the
similarities among recipes. Since the EP data model is untyped,
the structural view on similarity can be consistently applied to
other business applications where revealing similarities are
required.

5. Related Work

At the beginning of this paper, we said that decidability, set-
oriented operations, and homomorphism were the three
essential features of data models. In Section 5.1, we will use
an algebraic approach to give a mathematical definition for data
models. The purpose is to understand better the related work in
data models and database management, and further to support
the concept of ease of use proposed in [27 and 23].

In sections 5.2 and 5.3, we discuss the related work in program-
ming languages.

5.1 Data Models
There is no commonly accepted definition for the concept of
data models; however, it is certain that a data model is a data
type. Integers, arrays, records, and linked lists are the common
data types in programming languages. Viewing a data type as
an algebra, i.e., a set of values and a set of operations on the

values, in the context of semantics [8], one cannot ignore the
fact that a computer language must exist to expresses the data
type. Because of this, we promote another view that a data type
is a language in which each syntactical expression of a data
type has a correspondence in its semantics. Mathematically,
this correspondence is called a homomorphism. Because of the
homomorphism, the syntactical aspect of a data type is also
an algebra. In the rest of this subsection we call the syntactical
aspect of a data type the syntactical algebra, and the semantics
the semantic algebra.

A clear motivation for studying data types by promoting ho-
momorphism is to ease the development and maintenance
of business applications because data types support better
business data organization, error checking, and built-in opera-
tor utilizations [8]. Note that the concept of homomorphism is
not applicable to a generic programming language because
of errors, side-effects, and non-determinism [8]. In addition,
local variables as a core constructor of an imperative program-
ming language don’t have immediate correspondences to the
semantics, i.e., those outlined in the business requirements of
business applications.

It is always desirable that a program written in a language ter-
minates. Put differently, it is always desirable for each operation
in semantic algebra to halt on arbitrary input. Because of this,
equivalently, it is desirable for the homomorphism of a data
type to be decidable, i.e., it can be determined effectively (in a
finite number of steps) if an entity in the semantic algebra cor-
responds to a given element in the syntactical algebra. In the
work [8], it equivalently says that each element in the semantic
algebra is reachable from the syntactic algebra of a given data
type. This is true for primitive types like integers and for ag-
gregate types like arrays in generic programming languages.
Considering the broad scope of the set of data types defined in
[8], including functions, however, it is clear that not every data
type has a decidable homomorphism.

To distinguish a data model from a data type, we say that a
data model has decidable homomorphism.

Offering set-oriented operations is another unique feature of a
data model. To satisfy this requirement, we further differenti-
ate a data mode from a data type by saying that the semantic
algebra of a data model includes at least one relation. In
summary,

Definition 5.1.1
A data model is a language with a decidable homomorphism
to an algebra including at least one relation.

Which systems are data models? First, the relational data
model is a data model. The relational algebra is both the
syntactical and semantic algebra of the relational data model.
(The homomorphism becomes an isomorphism.). Referenc-
ing the relational algebra alone to define the relational data
model is sufficient because alternative languages such as
the algebra calculus can be syntactically converted to the
relational algebra.

We can say formally here that the hierarchical data model
is a data model. There are many hierarchical structure sys-
tems, such as file systems in operating systems, X.500 [21],
and XML (Extensible Markup Language). Essentially these
systems offer hierarchical structures. A hierarchical structure
was clearly described in [12] as a parent-child relationship,
denoted as PCR. To define the concept of the PCR relation-
ships in the language set by Definition 5.1.1, we introduce an
alternative definition:

 Journal of Digital Information Management ❑ Volume 9 Number 4 ❑ August 2011 143

Definition 5.1.2
A relation R over a set S is a parent-child relation (PCR) if, for
each pair <x, y> in R, the following conditions are satisfied:

1. There is not another pair <z, y> in R, where x and z are dis-
tinguished elements in S.

2. If there is a chain of pairs <x, e1>, < e1, e2>, …, < en-1, en> in
R, then it is impossible for y to be identical to any one of the
elements x, e1, e2, …, en-1, and en in S.

The first condition says that a child entity can only have one
parent. The second condition says that a child cannot be its
ancestor. A hierarchical structure is a PCR relation. Equivalently,
a hierarchical structure is a dependent relation:

Definition 5.1.3
Given a PCR relation over a set S, the dependent relation DEP
is defined as:

1. For each x in S, <x, x> is in DEP,

2. If <x, y> is in PCR, then <x, y> is in DEP, and

3. If <x, y> and <y, z> are in DEP, then <x, z> is in DEP.

We can now simply define that the hierarchical data model
as a hierarchical structure system homomorphic (or even
isomorphic) to an algebra including a PCR relation or a DEP
relation.

An alternative and intuitive semantic algebra for the hierarchical
data model can be an algebra constructed purely on the inclu-
sion operation of the set theory. Given a hierarchical structure:
C→B, D→B, B→A, E→A, where A is the root, and each arrow
“→” is the link from a child to a parent, for example, there is an
isomorphic structure: {o1, o2, o3, { o1, o2}, {{ o1, o2}, o3}}.

The EP data model is a data model. The entire set of EP-terms
defined in Definition 2.1 are the syntactical (word) algebra. A da-
tabase defined in Definition 2.4 and the reduction rules defined
in Definition 2.9 are the axioms. The normal forms are mapped
to the elements in the applicative structure for the corresponding
class of total recursive functions, and the EP data model exactly
expresses a class of total recursive functions [25]. In addition,
the EP data model has the built-in operators such as {+ which
are in correspondence with a relation among the higher-order
functions in the applicative structure.

The definition for the concept of data models emphasizes the
aspects of both syntax and semantics because not all the op-
erations are allowed to be in the algebras of data models. For
example, the function: “find all the paths between A and B in
a graph” cannot be a part of an algebra because this function
doesn’t terminate for a graph having a cycle including vertices
A and B.

Given an algebra having its set of values closed on its opera-
tions, on the other hand, we cannot be certain that there is a
language exactly expressing the algebra. We use Datalog to
express transitive closure, e.g., the entire pairs of vertices in
a (cyclic) graph such that each pair represents a path from
one vertex to another. However, a transitive closure may not
be completely reachable by Datalog. (The article [2] shows
that the existence of a path whose length is a perfect square
between two nodes is not expressible in Datalog.) This says
that Datalog cannot serve as the syntactical aspect of a data
model that takes transitive closure as the semantic algebra.
Many of research interests in network-based (also called graph-
based) structures, such as the work in [5, 20, 13, 7, and 14],
seek a language as well that has a decidable homomorphism
to transitive closure.

5.2 Types
Type (also called data type) is one of the most important
terminologies in the field of programming languages. To highlight
the differences of Froglingo from traditional programming
languages, we claimed in Section 4 that Froglingo is untyped.
The phrase “untyped” delivers mixed messages in the field.
First, it promotes declarativeness. On the other hand, it is a
tag of a naked machine with bit streams in memory [6], that
is practically too vulnerable and too tedious to be accessed
directly from developers, and thereafter that is protected by a
typed programming language. As a matter of fact, the phrase
“untyped” is more often connected with the lambda-calculus
where self-application is allowed, i.e., applying a function to itself
[4]. Self-application demonstrates a flexibility for developers,
and at the same time a danger of a non-termination process.

In sections 5.2.1 and 5.2.2, we intuitively discuss what typed
programming languages are and what untyped programming
languages are, and we further distinguish the differences be-
tween those untyped systems for partial recursive functions
and the untyped Froglingo that has a type equivalent to a
class of total recursive functions. In Section 5.2.3, we revisit
the concepts discussed earlier by proposing a precise defini-
tion for types.

5.2.1 Typed Systems
Being typed is an essential characteristics of traditional
programming language in practice. A variable (or an object in an
object-oriented programming language) is typed by assigning a
type explicitly. A procedure (or a method in an object-oriented
programming language) is typed by assigning types to its
parameters and its return value. A type in a typed system can
be a built-in data type such as integers and strings, or can
be a user-defined data type. (Note that some programming
languages support the procedures that take other procedures
as values through parameters. In such a case, the entire set
of procedures can be viewed as a type; still there is currently
no programming language yet that allows a user-defined type
with members of procedures.)

The first role of types in a programming language is error-
checking. For example, a compiler reports an error after
detecting an attempt to add a string with an integer, and an
application system rejects an update operation if there is an
attempt to add a student record into a set of employee records.
Error-checking through types helps developers in debugging
and maintains data integrity.

Secondly, types play a role of abstraction, i.e., segregating their
lower-level implementation details from their signatures (i.e., ab-
breviated syntactical forms designating the types). For example,
a developer would not worry about how an integer is represented
in a machine, but would simply declare a variable tagged with the
built-in data type integer. A developer wouldn’t worry about how
a method in a Java class was implemented by his co-workers,
but would simply call the method for his own task.

Another implication of type abstraction is that the instances of
types always have names, i.e., abbreviated syntactical forms
designating the instances. A variable has its variable name, and
a procedure has its signature. (Again, the names are the abbre-
viations, and not the complete expressions of the instances.)

The third role types play is to improve system performance by
static typing during compiling time.

Now let’s see what a typed system has missed. We will see in
Section 5.2.3 that a type in a typed system always represents
a strict subset of the semantics (a class of total recursive

144 Journal of Digital Information Management ❑ Volume 9 Number 4 ❑ August 2011

functions) of a typed system (a programming language), and
a typed system potentially can have infinitely many types that
are user-definable. Because of this, there is no type in a typed
system that possesses the complete properties of the class of
total recursive functions. In other words, some valuable proper-
ties in the class of total recursive functions cannot be carried by
the types that can be implemented practically. (For example, so
far, there hasn’t been a type yet in a typed system that has the
ordering relations discussed in Section 2.3). Lacking powerful
built-in operators that are derivable from the properties of the
class of partial recursive functions makes the sharing of some
application-independent code difficult. As demonstrated in Sec-
tion 4, the lack of such powerful built-in operators may hinder
typed systems’ ability to address many challenges in the fields
of knowledge management and artificial intelligence.

5.2.2 Untyped Systems
Given the understanding that a typed system is one in which
individual elements need to be assigned (tagged) with types
and potentially there are infinite many user-definable types, we
say that an untyped system is one in which there is only one
type. Because of this, there is no need to tag a type to individual
elements in an untyped system [6]. The pure lambda calculus is
a well-known untyped system. The EP data model is untyped.
The primitive (built-in) types in programming language, e.g.,
integers and strings, are untyped by themselves. An untyped
system, e.g., the lambda calculus, remains to be untyped after
it incorporates another primitive untyped system, e.g., integers
[6]. (In this case, one untyped system serves as constants. The
syntax of one untyped systems is different from the syntax of the
other, and therefore tagging types to elements is not necessary
unless a static typing during compile time was required for
performance purpose.)

In this paper, we are interested in two kinds of untyped systems:
the untyped systems which take a class of partial recursive
functions as the semantics, and the untyped system, i.e., the
EP data model (and therefore Froglingo), which takes a class
of total recursive functions as its semantics. In the following
subsections, we discuss why the former ones need to be
adapted with typed systems for programming practice and the
latter doesn’t need to.

5.2.2.1 Partial Recursive Functions
The lambda calculus is a untyped system that take a class
of partial recursive functions as semantics. Functions are the
only type in the semantic algebra, and lambda expressions are
the only type in the syntactic algebra. An implemented system
for the lambda calculus would do error-checking by reporting
errors when developers enter sequences of symbols that don’t
assemble lambda expressions. It would provide abstractions
by automatically calculating the normal form when developers
provide valid lambda expressions even the developers had
no knowledge about the beta reduction rule. (This is why we
conclude that the lambda calculus is a type.)

Due to the fact that the homomorphism from lambda expres-
sions to partial recursive functions is not decidable, however,
there is not an effective algorithm that arranges the lambda
expressions in orders according to the properties of the class
of partial recursive functions. (In contrast, integers can be
divided into odd numbers and even numbers, and a class of
total recursive functions can be arranged in orders in the EP
data model as discussed in Section 2.3). As a result, it is not
possible to semantically arrange lambda expressions in orders.
The orders, in the place of types in typed systems, would help
to manage business objects with different properties.

5.2.2.2 Total Recursive Functions
Instead of partial recursive functions, the EP data model focuses
only on total recursive functions. The EP data model is untyped
because the EP terms are the only form of the syntactical
algebra and the total recursive functions are the only form of
the semantic algebra.

Analogous to integers, the EP terms in a given database are
arranged in orders. The ordering relations discussed in Section
2.3, in the role of the types of typed programming languages,
can be used to specify the constraints for business objects.
Example 3.3, Example 3.6, and the expression for dinner at
the end of Section 4.1 are sample expressions embedding
constraints for business objects. Note that the constraints are
not imposed by the EP data model, but by Froglingo which
utilizes the ordering relations. The way of carrying business
constraints in Froglingo is similar to the data schema in a da-
tabase management system.

Froglingo is untyped too. Mathematically, there are still infinitely
many types in Froglingo for those non-terminating functions
beyond the EP data model. But it is not in the interest of prac-
ticality to develop a typed system in which each user-defined
type is involved with non-termination process.

5.2.3 What types are
 we say that a type is a language homomorphic to an algebra;
therefore a type has a syntactical aspect and a semantic aspect.
Similar to the relational algebra discussed in 5.1, primitive data
types like integers and user-defined data types in programming
languages are those whose syntactical algebras are seen as
identical to the semantic algebras. Here, a type can be simply
viewed as an algebra, i.e., a set of values and a set of operations
on the values [8]. This is not the case in the EP data model
where the homomorphism function depends on a specific
database. Separating the syntactical aspect from the semantic
aspect is also important for the lambda calculus, because its
homomorphism is not decidable.

In this paper, a type is viewed actually not more than a
language.

In a typed programming language, in which a class of partial re-
cursive functions is expressible, we observe that a type, such as
integers or a user-defined type, always represents a strict subset
of the class. (The development of types is intended to avoid
those values from the class that may cause non-termination,
and to facilitate the management of those business objects with
different properties.) Therefore, there are infinitely many types
potentially definable and desirable by users [6]. User-defined
types are the signals of typed systems.

5.3 Higher-Order Functions
Given an initial set, a function is defined as a binary relation,
i.e., a set of pairs, on the set such that no two distinct pairs have
the same first coordinate. The first coordinate of a pair is called
an argument, and the second a value. When a function takes
other functions as its arguments and (or) values, it is called a
higher-order function. The lambda-calculus defines a class of
higher-order and partial recursive functions. The EP data model
defines a class of higher-order and total recursive functions. A
class of higher-order functions is called an applicative structure
[4 and 25].

Instead of primitive types such as integers only, taking a functions
as a parameter and (or) a return value of another function provides
an additional flexibility for developers in software development
and maintenance. Analogously in English, for example, it would

 Journal of Digital Information Management ❑ Volume 9 Number 4 ❑ August 2011 145

be easier to say “Whom am I speaking with?” than to say “What
is the name of the person with whom I am speaking?”.

Typed systems (e.g., functional and some imperative pro-
gramming languages) have already supported the feature at a
limited scope. To maximize the flexibility higher-order functions
can provides, however, a language system shall define that
higher-order functions is untyped. In the lambda calculus, for
example, any lambda expression can be applied to another
lambda expression. In the EP data model, we can have the
following assignments an EP database:

 D A = 1;
 F D = D;
 F F = 3;
 F 2 = 5;

Here, F is a higher-order function because applying it to the
function D returns function D. The untyped EP data model also
allows self-application, e.g., F F which yields the return value
3 in the above expressions.

In the Haskell expression: compose f g x= f (g (x)), the function
compose appears to be untyped, but actually typed [9]. Here, f
and g are not functions but variables for functions. For example,
applying the function compose to an integer, e.g., compose 4, or to
itself is certainly not a defined operation. As another example,
applying compose to a function always returns another function,
but not an integer.

6. Conclusion

Application software started with a monolith where a
programming language was the only component in the 1960s.
To achieve a better productivity and to adapt to a rapid change
of business requirements, a typical database application
today consists of multiple components including database
management system, programming language, web server,
data exchange server, and access control server. With the EP
data model that is semantically equivalent to a class of total
recursive function, a monolithic architecture becomes available
again for database applications. The new monolith is not a
physical combination of traditional multiple components, but a
logical consolidation of functions out of the traditional multiple
components. As the result, the new monolith is expected to
improve productivity while it doesn’t lose functionality.

The EP data model is untyped. It is untyped with unique char-
acteristics such that it is a novel approach to many challenges
facing traditional technologies. The untyped system consistently
arranges business data in higher-order functions; therefore, an
application system in Froglingo is easy to be adapted to new
requirements. The high feature scalability should be particularly
helpful in application areas such as knowledge management
and artificial intelligence, where the initial understanding of a
problem is often imperfect. The untyped system indiscrimi-
nately treats diverse application objects that would otherwise
be defined as different data types in traditional technologies,
and therefore allows users to specify their queries through a
single entry field. The untyped system supports searches based
on key words and phrases against a database and therefore
allows users or software applications to approach precisely
their final query results by starting with a few key words and
phrases. The flexible user interface is expected to be particularly
useful in the application areas of knowledge management and
artificial intelligence, where there are great numbers of objects,
and each object has hundreds and perhaps even thousands of
attributes. The untyped system consistently stores common at-

tributes of multiple objects only once in database, and therefore
preserves the similarities between the multiple objects. The
ability to preserve (rather than mine) similarities is expected
to be particularly helpful in the application areas of knowledge
management and artificial intelligence, where similarity is an
important concept.

A data model is defined to be a homomorphism from a language
to an algebra such that the algebra includes at lease one relation
and each operation of the algebra terminates on every input.
This definition preserves the essence of the concept of a data
model that database management systems started with in the
1970s. It is the essence of keeping a programming language
easy to use in software development and maintenance.

One may view a linked list as the easiest if he/she only needs to
represent a sequence of objects; and a relational DBMS as the easi-
est if tables are the only concern. But to construct and to maintain
arbitrary applications, and to communicate between applications, it
has been assessed that Froglingo, incorporated with a total-recursive-
equivalent data model, achieves the greatest possible ease.

In the paper, the notion of programming language was used
always for a language that is Turing-complete. Therefore a
language is not categorized as a programming language in
this paper if it is not Turing-complete. Many strongly typed lan-
guages, such as Nominal System T [15], express strict subsets
of total recursive functions. In the authors’ best knowledge,
the EP data model is the first language exactly expressing a
complete class of total recursive functions.

7. Acknowledgment

We thank Harold Boley for his hints about typed/untyped
functional programming and combinatory logic, Rong Hu
for her comments about work related to the cooking recipe
advisor, Simon Peyton-Jones for his encouragement during the
development of this paper. This paper also incorporated many
comments from anonymous reviewers.

References

[1] Abiteboul, S., Hull, R., ianu, V (1995). Foundations of
Databases. Addison-Wesley Publishing Company.

[2] Afrati, F., Cosmadakis, S., Yannakakis, M. (1991). On
Datalog vs. Polynomial Time, In: Proc. ACM Symp.on Principles
of Database Systems, p.13-25.

[3] Aho, A. V., Ullman, J. D. (1979). Universality of Data Retrieval
Languages, In: Conference Record of the Sixth Annual ACM
Symposium on Principles of Programming Languages, San
Antonio, Taxes, January, 1979, p. 110 – 120.

[4] Barendregt, H. P. (1984). The Lambda Calculus - its Syntax
and Semantics. North-Holland.

[5] Buneman, P., Fernandez, M., Suciu, D. (2000). UnQL, A
Query Language and Algebra for Semistgructured Data Base
on Structural Recursion, VLDB Journal: Very Large Database,
9 (1) 76 – 110.

[6] Cardelli, L., Wegner, P. (1985). On Understanding Types,
Data Abstraction, and Polymorphism, Computing Surveys, 17
(4) 471-522, December 1985.

[7] Chen, P. (1976). The Entity-Relationship Management
Model – Toward a Unified View of Data, ACM Transactions on
Database Systems. 1 (1) March 1976, 9 – 36.

[8] Cleaveland, J. C (1986). An Introduction to Data Types.
Addison-Wesley Publishing Company.

146 Journal of Digital Information Management ❑ Volume 9 Number 4 ❑ August 2011

[9] Davie, A. J. T. (1992). An Introduction to Functional
Programming Systems Using Haskell. Cambridge University
Press.

[10] Dikovsky, A. J. (1993). On the Computational Complexity
of Prolog Programs. Theoretical Computer Science 119 (1)
63-102.

[11] Doets, K. (1994). From Logic to Logic Programming. The
MIT Press.

[12] Elmasri, R., Navathe, S. B. (1994). Fundamentals of
Database Systems, Second Editions. The Benjamin/Cummings
Publishing Company, Inc.,

[13] Gyssens, M., Paredaens, J., Bussche, J. V., Gucht, D. V. (1994).
A Graph-Oriented Object Database Model, IEEE Transactions on
Knowledge and Data Engineering 6 (4) 572 - 586.

[14] Hammer, M., McLeod, D.(1981). Database Description
with SDM: A Semantic Database Model. ACM Transactions on
Database Systems 6 (3) September 1981, p. 351 – 386.

[15] Hammond, K. J. (1986). CHEF: A model of case-based
planning, In: AAAI Proceedings of the 5th National Conference
on Artificial Intelligence, p. 267-271. Morgan Kaufmann.

[16] Leake, D. (1996).Case-Based Reasoning: Experience,
Lessons, and Future Directions. Menlo Park: AAAI Press/MIT
Press.

[17] Lloyd, J.E. (1994). Practical Advantages of Declarative
Programming, In : Joint Conference on Declarative
Programming.

[18] Pitts, A. M. (2010). Nominal System T. POPL’10, January
17-23, 2010, Madrid, Spain.

[19] Revesz, P. (2002). Introduction to Constraint Databases.
Springer-Verlag New York, Inc.

[20] Shipman, D. W. (1981). The Functional Data Model and
the Data Language DAPLEX, ACM Transactions on Database
Systems, 6 (1) 140 – 173.

[21] Steedman, D. (1993). X.500 - The Directory Standard and
its Application, Technology Appraisals.

[22] Xu, K. H., Zhang, J., Gao, S. (2010). Approximating
Knowledge of Cooking in Higher-order Functions, a Case
Study of Froglingo, In: Workshop Proceedings of the Eighteenth
International Conference on Case-Based Reasoning (ICCBR
2010), p. 219 – 228.

[23] Xu, K. H., Zhang, J., Gao, S (2010). An Assessment on the
Easiness of Computer Languages. The Journal of Information
Technology Review, p. 67 - 71.

[24] Xu, K. H., Zhang, J., Gao, S. (2010). Higher-order Functions
and their Ordering Relations, In: The Fifth International
Conference on Digital Information Management (ICDIM
2010).

[25] Xu, K. H., Zhang, J., Gao, S., McKeown, R. R.. “Let a
Data Model be a Class of Total Recursive Functions”. The
International Conference on Theoretical and Mathematical
Foundations of Computer Science (TMFCS-10), 2010, page
15 – 22.

[26] Xu, K. H., Zhang, J., Gao, S. (2010). Froglingo, A Monolithic
Alternative to DBMS, Programming Language, Web Server, and
File System, The Fifth International Conference on Evaluation
of Novel Approaches to Software Engineering.

[27] Xu, K. H., Zhang, J. Gao, S. (2009). Assessing Easiness
with Froglingo, The Second International Conference on the
Application of Digital Information and Web Technologies, 2009,
p. 847 - 849.

[28] Xu, K. H., Zhang, J. A User’s Guide to Froglingo, An
Alternative to DBMS, Programming Language, Web Server, and
File System. Available at the website: http://www.froglingo.com

[29] Xu, K. H. Bhargava, B (1996). An Introduction to Enterprise-
Participant Data Model”, Seventh International Workshop on
Database and Expert Systems Applications, September, 1996,
Zurich, Switzerland, page 410 – 417.

