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Abstract 
 

A formal language - the EP database is defined in 

this article. We prove that it is semantically 

equivalent to a class of total recursive functions. The 

conclusion serves as the theoretical foundation of 

Froglingo that consolidates the multi-component 

system architecture of the traditional software 

technologies into a single component. It also 

suggests how one might assess easy-of-use more 

objectively.  

 

1   Introduction 

Many database applications were written in 

programming languages in the 1960s and 1970s, and 

they are still in operation. The use of Database 

Management System (DBMS) came to database 

application software in and around the 1970s. 

Although a significantly improved productivity in the 

development and maintenance of database 

applications, its limited expressive power forced it 

(DBMS) to be used with a programming language. 

Froglingo, as described in [11, 12, and 13], is a 

system consolidating the multi-component system 

architecture of the traditional technologies into a 

single component. It is a unified solution for 

information management, and an alternative to 

having to combine a programming language, DBMS, 

a file system, and a web server. It is a “database 

management system” (DBMS) that stores and queries 

business data; a "programming language" that 

supports business logic; a "file system" that stores 

and shares files; and a "web server" that interacts 

with users across networks.  It does more than 

combining existing technologies; it is a single 

language that uniformly expresses both data and 

application logic. It is a system supporting integrated 

applications without using application-based data 

exchange components and data access control 

mechanism. 

This article is to formally prove that the EP data 

model, Froglingo without variables, is a language 

that is semantically equivalent to a class of total 

recursive functions. This conclusion is the theoretical 

foundation for the consolidations following 

Froglingo [8].  

Beyond the fact that the traditional software 

architecture is consolidated in Froglingo, the authors 

in the article [10 and 7] related the work of Froglingo 

with the rest in the fields programming language and 

database management by objectively assessing a 

language’s ease-of-use. It started with two 

assumptions: 

1. A data model is easier to use than a 

programming language in the development and 

maintenance of those applications expressible in the 

data model;  

2. If one data model is more expressive than 

another data model, the former is easier than the 

latter in the development and maintenance of those 

applications where a programming language is 

involved.  

The authors in the article concluded that the ease-

of-use reached the limit mathematically when a data 

model was semantically equivalent to a class of total 

recursive functions. 

To formalize the notions discussed in the article 

[10], the authors in the technical report [9] carefully 

chose a mathematical definition for the concept of 

“data model” such that: 

1. The definition preserves the essence of a data 

model that DBMSs started in the 1970s, i.e., a data 

model is set-oriented in queries and update 

operations on finite data. The EP data model, along 

with many traditional data models and data 

structures, is bound to the definition.  

2. The definition quantitatively distinguishes a data 

model from a programming language, i.e., the 

operations and queries from a data model are 

decidable and therefore always halt. 

In this article solely focus on proving the 

conclusion that the EP data model is semantically 

equivalent to a class of total recursive functions. 

Rather than being burdened by the concept of data 

model, we simply use the terminology “EP database” 

(often shorten as “database”) referring to the formal 

language to be discussed throughout this article. 

Rather than exploring the full features of the EP 

database, we introduce those only relevant to this 

article. To further cut the length of this paper, many 

lengthy proofs are not provided here. Please 



reference the technical report [9] for the detail. By 

putting the irrelevant notions and the corresponding 

notations aside, we attempt to discuss the EP 

database as a regular formal language more 

effectively. 

While facilitated as sample business applications 

through the article, the following examples are also 

intended to demonstrate that the data discussed here 

is no longer limited to relational table and 

hierarchical structure, but extended to a more generic 

semantics: (total recursive) high-order functions. 

Example 1.1: 1. The unary function s(n) = n
2
, where 

n is an integer. It can be equivalently expressed by its 

properties: s = {<0, 0>, <1, 1>, <2, 4>, …}.
 

2. The 2-ary function f(x, y) = x + y, here x, y are 

non-zero positive integers. It can be equivalently 

expressed by its properties in ordered triples: f = { 

<1, 1, 2>, <1, 2, 3>, …, 

<2, 1, 3>, <2, 2, 4>, …, 

…} 

3. A database application for the Social Security 

department in the United States; and a central 

administration office in a college or university. In the 

social security department (SSD), each resident has 

his/her social security number (SSN), name, and birth 

date, etc.  For the college or university, a student 

registers.  The college has departments, each 

department offers classes, and each class has students 

who attend. 

2   EP Database 

In traditional data models, an entity is either 

dependent on one and only one other entity, or 

independent from the rest of the world. The 

functional dependency in relational data model and 

the child-parent relationships in Hierarchical data 

model are typical examples. This restriction, 

however, doesn’t reflect the complexities of the real 

world that can be managed by using a computer. The 

logic of the EP data model is that if one entity is 

dependent on entities, then those entities are 

precisely two in number. Drawing terminology from 

the structure of an organization or a party in the 

article [14], one dependent entity was called 

enterprise (such as organization and party), the other 

was called participant (such as employee and party 

participant), and the dependent entity was called 

participation. An enterprise consists of multiple 

participations. Determined by its enterprise and its 

participant, a participation yields a value, and this 

value is in turn another enterprise. 

Definition 2.1: Let P be a set of identifiers, and C a 

set of constants where null is a special constant. 

The set of terms T is formed by the following rules: 

1. A constant is a term, i.e., c ∈ C  ⇒ c ∈ T 
2. An identifier is a term, i.e., a ∈ P  ⇒ a ∈ T  

3. The application of a term to another is a term, i.e., 

m ∈ T,  n  ∈ T ⇒ (m  n) ∈ T     
For example, the expressions 3.14, “a string”, 

a_id, (f 1), ((country state) county), ((a b) (c d)) are 

terms.  

For convenience in the discussion, we use the 

following notations: 

Notation 2.2 1: Given an application (m n) ∈ T; m is 
called the left sub-term, and n the right sub-term.  

2. The parentheses surrounding an application can be 

omitted when the right sub-term is not another 

application.  For example, (f 3), ((country state) 

county), and ((a b) (c d) can be re-written the 

following way: f  3, country state county, and a b 

(c d) correspondingly. 

3. A term t ∈ T has an iteration size, denoted as ||t||, 
and the iteration size is calculated with the 

following formulas: if a ∈ C, or a ∈ P, then ||a|| = 

1; otherwise ||m n|| = ||m|| + ||n||. 

Unlike the lambda calculus, the EP database 

doesn’t have variables. Note that Froglingo does 

have variables (this is not discussed here). EP carries 

high-level functions by using identifiers; The lambda 

calculus doesn’t have identifiers.   

In addition to term, assignment is another 

important concept in the EP database. 

Definition 2.3: Given m, n ∈ T, the form m =: n is an 
assignment. Here, m is called the assignee; and n the 

assigner. All the assignments in a given T make up a 

set: A  = { m =: n  | m  ∈ T,  n  ∈ T }. 
Notation 2.4 1. Given an expression a ≡ b, the 
symbol ≡ indicates that the two symbols a and b are 
identical. 

2. Given an expression a !≡ b, the symbol !≡  
indicates that the two symbols a and b are not 

identical. 

3. Let N be the set of natural numbers {0, 1, 2, …}. 

4. Let m, n0, ..., ni ∈ T, here i ∈ N. We write:  

m  n0... ni  ≡ mn  ≡  (...((m  n0) n2) ... ni). 

We further write:n ≅  n0, ..., ni ∈ T; and ||n || = i. 
5. Given a term mn, m is called a left-most term of 

mn, here ||n || ≥ 0. Note that the terms m n0, m n0 

n1, …, and m  n0... ni  are also called left-most 

terms of m  n0... ni. 

Now we introduce the formal definition of the EP 

database: 

Definition 2.5 An EP database D  is the union of a 

set of terms T ⊂ T and a set of assignments A ⊂ A, 
i.e., D = T ∪ A, such that the following are true:    
1. If an application m n is in D, the left sub-term m 

must not be a constant and the right sub-term n must 

not have an assigner, i.e., 

    m n ∈ D ⇒ m ∈ (T - C) ∩ ∀k ∈ T, (n =: k) ∉ D 

2. If an assignment (m =: n) is in D , m can not be a 

left most term of another term in D, i.e.,  



    (m =: n) ∈ D  ⇒ ∀∀∀∀t  ∈ T and ||t  || ≥ 1, mt ∉ D 

3. The database D must have no circular set of 

assignments, i.e., m0 =: m1, m1 =: m2, …, mn-1 =: mn ∈ 
D,  here n ≥ 1 ⇒  mn =: m0 ∉ D. 

The two terminologies may cause a little 

confusion, but they are distinguishable: “the EP 

database” is referred as a language and “an EP 

database” or “a database” is referred as an instance 

of database in the EP database language. 

The above restrictions enforce users to enter 

those and only those business applications that are 

semantically equivalent to a class of total recursive 

functions. This will be discussed formally in Sections 

4 and 5. 

We adduce a few EP database examples below. 

They will be used later in the article: 

Example 2.6 1. The function s(x) = x
2
 in Example 

1.1.1 can be expressed in an EP database S = {s, s 

1 =: 1, s 2 =: 4, …, 1, 2, 3, …}. 

2. The function f(x, y) = x + y in Example 1.1.2 can 

be expressed in an EP database F =: {f, f 1, f 1 1 

=: 2, f 1 2 =: 3, … f 2, f 2 1 =: 3, f 2 2 =: 4, …1, 2, 

3, …}. 

3. A sample EP database for the database application 

in Example 1.1.3 can be expressed as: D = {SSD, 

SSD John, SSD John birth =: ‘6/1/90’, SSD John 

SSN =:123456789, College, College admin, 

College admin (SSD John), College admin (SSD 

John) enroll =: ‘9/1/08’, College admin (SSD 

John) Major =: College CS, College, College CS, 

College CS100, College CS100 (College admin 

(SSD John)), College CS100 (College admin (SSD 

John))  grade =: “F”, ‘6/1/90’, 123456789, 

‘9/1/08’, “F”} 

4. G = {a, a b, (a b c =: 3), a b d, b, c, d, 3}.  

5. H = {p s  =: 1, q s =: 1, p, q, s, 1}.  

6. DG = {v1 v2 =: v2; v2 v1 =: v1}. (A directed 

graph with a circle) 

7. The union of the sets above S ∪ F ∪ D ∪ G ∪ H 

∪ DG forms an EP database. 

There are two obvious propositions for a database D: 

Proposition 2.7  1. If an application is in a database, 

so are its left sub-term and its right sub-term, i.e.   

m n ∈ D ⇒ m ∈ D  ∩ n ∈ D 

2. If an assignment is in a database, so are its 

assignee and assigner, i.e.  

 m =: n ∈ D ⇒ m ∈ D  ∩ n ∈ D 

Proof: Q. E. D. from the EP database definition 

itself. 

3   Normal Form and Reduction 

The normal form and reduction rules are adduced 

below in order to prove that the EP database is 

equivalent to a class of total recursive functions. A 

term can be reduced to another term; and a normal 

form is a term not further reducible by applying the 

reduction rules. 

Definition 3.1 Given a database D, the set of normal 

forms NF is defined as follows: 

1. All the constants are normal forms, i.e.,  

c ∈ C  ⇒ c ∈ NF 
2. All the terms in D that don’t have assigners are 

normal forms by themselves, i.e., 

     t ∈ D – A ⇒  t ∈ NF. 
The following terms are some of the normal 

forms in the database of Example 2.6.7: s, f, f 1, SSD, 

College CS, a b, p, v1, 1, 2, 3.  

Definition 3.2 Given a database D, the one-step 

evaluation rule is denoted as �: 

1. An identifier not in D is reduced to null, i.e.,   

p  ∈ P ∩ p   ∉ D  ⇒  p �  null 

2. A term having its assignment in D is reduced to its 

assigner, i.e., 

    (m =: n) ∈ D ⇒  m � n 

3. If m, n ∈ NF, and m n ∉ D, then m n is reduced to 

null, i.e., 

m, n ∈ NF, m n ∉ D ⇒ m n � null 

4. The application of two terms are reduced to the 

application of their normal forms, i.e., m, n ∈ T,  
m � m’, n �n’ ⇒  m n � m’ n’. 

Given the database in Example 2.6.7, the following 

samples are valid one-step evaluations: 

an_undefined_id � null; 

f 1 2 � 3; 

College Admin (SSD John) Major � College CS; 

SSD College � null; 

v1 v2 v1 ≡ (v1 v2) v1� v2 v1; 

Definition 3.3   Let m, n ∈ D. If there is a finite 
sequence l0, …, ln ∈ D , where n ≥ 0, such that m ≡ 
l0,, l0 � l1, …, ln-1 � ln, ln ≡ n, then  
1. m is effectively, i.e., in finite steps, reduced to n, 

written as  m →EP n. 

2. if n is a normal form and m →EP n, then we write: 

nf(m) = n. 

3. If m1 →EP n and m2 →EP n, then we write:  

m1 == m2. 

Given the database in Example 2.6.7, the 

following examples are effective reductions: 

f 1 2 →EP 3; 

College Admin (SSD John) →EP College Admin (SSD 

John); 

College Admin (SSD John) Major →EP College CS; 

nf(College Admin (SSD John) Major) = College CS; 

v1 v2 v1 →EP  v1; 

v1 v2 v1 v2 v1 == v1 v2 v1 

Now we are ready to show that the reduction 

rules give a term a unique normal form (note that the 

intermediate Lemma 3.4 is provided in the Proof 5.4 

of [9]): 

Theorem 3.5 An arbitrary term under a database can 

be effectively reduced to one and only one normal 



form, i.e., given D, ∀m ∈T,  m →EP n1, m →EP n2, 

and n1, n2 ∈ NF  ⇒ n1 ≡ n2. 

Proof. See the Proof 5.5 in [9].  

EP database, as a formal theory, is consistent. A 

formal system is said to be consistent if it lacks 

contradiction, i.e. the ability to derive both a 

statement and its negation from the system's axioms. 

For a formal theory that has a decidable reduction 

process, i.e., that any term it contains can be reduced 

to its normal form in a finite number of steps, we can 

redefine the consistency as the following: 

Definition 3.6  A formal theory is consistent if a term 

doesn’t have two distinguishable normal forms. 

If a term were to have two normal forms, this is 

equivalent to saying that two normal forms were 

equal. This is because they would be derived from 

the same term. At the same time, it would also be 

saying that two normal forms were not equal, because 

they were not identically defined in the theory’s 

axioms.  

This definition is more straightforward and 

stronger than the one given in [3] for Turing-

equivalent formal systems such as the lambda 

calculus, where a reduction process may not 

terminate with a normal form.  

Corollary 3.7 The EP database is consistent. 

Proof. It is clear from Theorem 3.5. 

4   Applicative Structure 

We will show in this section that a database is 

interpreted as a high-order function. An applicative 

structure is commonly used to interpret a Turing-

equivalent language [3]. A class of total recursive 

functions is a strict subset of a class of partial 

recursive functions, and therefore it can be fit well 

into an applicative structure [2]. We will develop an 

applicative structure in this section such that each 

term of the EP database, under a database, is 

interpreted as an element in the applicative structure. 

Conversely, an element from the applicative structure 

can be expressed as a database. It is done by proving 

that the entire applicative structure can be expressed 

as a database in the next section.  

To construct this applicative structure, we first 

divide the normal forms in a database into three 

different categories: 

Notation 4.1 Given a database D, and therefore its 

NF, 

1. All the constants belong to a category, i.e.,  

NF
 0
 ≡ C 

2. All the terms in D that are not constants, that don’t 

have assigners, and that are not the left sub-terms 

of any comb-terms in D, i.e.,  

NF
 1
 = {m | m ∈D - A – C ∩ (∀x ∈ T, m x ∉ D)} 

3. The remaining normal forms belong to the third 

category, i.e.,  

     NF + = NF - NF 0  - NF 1 

Example 4.2  For the database G = {a, b, a b, c, 3, (a 

b c =: 3), d, a b d} defined in Example 2.6.4: 

1. NF 1 ≡ {b, c, d, a b d} 
2. NF

 + ≡ {a, a b}  
As it will become clear soon, a member in the last 

category NF + has a derived semantics; a member in 

the second category NF
 1
 is interpreted as nothing 

else but its syntactical information; and a constant is 

mapped to a constant (0-ary) function. 

The applicative structure to be developed will be 

a class of total recursive functions. Within the 

applicative structure, applying an element (as a 

function) to another element (as an argument) always 

effectively (in finite steps) yields a third element (as 

the value), and all three elements belong to the 

collection. Application is the only operation in the 

applicative structure. 

The applicative structure is built on the top of a 

set of constant functions, or called 0-ary functions. 

We map the syntactical form of each term from T, 

except for the special term null, to an element of 

the set of the 0-ary functions. It is done by the Gödel 

numbering # as it was done for lambda expressions 

(4.5.6 of [3]): 

Notation 4.3  # is an effective one-to-one map:  

T − {null} → N, i.e., given an element m ∈ T − 
{null}, we can find one and only one 

corresponding Gödel number # m in finite steps. 

Note that this mapping is purely syntactical, i.e., 

the syntactical form of a term becomes a 0-ary 

function in the applicative structure. Note that 

applying a 0-ary function to any element in the 

applicative structure yields to a least element, 

denoted as ⊥. 
The map # is applied not only to the constants C, 

but also to the non-constant terms in T. Mapping the 

non-constant terms to N is to carry the syntactical 

information to the applicative structure, i.e., to 

provide an index for the EP terms in the applicative 

structure. To make it happen, we further introduce an 

extra 0-ary function, denoted as i. 

Now we denote the entire set of the 0-ary functions 

as R0
:   

Definition 4.4 R0
 = N ∪ {i, ⊥}, where i and ⊥ are 

two unique 0-ary functions beyond N. 

We will not address the issue of how to generate 

the whole class of total recursive functions over the 

0-ary functions R0
.  Previous work on this establishes 

that such a class exists, and that it can be enumerated 

and represented in an effective applicative structure 

[the Corollary on page 169 of the text book 4 or the 

article 1]. We simply denote such a class as R, and 

represent it in a form of effective applicative 

structures. 



Definition 4.5 The applicative structure (R0
, R, *) 

satisfies:  

1. The set of the 0-ary functions R0
. 

2. The complete set of total recursive functions R 

over R0
, therefore R0

 ⊂ R. 
3. ∀a, b ∈ R, there is a operator *, such that a * b 
is effectively (in finite steps) reduced to c ∈ R , 
denoted as a * b = c. 

Here, we are not interested in how a * b is 

reduced to c, the result, but what the result is. 

To help the discussion later, and to better 

understand the applicative behavior of a total 

recursive function, we give an alternative notion of 

an element f ∈ R. 
Notation 4.6  1. let f ∈ R, f is alternatively 
expressed as: 

f = {<e, j> | e ∈ R ∩ f * e = j}  
2. The set is also called the properties of f. 

Below are the rules for mapping EP terms under 

a database to R. 

Definition 4.7  Given a database D, and an arbitrary 

m ∈ T, the semantics [m] is derived according to the 
following rules: 

1. The term null in T is interpreted as the least 

element in R, i.e., [null] = ⊥, 
2. A constant in C − {null} is mapped to the 
corresponding Gödel number, i.e.,  

     ∀c ∈ C, [c] = # c, 
3. A normal form in NF

1 is mapped to the function 

that only contains its syntactical information, i.e., 

     ∀m ∈ NF1, [m] = {<i, #m>} ∪ {<[o], ⊥> | o ∈ T }, 
4. A normal form in NF

+
 is mapped to the function 

containing its syntactical information and mainly 

its derived information, i.e., 

     ∀m ∈ NF+, [m] = {<i, #m>}  
     ∪ {<[ni], [m ni]> |  for all ni ∈ T, such that m ni ∈ D }  
     ∪ {<[oi], ⊥> | for all oi ∈ T, such that m oi ∉ D}, 
5. The semantics of an arbitrary term is the semantics 

of its normal form, i.e., 

     ∀m ∈ T, [m] = [nf (m)]. 

Example 4.8 Give the database G = {a, a b, (a b c =: 

3), a b d, b, c, d, 3} defined in Example 2.6.4, here are 

sample mappings according to the rules above: 
[3] = #3; 

[b] = {< i, #b>, <[0], ⊥>, <[1], ⊥>, …, <[a], ⊥>, <[b], ⊥>, 
…, <[elseTerm], ⊥>, …}; 

[a b d] = {< i, #(a b d)>, <[0], ⊥>, <[1], ⊥>, …, <[a], ⊥>, 
<[b], ⊥>, …, <elseTerm, ⊥>, …}; 

[a b] = {< i, #(a b)>, <[c], #3>, <[0], ⊥>, …, <[elseTerm], 

⊥>, …}; 

[a] = {< i, #a>, <[b], [a b]>, <[0], ⊥>, …, 

<[elseTerm], ⊥>, …}; 

Example 4.9 Given the database DG = {v1 v2 =: v2; 

v2 v1 =: v1} defined in Example 2.6.6, here are a 

sample mappings according to the rules 4.7.5: 

[v1 v2 v1] = [v1]. 

In Definition 4.7.4 above, we attempted to find 

all m ni, where i = 0, …, n for an integer n ≥ 0, such 
that m ni ∈ D.  By a strong induction, we assumed 
that ni and m ni have their semantics [ni] and [m ni]. 

Then the collection of all the elements <[ni], [m ni]> 

is the derived semantics for m. To facilitate a further 

discussion in the section 6, we give a notation for the 

phrase “derived semantics”: 

Notation 4.10  The derived semantics of m is notated 

as: {<[ni], [m ni]> |  for all ni ∈ T, such that m ni ∈ D 
}. 

For each normal form m ∈ NF1 ∪ NF+, we added 
the syntactical information {<i, #m>} to its 

semantics.  This ensures that the normal form has a 

unique interpretation. There are cases in which an 

element <[ni], [m ni]> might not be interpreted 
uniquely among the derived information if the 

syntactical information was not a part of the 

semantics  [m]. In the database H = {p s  =: 1, q s =: 

1, p, q, s, 1} from Example 2.6.5, for example, both 

[p] and [q] would end up with the same semantics: 

{<[#s], [#1]>} if <i, #p> and <i, #q> were not a part 

of their corresponding semantics. 

Carrying the syntactical information to the 

interpretation makes sense in the practice of database 

application.  It is not unusual for two database 

entities to represent two distinct objects in the real 

world while temporarily having the same set of 

attributes. 

Before demonstrating that a term in a database is 

interpreted as a high-level function, we present two 

intermediate results: If two terms are equal, their 

interpretations are equal, and if two terms cannot be 

reduced to the same normal form, their 

interpretations are not equal. Note that the 

interpretation of a term is not formally claimed yet to 

be a high-level function (a member in R) until 

Theorem 4.14. 

Lemma 4.11  m →EP n ⇒ [m] ≡ [n] 
Proof. It is clear from Definition 4.7. 

Notation 4.12 If a term m is reduced to its normal 

form n and n is not identical to another normal form 

k, then we write m !→EP k. 

Lemma 4.13  m !→EP n ⇒ [m] !≡ [n]. 
Proof.  See the Proof 6.10 in [9]. 

Theorem 4.14 (soundness) An arbitrary term under a 

database has an interpretation of function, i.e., given 

D, ∀m ∈ T ⇒ [m] ∈ R. 

Proof.  See the Proof 6.11 in [9]. 

From Lemmas 4.11 and 4.13, and Theorem 4.14, 

we have a sound interpretation that a database is 

semantically a high-level function. The soundness 



becomes stronger with the proof that the reduction 

rules of the EP data are consistent with the 

applicative behavior of functions. 

Corollary 4.15  [m n] = [m] * [n]  

Proof.  See the Proof 6.12 in [9]. 

5   Property Enumeration 

In Section 4, we showed that a term in a database is 

interpreted as a high-level function. We show in this 

section that an arbitrary function can be mapped back 

to a database. It can be done even if the properties of 

a function are infinitely long, as the database space is 

unlimited, hypothetically.  

In practice, a database always stores a very small 

portion of a class of total recursive functions; 

however, we will show that an entire class of total 

recursive functions can be mapped to a database. 

This simplifies our work in this section in two folds. 

First of all, we don’t have to deal with the issues 

between the functions being stored, and the rest of 

the functions not being stored, in a database. 

Therefore the issue of the data evolution process in 

an actual database is not addressed in the 

interpretation. Secondly, because each function in R 

is a curried and therefore a unary function, the 

iteration size of each term m in the database will not 

be more than 2, i.e., ||m|| ≤ 2. This doesn’t utilize all 
the syntactical flexibilities in the EP database, i.e., 

allowing the iteration size of a term to be as large as 

a business needs. Therefore, the issues that attend the 

management of dependent data via independent data 

in an actual database are not addressed in the 

interpretation. Nevertheless, the simplification 

doesn’t impact our conclusion that the EP database is 

equivalent to a class of total recursive functions. 

Recall that we introduced an extra 0-ary function 

i in R in Section 6. This special constant is not 

necessary for this section, but it doesn’t affect our 

conclusions by continuing to use R.  The set of 

constants over which a class of total recursive 

functions is constructed is inessential [2]. 

Now we need to develop a complementary 

mapping of the function #: 

Notation 5.1  1. ϒ0
 denotes an effective one-to-one 

map: ϒ0: R0 → C.  

2. ϒ1 
denotes an effective one-to-one map:  

ϒ1: R - R0 → P, 

3. Let a ∈ R, define a inductively as the 
following: 

a ∈ R0 ⇒ a = ϒ0  a 

a ∈ R - R0 ⇒ a = ϒ1  a  

This time, the 0-ary functions are mapped to the 

constants C, and the rest of functions in R are 

mapped to the identifiers P. 

Lemma 5.2   ∀ a ∈ R, ||a||= 1. 
Proof. It is clear from 5.1.1 and 5.1.2. 

Definition 5.3  1. Given a m ∈ R, let℘(m) be a set 

of assignments: ℘(m)  =  

{m n =: o | n ∈ R, m * n = o, o ! ≡ ⊥} 
2.    ℑ =  ∪m ∈ R ℘(m)  

℘(m) is nothing but the collection of its properties 

of a function m in the form of EP assignments.  ℑ is 
nothing but the collection of the properties of the 

entire class of total recursive functions R, i.e, ∪m ∈ R 

℘(m).  

To satisfy Property 2.7, we automatically 

consider that m n, m, and n are the 
additional elements of ℘(m) in Definition 5.3.1 

though they were not explicitly spelled out. 

As noted earlier, we didn’t consider an 

accumulative process of adding data piece by piece 

during the mapping of R’s properties to a database; 

instead, we assume that R’s properties in the form of 

EP terms and EP assignments are available already. 

This assumption is valid, again because previous 

work establishes that the properties of R, a class of 

total recursive function, can be enumerated [the 

Corollary on page 169 of the text book 4 and the 

article 1]. 

Lemma 5.4  ℑ is an EP database. 
Proof. See the Proof 7.4 in [9]. 

Lemma 5.5  ∀m ∈ R, m  is a normal form in ℑ 
Proof.  See the Proof 7.5 in [9]. 

Definition 5.6  ∀m1, m2, …, mn ∈ R, ∀ n ∈ N, if 

the equation: 

m 1  m 2 …  m n  == m 1  * m 2 * …* m n 
is true, then all the total recursive functions are EP-

definable. Here m 1  * m 2 * …* m n ≡ [n] while 
m 1  * m 2 * …* m n ≡ (…(m 1  * m 2 )* …* m n ) 

=  n for a n ∈ R  according to the property of 
functions in 4.6. 

Theorem 5.7 (completeness) Total recursive 

functions are EP-definable.  

Proof. See the Proof 7.7 in [9]. 

6   Remarks 

There are many language systems, such as the 

lambda calculus, the Turing machine, and the 

combinatory logic that are equivalent to classes of 

partial recursive functions [3]. The EP database is a 

language system that is equivalent to a class of total 

recursive functions. Obviously, the relational 



database and the hierarchical database are the special 

cases.  Our proof was accomplished by showing that 

a term in a database is a (high-order) function, and 

that the properties of a class of total recursive 

functions, presented in a certain format, form a 

database. This doesn’t mean that all the software 

applications can be practically managed by using the 

EP database alone; rather, it offers a consistent and 

always-halting method to manage as much finite data 

as a business application requires and by doing so 

minimizes the effort of software development and 

maintenance. Enforcing software applications to be 

totally recursive is an essential factor that 

distinguishes a data model from a programming 

language.  

A database is an evolving subset of a class of total 

recursive functions, rather than a whole class of total 

recursive functions.  Obtaining the semantics of 

database evolving process in the context of a class of 

total recursive functions requires a discussion beyond 

the scope of this article.  This issue can be addressed 

by expanding Section 5 with various applicative 

structures. 

The EP data mode is a type-free system.  Since it 

is totally recursive, the type-free doesn’t cause 

exception or non-termination. Instead, we can use 

terms in the EP data model to easily express the 

functions that are infinitely high-order and at the 

same time totally recursive.  A typical example of an 

infinitely high-order function is a self-reference 

function such as F = {<0, 1>, <F, 1>}, which is 

expressed as: F = {F 0 =: 1, F F =: 1} in the EP 

database. Another example is Example 2.6.6: DG = 

{v1 v2 =: v2; v2 v1 =: v1} for a directed graph with 

a circle.  

We say that a function expressed in an EP 

database is in infinitely high-order when its derived 

information cannot be finitely expressed. The term v1 

in Example 2.6.6, as an example, was said being an 

infinitely high-order function because its derived 

information is: 

{<[v2], [v2]>}  
(-- by 4.7.4 and 4.7.6 due to v1 v2 =: v2) 

= {<{... <[v1], [v1]> …}, {... <[v1], [v1]> …}>} 

 (-- by 4.7 due to v2 v1 =: v1) 

… 

= … 

The deriving process above would never end due to a 

circle in the directed graph. 

The infinitely high-order functions, a native subset 

of a class of total recursive function, caused us to use 

a strong induction in introducing Definition 4.7.4 and 

in proving Theorem 4.14. (That is, [v1] in Example 

4.9, as an example, was proved to be a higher-order 

function by assuming that [v2] was a lower-order 

function while it was difficult to express and 

therefore to prove any 0-ary functions as the base of 

[v2].)  Nevertheless, the usage of the strong induction 

didn’t impact our results since it has the same 

effectiveness as a weak induction does.  

Discussing the properties of infinitely high-order 

functions is not in the scope of this article. The 

authors would like to redirect readers to the topic of 

continuous functions or the function space initiated in 

the articles [5 and 6] for the concept of function 

limits, i.e., infinitely high-order functions, 

approximated by finitely high-order functions. It 

covers the complete information about how infinitely 

high-order functions co-exist with finitely high-order 

functions in a class of total (and further partial) 

recursive functions. 

The EP database expresses functions by 

enumerating their properties. Its system performance 

is independent of the complexity of the functions 

themselves. No matter how long it takes to enumerate 

the properties of functions, the system performance 

of the EP database (i.e., the time complexity of 

constructing the functions in the database and 

querying against the properties), is solely dependent 

on the generic data structure used to implement the 

EP database. 
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