
ID Templates, part of Learning

Algorithm

Predictors, automati-

cally generated

Effect Description

Once up on a time there lived a poor widow and her son Jack.

1 person isA thing;

wife isA person;

widow isA wife;

None No immediate impact

yet, but any instances

including p0001 in Row

#3 with the type widow

can be predicted as a

wife, person, and thing

through the lifecycle of

the NLP process.

Before the three templates en-

tered, the database was empty

except for thing the only user de-

fined data representing the sole

root type.

2 adverB (once up on a time) :=

there is $t: [$t isA time] where

$t start < $t end and $t end <

’1/1/1000’;

t0001 isA time;

(where an internal

structure is created for:

tp0001 start <

tp0001 end <

’1/1/1000’).

The L mode process ac-

tually started an inquiry

first by executing the ex-

pression there is It

created the data because

it didn’t find any rel-

evant data in the new

context that was estab-

lished for the Jack and

Bean Stalk forktale.

The node t0001 contains par-

tial information because its start

and end are not assigned with an

exact date. A time always has a

start time and an end time for a

period. When the start and end

times are the same, a time be-

comes a point of time. The value

’1/1/1000’ is randomly chosen

for a demonstration purpose to

reference a time in the past.

3 family isA thing;

a widow := there is $f: [$f isA

family], $p: [$p isA person]

where $f $p isA widow;

p0001 isA person; f0001

isA family; f0001 p0001

isA widow;

p0001, f0001, and f0001

p0001 reflect the ba-

sic information from the

sample text, an interpre-

tation from human expe-

rience.

The word widow must be involved

with a group of people, family.

The f0001 family is created to

have p0001 and later jack and

c0001(a cow) as members.

4 adJ poor $p: [$p isA person] :=

there is $f:[$f isA family] where

($f $p != null and $f (bE be)

(ajD poor));

f0001 (bE be) (adJ

poor);

The inquiry who is

poor? would have an

answer by matching

expressions like f0001

(bE be) (adJ poor).

Adjectives like poor is seman-

tically more complex, involving

statistics. No additional adjec-

tives are discussed in this table.

Additionally, we manage to say

Jack’s family is poor, instead of

saying Jack’s mom is poor.

5 her son := (coreF her) S son; No data is created, but a

interim syntax transfor-

mation from her son to

p0001 S son.

No effect, only a syntax

transformation

coreF abbreviates coreference.

coreF her retrieves the widow in

the story. S abbreviates the ’s

symbol after a person’s name.

Therefore her son is transformed

as the widow’s son

6 son isA person;

mother isA person;

person S son : = there is $f: [$f

isA family], $s: [$s isA person]

where $f person isA mother and

$f $s isA son;

p0002 isA person;

f0001 p0002 isA son;

f0001 p0001 isA

mother;

p0002 is the new data

added in database, refer-

ring to Jack. Also spec-

ify that the widow is a

mother.

The phrases like her son have

a fixed syntactical form. They

are defined once and reused for

later to parse other text. In

the 3rd assignment of the “Tem-

plate” column, person and son

are global types and acting as

variables.

7 name isA thing;

person name : = (person namE

== name);

p0002 namE := jack; jack from now on is a

coreference to p0002,

i.e., coreF jack :=

p0002.

The text son Jack matches the

2nd template. Jack is catego-

rized as a name while others are

possible, e.g., a machine. All

text from users are converted to

small cases while capital cases

are memorized separately.

1

8 there (verB live) person :=

person (verB live);

p0001 (verB live) (preP

in) t0001;

p0002 (verB live) (preP

in) t0001;

The entire English sen-

tence is now not mapped

to two EP terms, each

represents the state of

being living without de-

tailed semantics for now

The parser splits the text into

two sentences because of the con-

junction word and. Therefore,

there are two corresponding EP

terms.

9 husband isA person;

widow (dO do) (noT not) (verB

live) (preP with) husband :=

there is $f: [$f isA family]

where widow {+ $f and !

(there is $h : [$h isA husband]

where $h {+ $f);

no new data is cre-

ated because there is

no text in corresponding

this template. This tem-

plate is optional to give a

constraint that a widow

doesn’t not have or live

with a husband.

This constraint may not

necessarily be enforced.

But It can be invoked for

validation in an I mode.

We could add more semantics by

adding more templates like this

one to enrich the understanding

of this sentence.

One day, Jack’s mother told him to sell their only cow.

10 adverB (one day) := there is

$t: [$t isA day] where (coreF

(one day)) start < $t and $t <

(coreF (one day)) end;

t0002 (where an internal

structure is created for

t0001 end ≤ t0002 start

≤ t0001 end, and t0002

end - t0002 start = 24

hours)

coreF (one day) is

mapped to be “Once

upon a time” that was

recorded earlier. t0002

is created for a period of

time within once upon a

time.

The phrase One day can be a fu-

ture day or a past day but unsure

exactly which day it would be

when it serves as an adverb in a

sentence. In the given sentence,

it is a past tense and within the

time period t0001 set by Once

up on a time. coreF (one day)

finds out the tense of the sen-

tence first, e.g., the past tense

in this case, and then searches

a previously defined time period

constraining one day.

11 coreF name := there is $p: [$p

isA person] where $p namE ==

name;

No data is created coreF jack returns

p0002.

Jack may not only refers to a

person but also others such as a

tool to lift a car. Therefore Jack

was tried to be parsed in differ-

ent categories before confirming

it is the name for p0002.

12 person S mother : = there is $f:

[$f isA family], $p: [$p isA per-

son] where ($f person isA son

or $f person isA daughter) and

$f $p isA mother;

No data is created f0001 p0001 is returned

as Jack’s mother, where

Jack is an instance of

person.

Since the L mode process found

the instance f0001 p0001, it

doesn’t create a new one but re-

trieve the existing one.

13 animal isA thing;

livestock isA animal;

cow isA livestock;

No data is created. No immediate impact

yet

However, any instances includ-

ing c0001 in Row #15 with the

type cow can be predicted as

a livestock, animal, and thing

through the lifecycle of the NLP

process.

14 coreF their; No data is created f0001 is returned.

Like other coreferences,

coreF their is deter-

mined by a built-in pro-

cess

coreF they returns Jack and his

mother, but coreF their returns

f0001, something shared by both

Jack and his mother.

15 family S cow := family cow isA

livestock;

c0001 isA cow

f0001 c0001 isA live-

stock

c0001, f0001 c0001 re-

flect the basic informa-

tion from the original

text their cow

In the L mode, the process tried

to find a cow instance in f0001

and created c0001 because no

one was found.

2

16 person (verB tell) $p: [$p isA

person] Infinitive;

person (verB sell) $t : [$t isA

thing];

p0001 tell jack (jack sell

c0001 ((PreP at) No-

time)); Note the action

represented by tell is im-

plicitly modified by a

time within the given

One day. Therefore the

sentence is actually in

past tense because the

system can tell.

The constructed data

is a predictor, which

represents an action

taken by Jack’s mother.

Subsequent queries can

be answered such as what

did Jack’s mother tell

Jack?, Who told Jack to

sell their cow?, etc..

Infinitive is a built-in operator

indicating the following text is

an infinitive phrase, i.e., to do

.... The built-in node Notime

indicates that jack sell c1000 is

not a fact yet as it may or may

not happen. This sentence with

the verb sell, converted from the

infinitive clause, will be further

updated to make the sell a fact

in Row #28.

17 desirE 1 := desire; desirE 2 :=

like; desirE 2.5 := want, desirE

3 := hint; desirE 4 := encour-

age; desirE 5 := tell; desirE 6:

= ask; desirE 7 := command;

desirE 8 := enforce};

No data was generated Facing the phrase “Jack’s mother

told him to ...”, we optionally

construct a template desirE that

places all verbs related to “de-

sire” in a sequence to reflect the

degree of desires. This tem-

plate helps to correlate similar

sentences together to find para-

phrase sentences.

Jack went to the market and on the way he met a man who wanted to buy his cow.

18 coreF name := there is $p: [$p

isA person] where $p namE ==

name;

No data is created coreF jack returns

p0002.

The same process as discussed in

#11.

19 location isA thing;

market isA location

No data was created No immediate impact

yet

However any instances including

m0001 in Row # 20 with the

type market can be predicted as

a market, location, and thing

through the lifecycle of the NLP

process.

20 the market := there is $m: [$m

isA market];

Note a market would be given the

same definition as our process

doesn’t rely on a or the vigor-

ously

m0001 isA market m0001 reflects the basic

information of the orig-

inal text the market, an

interpretation from hu-

man experience.

While this template is defined

based on human experience, it

can also be derived by the sen-

tence Jack went to the market,

where the market can be rea-

soned as a location, where there

is a template like the one in #21.

21 person (verB go) (preP from)

$l1: [$l1 isA location] (preP to)

$l2: [l2 isA location] := (update

person geoLoc := $l2 geoLoc);

l0002 isA location;

f0001 geoLoc := l0002 ;

p0002 geoLoc :=

m0001;

l0002 refers to Jack’s

home location, a dump

node without informa-

tion

There should be a standard geo-

graphical (and time) data calcu-

lation to construct the first and

second assignments on the Pre-

dictor column. The update com-

mand in the template enforces an

update for both L and O modes

22 adverB (on the way (preP from)

$l1: [$l1 isA location] (preP

to) $l2: [$l2 isA location]) :=

there is $l: [$l isA location]

where $l is between $l1 and

$l2;

l0003 isA location;

where l0003 is between

l0002 and m0001 ;

the geographical dis-

tance should be imple-

mented in a standard

geographical calculation

package

23 a man = there is $p: [$p isA

person]; Note a man can be de-

fined with more attributes but

we simply define it as a person

just for demonstration purpose.

p0003 isA person; A template for “the

man” would be the same

one for “a man”, as our

process doesn’t differen-

tiate “a” from “the” to

tolerate human errors.

However, the parser would pre-

fer to create a new person be-

cause of “a man” is given. Other-

wise, considering “the man” be-

ing Jack himself would make the

sentence “Jack met the man”,

where “the man” is Jack, not

meaningful.

3

24 person (verB meet) $p: [$p isA

person] (preP at) location :=

((person geoLoc == location)

and ($p geoLoc == location));

p0002 geoLoc := l0003;

p0003 geoLoc := l0003;

The template enforces

the geoLoc of the two

persons to be changed

The template can be enriched

with more attributes, but the

same location the two persons

met is the highlight of this tem-

plate.

25 person (verB want) infinitive;

person (verB buy) $t: [$t isA

thing];

p0003 (verB want)

(p0003 (verB buy)

c0001 ((preP at) No-

time));

his cow is mapped to

c0001 based on the sim-

ilar process we discussed

earlier

person (verB want) infinitive

is very similar to person (verB

tell) $p: [$p isA person] in-

finitive and they can be corre-

lated using the desirE template

in #17.

Jack took the magic beans and gave the man the cow. Note: in our discussion, we skipped the conversations between Jack and the

man, where the man’s 5 magic beans would be traded to Jack for Jack’s cow. To simplify our discussion, we assume only one bean

and the following data have been generated: f0002 isA family; f0002 p0003; bean isA thing; b0001 isA bean; b0001 (bE be) (adJ

magic); f0002 bean; where we consistently set up an organization, such as a family, a person belongs to.

26 person (verB take) thing from

$p: [$p isA person] := Botran

($p (verB give) person thing);

No data is generated. The text Jack took the

magic beans is to be con-

verted to p0003 (verB

give) p0002 b0001 in

#27.

It defines that a person takes

a thing from another is equiva-

lent to that the second person

gives the first person the thing.

The original text doesn’t have

the phrase from the man but the

template gives the parser a hind

to find it.

27 person (verB give) $p1 : [$p1

isA person] $t: [�isA thing]

:= (person geoLoc == $p1

geoLoc),

delete coreF (family person) $t,

create coreF (family $p1) $t;

coreF (family person) :=

select $f: [$f isA family] where

$f person != null;

f0001 b0001 and

f0002 c0001 were

added into database,

and f0002 b0001 and

f0001 c0001 are re-

moved from database.

The results come from

the intermediate ex-

pressions: p0003 (verB

give) p0002 b0001;

p0002 (verB give)

p0003 c0001;

The template is aimed

to first validate that the

persons and the good to

be exchanged are next

to each other, e.g., the

geographical coordinates

are the same. Then it

update the belongings of

both Jack and the man

in their family accounts.

When a sentence implies actions

like “give”, we use the Froglingo

update commands in template

explicitly to enforce the action

for both L and O modes. Also

the built-in term coreF can be

user-defined this time.

28 person (verB sell) $g: [$g

isA thing] := there is $buyer:

[$buyer isA person] where per-

son (verB give) $buyer $g;

No data was generated

as there is no text to

trigger an execution on

it

This template would

help to validate Did Jack

sell his cow?, which

is related to the word

“sell” in the sentence

“Jack’s mother told him

to sell their only cow”

at an I mode

An extra step to demonstrate

that new information can be de-

rived from the sample text by us-

ing the template.

29 person (verB buy) $g: [$g

isA thing] := there is $seller:

[$seller isA person] where

$seller (verB give) person $g;

No data was generated Not used in this demon-

stration. This template

would help to answer

the question: Did the

man buy his cow?

An extra step to demonstrate

that new information can be de-

rived from the sample text by us-

ing the template.

What does the function fac take 5 to produce? Note: though natural language itself is ambiguous, there are some text that can

precisely express vigorous mathematical expressions.

4

30 multiplication $n1: [$n1 isa

number] $n2: [$n2 isa number]

= ($n1 multi $n2);

fac (verB take) $n:[$n isA

number] (preP to) (verB

produce) $m:[$m isA num-

ber] = Botran (”if” $n

”is 0, ” $m ”is 1 or” $m”

is the multiplication of” $n

”with what fac takes”

($n − 1) ”to produce; ”);

No data is generated in

database, but respond

with an answer of 120.

The answer to the given

text is 120. The tem-

plate acts precisely as a

factorial function

5

