
Let a Data Model be equivalent to a Class of Total Recursive Functions

Kevin H. Xu, Shelby Gao, Jingsong Zhang, Roger R. McKeown

Bigravity Business Software

{kevin, shelby, jingsong, roger}@froglingo.com

Abstract

A formal language - the EP database is defined in

this article. We prove that it is semantically

equivalent to a class of total recursive functions. The

conclusion serves as the theoretical foundation of

Froglingo that consolidates the multi-component

system architecture of the traditional software

technologies into a single component. It also

suggests how one might assess easy-of-use more

objectively.

1 Introduction

Many database applications were written in

programming languages in the 1960s and 1970s, and

they are still in operation. The use of Database

Management System (DBMS) came to database

application software in and around the 1970s.

Although a significantly improved productivity in the

development and maintenance of database

applications, its limited expressive power forced it

(DBMS) to be used with a programming language.

Froglingo, as described in [11, 12, and 13], is a

system consolidating the multi-component system

architecture of the traditional technologies into a

single component. It is a unified solution for

information management, and an alternative to

having to combine a programming language, DBMS,

a file system, and a web server. It is a “database

management system” (DBMS) that stores and queries

business data; a "programming language" that

supports business logic; a "file system" that stores

and shares files; and a "web server" that interacts

with users across networks. It does more than

combining existing technologies; it is a single

language that uniformly expresses both data and

application logic. It is a system supporting integrated

applications without using application-based data

exchange components and data access control

mechanism.

This article is to formally prove that the EP data

model, Froglingo without variables, is a language

that is semantically equivalent to a class of total

recursive functions. This conclusion is the theoretical

foundation for the consolidations following

Froglingo [8].

Beyond the fact that the traditional software

architecture is consolidated in Froglingo, the authors

in the article [10 and 7] related the work of Froglingo

with the rest in the fields programming language and

database management by objectively assessing a

language’s ease-of-use. It started with two

assumptions:

1. A data model is easier to use than a

programming language in the development and

maintenance of those applications expressible in the

data model;

2. If one data model is more expressive than

another data model, the former is easier than the

latter in the development and maintenance of those

applications where a programming language is

involved.

The authors in the article concluded that the ease-

of-use reached the limit mathematically when a data

model was semantically equivalent to a class of total

recursive functions.

To formalize the notions discussed in the article

[10], the authors in the technical report [9] carefully

chose a mathematical definition for the concept of

“data model” such that:

1. The definition preserves the essence of a data

model that DBMSs started in the 1970s, i.e., a data

model is set-oriented in queries and update

operations on finite data. The EP data model, along

with many traditional data models and data

structures, is bound to the definition.

2. The definition quantitatively distinguishes a data

model from a programming language, i.e., the

operations and queries from a data model are

decidable and therefore always halt.

In this article solely focus on proving the

conclusion that the EP data model is semantically

equivalent to a class of total recursive functions.

Rather than being burdened by the concept of data

model, we simply use the terminology “EP database”

(often shorten as “database”) referring to the formal

language to be discussed throughout this article.

Rather than exploring the full features of the EP

database, we introduce those only relevant to this

article. To further cut the length of this paper, many

lengthy proofs are not provided here. Please

reference the technical report [9] for the detail. By

putting the irrelevant notions and the corresponding

notations aside, we attempt to discuss the EP

database as a regular formal language more

effectively.

While facilitated as sample business applications

through the article, the following examples are also

intended to demonstrate that the data discussed here

is no longer limited to relational table and

hierarchical structure, but extended to a more generic

semantics: (total recursive) high-order functions.

Example 1.1: 1. The unary function s(n) = n
2
, where

n is an integer. It can be equivalently expressed by its

properties: s = {<0, 0>, <1, 1>, <2, 4>, …}.

2. The 2-ary function f(x, y) = x + y, here x, y are

non-zero positive integers. It can be equivalently

expressed by its properties in ordered triples: f = {

<1, 1, 2>, <1, 2, 3>, …,

<2, 1, 3>, <2, 2, 4>, …,

…}

3. A database application for the Social Security

department in the United States; and a central

administration office in a college or university. In the

social security department (SSD), each resident has

his/her social security number (SSN), name, and birth

date, etc. For the college or university, a student

registers. The college has departments, each

department offers classes, and each class has students

who attend.

2 EP Database

In traditional data models, an entity is either

dependent on one and only one other entity, or

independent from the rest of the world. The

functional dependency in relational data model and

the child-parent relationships in Hierarchical data

model are typical examples. This restriction,

however, doesn’t reflect the complexities of the real

world that can be managed by using a computer. The

logic of the EP data model is that if one entity is

dependent on entities, then those entities are

precisely two in number. Drawing terminology from

the structure of an organization or a party in the

article [14], one dependent entity was called

enterprise (such as organization and party), the other

was called participant (such as employee and party

participant), and the dependent entity was called

participation. An enterprise consists of multiple

participations. Determined by its enterprise and its

participant, a participation yields a value, and this

value is in turn another enterprise.

Definition 2.1: Let P be a set of identifiers, and C a

set of constants where null is a special constant.

The set of terms T is formed by the following rules:

1. A constant is a term, i.e., c ∈ C ⇒ c ∈ T
2. An identifier is a term, i.e., a ∈ P ⇒ a ∈ T

3. The application of a term to another is a term, i.e.,

m ∈ T, n ∈ T ⇒ (m n) ∈ T
For example, the expressions 3.14, “a string”,

a_id, (f 1), ((country state) county), ((a b) (c d)) are

terms.

For convenience in the discussion, we use the

following notations:

Notation 2.2 1: Given an application (m n) ∈ T; m is
called the left sub-term, and n the right sub-term.

2. The parentheses surrounding an application can be

omitted when the right sub-term is not another

application. For example, (f 3), ((country state)

county), and ((a b) (c d) can be re-written the

following way: f 3, country state county, and a b

(c d) correspondingly.

3. A term t ∈ T has an iteration size, denoted as ||t||,
and the iteration size is calculated with the

following formulas: if a ∈ C, or a ∈ P, then ||a|| =

1; otherwise ||m n|| = ||m|| + ||n||.

Unlike the lambda calculus, the EP database

doesn’t have variables. Note that Froglingo does

have variables (this is not discussed here). EP carries

high-level functions by using identifiers; The lambda

calculus doesn’t have identifiers.

In addition to term, assignment is another

important concept in the EP database.

Definition 2.3: Given m, n ∈ T, the form m =: n is an
assignment. Here, m is called the assignee; and n the

assigner. All the assignments in a given T make up a

set: A = { m =: n | m ∈ T, n ∈ T }.
Notation 2.4 1. Given an expression a ≡ b, the
symbol ≡ indicates that the two symbols a and b are
identical.

2. Given an expression a !≡ b, the symbol !≡
indicates that the two symbols a and b are not

identical.

3. Let N be the set of natural numbers {0, 1, 2, …}.

4. Let m, n0, ..., ni ∈ T, here i ∈ N. We write:

m n0... ni ≡ mn ≡ (...((m n0) n2) ... ni).

We further write:n ≅ n0, ..., ni ∈ T; and ||n || = i.
5. Given a term mn, m is called a left-most term of

mn, here ||n || ≥ 0. Note that the terms m n0, m n0

n1, …, and m n0... ni are also called left-most

terms of m n0... ni.

Now we introduce the formal definition of the EP

database:

Definition 2.5 An EP database D is the union of a

set of terms T ⊂ T and a set of assignments A ⊂ A,
i.e., D = T ∪ A, such that the following are true:
1. If an application m n is in D, the left sub-term m

must not be a constant and the right sub-term n must

not have an assigner, i.e.,

 m n ∈ D ⇒ m ∈ (T - C) ∩ ∀k ∈ T, (n =: k) ∉ D

2. If an assignment (m =: n) is in D , m can not be a

left most term of another term in D, i.e.,

 (m =: n) ∈ D ⇒ ∀∀∀∀t ∈ T and ||t || ≥ 1, mt ∉ D

3. The database D must have no circular set of

assignments, i.e., m0 =: m1, m1 =: m2, …, mn-1 =: mn ∈
D, here n ≥ 1 ⇒ mn =: m0 ∉ D.

The two terminologies may cause a little

confusion, but they are distinguishable: “the EP

database” is referred as a language and “an EP

database” or “a database” is referred as an instance

of database in the EP database language.

The above restrictions enforce users to enter

those and only those business applications that are

semantically equivalent to a class of total recursive

functions. This will be discussed formally in Sections

4 and 5.

We adduce a few EP database examples below.

They will be used later in the article:

Example 2.6 1. The function s(x) = x
2
 in Example

1.1.1 can be expressed in an EP database S = {s, s

1 =: 1, s 2 =: 4, …, 1, 2, 3, …}.

2. The function f(x, y) = x + y in Example 1.1.2 can

be expressed in an EP database F =: {f, f 1, f 1 1

=: 2, f 1 2 =: 3, … f 2, f 2 1 =: 3, f 2 2 =: 4, …1, 2,

3, …}.

3. A sample EP database for the database application

in Example 1.1.3 can be expressed as: D = {SSD,

SSD John, SSD John birth =: ‘6/1/90’, SSD John

SSN =:123456789, College, College admin,

College admin (SSD John), College admin (SSD

John) enroll =: ‘9/1/08’, College admin (SSD

John) Major =: College CS, College, College CS,

College CS100, College CS100 (College admin

(SSD John)), College CS100 (College admin (SSD

John)) grade =: “F”, ‘6/1/90’, 123456789,

‘9/1/08’, “F”}

4. G = {a, a b, (a b c =: 3), a b d, b, c, d, 3}.

5. H = {p s =: 1, q s =: 1, p, q, s, 1}.

6. DG = {v1 v2 =: v2; v2 v1 =: v1}. (A directed

graph with a circle)

7. The union of the sets above S ∪ F ∪ D ∪ G ∪ H

∪ DG forms an EP database.

There are two obvious propositions for a database D:

Proposition 2.7 1. If an application is in a database,

so are its left sub-term and its right sub-term, i.e.

m n ∈ D ⇒ m ∈ D ∩ n ∈ D

2. If an assignment is in a database, so are its

assignee and assigner, i.e.

 m =: n ∈ D ⇒ m ∈ D ∩ n ∈ D

Proof: Q. E. D. from the EP database definition

itself.

3 Normal Form and Reduction

The normal form and reduction rules are adduced

below in order to prove that the EP database is

equivalent to a class of total recursive functions. A

term can be reduced to another term; and a normal

form is a term not further reducible by applying the

reduction rules.

Definition 3.1 Given a database D, the set of normal

forms NF is defined as follows:

1. All the constants are normal forms, i.e.,

c ∈ C ⇒ c ∈ NF
2. All the terms in D that don’t have assigners are

normal forms by themselves, i.e.,

 t ∈ D – A ⇒ t ∈ NF.
The following terms are some of the normal

forms in the database of Example 2.6.7: s, f, f 1, SSD,

College CS, a b, p, v1, 1, 2, 3.

Definition 3.2 Given a database D, the one-step

evaluation rule is denoted as �:

1. An identifier not in D is reduced to null, i.e.,

p ∈ P ∩ p ∉ D ⇒ p � null

2. A term having its assignment in D is reduced to its

assigner, i.e.,

 (m =: n) ∈ D ⇒ m � n

3. If m, n ∈ NF, and m n ∉ D, then m n is reduced to

null, i.e.,

m, n ∈ NF, m n ∉ D ⇒ m n � null

4. The application of two terms are reduced to the

application of their normal forms, i.e., m, n ∈ T,
m � m’, n �n’ ⇒ m n � m’ n’.

Given the database in Example 2.6.7, the following

samples are valid one-step evaluations:

an_undefined_id � null;

f 1 2 � 3;

College Admin (SSD John) Major � College CS;

SSD College � null;

v1 v2 v1 ≡ (v1 v2) v1� v2 v1;

Definition 3.3 Let m, n ∈ D. If there is a finite
sequence l0, …, ln ∈ D , where n ≥ 0, such that m ≡
l0,, l0 � l1, …, ln-1 � ln, ln ≡ n, then
1. m is effectively, i.e., in finite steps, reduced to n,

written as m →EP n.

2. if n is a normal form and m →EP n, then we write:

nf(m) = n.

3. If m1 →EP n and m2 →EP n, then we write:

m1 == m2.

Given the database in Example 2.6.7, the

following examples are effective reductions:

f 1 2 →EP 3;

College Admin (SSD John) →EP College Admin (SSD

John);

College Admin (SSD John) Major →EP College CS;

nf(College Admin (SSD John) Major) = College CS;

v1 v2 v1 →EP v1;

v1 v2 v1 v2 v1 == v1 v2 v1

Now we are ready to show that the reduction

rules give a term a unique normal form (note that the

intermediate Lemma 3.4 is provided in the Proof 5.4

of [9]):

Theorem 3.5 An arbitrary term under a database can

be effectively reduced to one and only one normal

form, i.e., given D, ∀m ∈T, m →EP n1, m →EP n2,

and n1, n2 ∈ NF ⇒ n1 ≡ n2.

Proof. See the Proof 5.5 in [9].

EP database, as a formal theory, is consistent. A

formal system is said to be consistent if it lacks

contradiction, i.e. the ability to derive both a

statement and its negation from the system's axioms.

For a formal theory that has a decidable reduction

process, i.e., that any term it contains can be reduced

to its normal form in a finite number of steps, we can

redefine the consistency as the following:

Definition 3.6 A formal theory is consistent if a term

doesn’t have two distinguishable normal forms.

If a term were to have two normal forms, this is

equivalent to saying that two normal forms were

equal. This is because they would be derived from

the same term. At the same time, it would also be

saying that two normal forms were not equal, because

they were not identically defined in the theory’s

axioms.

This definition is more straightforward and

stronger than the one given in [3] for Turing-

equivalent formal systems such as the lambda

calculus, where a reduction process may not

terminate with a normal form.

Corollary 3.7 The EP database is consistent.

Proof. It is clear from Theorem 3.5.

4 Applicative Structure

We will show in this section that a database is

interpreted as a high-order function. An applicative

structure is commonly used to interpret a Turing-

equivalent language [3]. A class of total recursive

functions is a strict subset of a class of partial

recursive functions, and therefore it can be fit well

into an applicative structure [2]. We will develop an

applicative structure in this section such that each

term of the EP database, under a database, is

interpreted as an element in the applicative structure.

Conversely, an element from the applicative structure

can be expressed as a database. It is done by proving

that the entire applicative structure can be expressed

as a database in the next section.

To construct this applicative structure, we first

divide the normal forms in a database into three

different categories:

Notation 4.1 Given a database D, and therefore its

NF,

1. All the constants belong to a category, i.e.,

NF
 0
 ≡ C

2. All the terms in D that are not constants, that don’t

have assigners, and that are not the left sub-terms

of any comb-terms in D, i.e.,

NF
 1
 = {m | m ∈D - A – C ∩ (∀x ∈ T, m x ∉ D)}

3. The remaining normal forms belong to the third

category, i.e.,

 NF + = NF - NF 0 - NF 1

Example 4.2 For the database G = {a, b, a b, c, 3, (a

b c =: 3), d, a b d} defined in Example 2.6.4:

1. NF 1 ≡ {b, c, d, a b d}
2. NF

 + ≡ {a, a b}
As it will become clear soon, a member in the last

category NF + has a derived semantics; a member in

the second category NF
 1
 is interpreted as nothing

else but its syntactical information; and a constant is

mapped to a constant (0-ary) function.

The applicative structure to be developed will be

a class of total recursive functions. Within the

applicative structure, applying an element (as a

function) to another element (as an argument) always

effectively (in finite steps) yields a third element (as

the value), and all three elements belong to the

collection. Application is the only operation in the

applicative structure.

The applicative structure is built on the top of a

set of constant functions, or called 0-ary functions.

We map the syntactical form of each term from T,

except for the special term null, to an element of

the set of the 0-ary functions. It is done by the Gödel

numbering # as it was done for lambda expressions

(4.5.6 of [3]):

Notation 4.3 # is an effective one-to-one map:

T − {null} → N, i.e., given an element m ∈ T −
{null}, we can find one and only one

corresponding Gödel number # m in finite steps.

Note that this mapping is purely syntactical, i.e.,

the syntactical form of a term becomes a 0-ary

function in the applicative structure. Note that

applying a 0-ary function to any element in the

applicative structure yields to a least element,

denoted as ⊥.
The map # is applied not only to the constants C,

but also to the non-constant terms in T. Mapping the

non-constant terms to N is to carry the syntactical

information to the applicative structure, i.e., to

provide an index for the EP terms in the applicative

structure. To make it happen, we further introduce an

extra 0-ary function, denoted as i.

Now we denote the entire set of the 0-ary functions

as R0
:

Definition 4.4 R0
 = N ∪ {i, ⊥}, where i and ⊥ are

two unique 0-ary functions beyond N.

We will not address the issue of how to generate

the whole class of total recursive functions over the

0-ary functions R0
. Previous work on this establishes

that such a class exists, and that it can be enumerated

and represented in an effective applicative structure

[the Corollary on page 169 of the text book 4 or the

article 1]. We simply denote such a class as R, and

represent it in a form of effective applicative

structures.

Definition 4.5 The applicative structure (R0
, R, *)

satisfies:

1. The set of the 0-ary functions R0
.

2. The complete set of total recursive functions R

over R0
, therefore R0

 ⊂ R.
3. ∀a, b ∈ R, there is a operator *, such that a * b
is effectively (in finite steps) reduced to c ∈ R ,
denoted as a * b = c.

Here, we are not interested in how a * b is

reduced to c, the result, but what the result is.

To help the discussion later, and to better

understand the applicative behavior of a total

recursive function, we give an alternative notion of

an element f ∈ R.
Notation 4.6 1. let f ∈ R, f is alternatively
expressed as:

f = {<e, j> | e ∈ R ∩ f * e = j}
2. The set is also called the properties of f.

Below are the rules for mapping EP terms under

a database to R.

Definition 4.7 Given a database D, and an arbitrary

m ∈ T, the semantics [m] is derived according to the
following rules:

1. The term null in T is interpreted as the least

element in R, i.e., [null] = ⊥,
2. A constant in C − {null} is mapped to the
corresponding Gödel number, i.e.,

 ∀c ∈ C, [c] = # c,
3. A normal form in NF

1 is mapped to the function

that only contains its syntactical information, i.e.,

 ∀m ∈ NF1, [m] = {<i, #m>} ∪ {<[o], ⊥> | o ∈ T },
4. A normal form in NF

+
 is mapped to the function

containing its syntactical information and mainly

its derived information, i.e.,

 ∀m ∈ NF+, [m] = {<i, #m>}
 ∪ {<[ni], [m ni]> | for all ni ∈ T, such that m ni ∈ D }
 ∪ {<[oi], ⊥> | for all oi ∈ T, such that m oi ∉ D},
5. The semantics of an arbitrary term is the semantics

of its normal form, i.e.,

 ∀m ∈ T, [m] = [nf (m)].

Example 4.8 Give the database G = {a, a b, (a b c =:

3), a b d, b, c, d, 3} defined in Example 2.6.4, here are

sample mappings according to the rules above:
[3] = #3;

[b] = {< i, #b>, <[0], ⊥>, <[1], ⊥>, …, <[a], ⊥>, <[b], ⊥>,
…, <[elseTerm], ⊥>, …};

[a b d] = {< i, #(a b d)>, <[0], ⊥>, <[1], ⊥>, …, <[a], ⊥>,
<[b], ⊥>, …, <elseTerm, ⊥>, …};

[a b] = {< i, #(a b)>, <[c], #3>, <[0], ⊥>, …, <[elseTerm],

⊥>, …};

[a] = {< i, #a>, <[b], [a b]>, <[0], ⊥>, …,

<[elseTerm], ⊥>, …};

Example 4.9 Given the database DG = {v1 v2 =: v2;

v2 v1 =: v1} defined in Example 2.6.6, here are a

sample mappings according to the rules 4.7.5:

[v1 v2 v1] = [v1].

In Definition 4.7.4 above, we attempted to find

all m ni, where i = 0, …, n for an integer n ≥ 0, such
that m ni ∈ D. By a strong induction, we assumed
that ni and m ni have their semantics [ni] and [m ni].

Then the collection of all the elements <[ni], [m ni]>

is the derived semantics for m. To facilitate a further

discussion in the section 6, we give a notation for the

phrase “derived semantics”:

Notation 4.10 The derived semantics of m is notated

as: {<[ni], [m ni]> | for all ni ∈ T, such that m ni ∈ D
}.

For each normal form m ∈ NF1 ∪ NF+, we added
the syntactical information {<i, #m>} to its

semantics. This ensures that the normal form has a

unique interpretation. There are cases in which an

element <[ni], [m ni]> might not be interpreted
uniquely among the derived information if the

syntactical information was not a part of the

semantics [m]. In the database H = {p s =: 1, q s =:

1, p, q, s, 1} from Example 2.6.5, for example, both

[p] and [q] would end up with the same semantics:

{<[#s], [#1]>} if <i, #p> and <i, #q> were not a part

of their corresponding semantics.

Carrying the syntactical information to the

interpretation makes sense in the practice of database

application. It is not unusual for two database

entities to represent two distinct objects in the real

world while temporarily having the same set of

attributes.

Before demonstrating that a term in a database is

interpreted as a high-level function, we present two

intermediate results: If two terms are equal, their

interpretations are equal, and if two terms cannot be

reduced to the same normal form, their

interpretations are not equal. Note that the

interpretation of a term is not formally claimed yet to

be a high-level function (a member in R) until

Theorem 4.14.

Lemma 4.11 m →EP n ⇒ [m] ≡ [n]
Proof. It is clear from Definition 4.7.

Notation 4.12 If a term m is reduced to its normal

form n and n is not identical to another normal form

k, then we write m !→EP k.

Lemma 4.13 m !→EP n ⇒ [m] !≡ [n].
Proof. See the Proof 6.10 in [9].

Theorem 4.14 (soundness) An arbitrary term under a

database has an interpretation of function, i.e., given

D, ∀m ∈ T ⇒ [m] ∈ R.

Proof. See the Proof 6.11 in [9].

From Lemmas 4.11 and 4.13, and Theorem 4.14,

we have a sound interpretation that a database is

semantically a high-level function. The soundness

becomes stronger with the proof that the reduction

rules of the EP data are consistent with the

applicative behavior of functions.

Corollary 4.15 [m n] = [m] * [n]

Proof. See the Proof 6.12 in [9].

5 Property Enumeration

In Section 4, we showed that a term in a database is

interpreted as a high-level function. We show in this

section that an arbitrary function can be mapped back

to a database. It can be done even if the properties of

a function are infinitely long, as the database space is

unlimited, hypothetically.

In practice, a database always stores a very small

portion of a class of total recursive functions;

however, we will show that an entire class of total

recursive functions can be mapped to a database.

This simplifies our work in this section in two folds.

First of all, we don’t have to deal with the issues

between the functions being stored, and the rest of

the functions not being stored, in a database.

Therefore the issue of the data evolution process in

an actual database is not addressed in the

interpretation. Secondly, because each function in R

is a curried and therefore a unary function, the

iteration size of each term m in the database will not

be more than 2, i.e., ||m|| ≤ 2. This doesn’t utilize all
the syntactical flexibilities in the EP database, i.e.,

allowing the iteration size of a term to be as large as

a business needs. Therefore, the issues that attend the

management of dependent data via independent data

in an actual database are not addressed in the

interpretation. Nevertheless, the simplification

doesn’t impact our conclusion that the EP database is

equivalent to a class of total recursive functions.

Recall that we introduced an extra 0-ary function

i in R in Section 6. This special constant is not

necessary for this section, but it doesn’t affect our

conclusions by continuing to use R. The set of

constants over which a class of total recursive

functions is constructed is inessential [2].

Now we need to develop a complementary

mapping of the function #:

Notation 5.1 1. ϒ0
 denotes an effective one-to-one

map: ϒ0: R0 → C.

2. ϒ1
denotes an effective one-to-one map:

ϒ1: R - R0 → P,

3. Let a ∈ R, define a inductively as the
following:

a ∈ R0 ⇒ a = ϒ0 a

a ∈ R - R0 ⇒ a = ϒ1 a

This time, the 0-ary functions are mapped to the

constants C, and the rest of functions in R are

mapped to the identifiers P.

Lemma 5.2 ∀ a ∈ R, ||a||= 1.
Proof. It is clear from 5.1.1 and 5.1.2.

Definition 5.3 1. Given a m ∈ R, let℘(m) be a set

of assignments: ℘(m) =

{m n =: o | n ∈ R, m * n = o, o ! ≡ ⊥}
2. ℑ = ∪m ∈ R ℘(m)

℘(m) is nothing but the collection of its properties

of a function m in the form of EP assignments. ℑ is
nothing but the collection of the properties of the

entire class of total recursive functions R, i.e, ∪m ∈ R

℘(m).

To satisfy Property 2.7, we automatically

consider that m n, m, and n are the
additional elements of ℘(m) in Definition 5.3.1

though they were not explicitly spelled out.

As noted earlier, we didn’t consider an

accumulative process of adding data piece by piece

during the mapping of R’s properties to a database;

instead, we assume that R’s properties in the form of

EP terms and EP assignments are available already.

This assumption is valid, again because previous

work establishes that the properties of R, a class of

total recursive function, can be enumerated [the

Corollary on page 169 of the text book 4 and the

article 1].

Lemma 5.4 ℑ is an EP database.
Proof. See the Proof 7.4 in [9].

Lemma 5.5 ∀m ∈ R, m is a normal form in ℑ
Proof. See the Proof 7.5 in [9].

Definition 5.6 ∀m1, m2, …, mn ∈ R, ∀ n ∈ N, if

the equation:

m 1 m 2 … m n == m 1 * m 2 * …* m n
is true, then all the total recursive functions are EP-

definable. Here m 1 * m 2 * …* m n ≡ [n] while
m 1 * m 2 * …* m n ≡ (…(m 1 * m 2)* …* m n)

= n for a n ∈ R according to the property of
functions in 4.6.

Theorem 5.7 (completeness) Total recursive

functions are EP-definable.

Proof. See the Proof 7.7 in [9].

6 Remarks

There are many language systems, such as the

lambda calculus, the Turing machine, and the

combinatory logic that are equivalent to classes of

partial recursive functions [3]. The EP database is a

language system that is equivalent to a class of total

recursive functions. Obviously, the relational

database and the hierarchical database are the special

cases. Our proof was accomplished by showing that

a term in a database is a (high-order) function, and

that the properties of a class of total recursive

functions, presented in a certain format, form a

database. This doesn’t mean that all the software

applications can be practically managed by using the

EP database alone; rather, it offers a consistent and

always-halting method to manage as much finite data

as a business application requires and by doing so

minimizes the effort of software development and

maintenance. Enforcing software applications to be

totally recursive is an essential factor that

distinguishes a data model from a programming

language.

A database is an evolving subset of a class of total

recursive functions, rather than a whole class of total

recursive functions. Obtaining the semantics of

database evolving process in the context of a class of

total recursive functions requires a discussion beyond

the scope of this article. This issue can be addressed

by expanding Section 5 with various applicative

structures.

The EP data mode is a type-free system. Since it

is totally recursive, the type-free doesn’t cause

exception or non-termination. Instead, we can use

terms in the EP data model to easily express the

functions that are infinitely high-order and at the

same time totally recursive. A typical example of an

infinitely high-order function is a self-reference

function such as F = {<0, 1>, <F, 1>}, which is

expressed as: F = {F 0 =: 1, F F =: 1} in the EP

database. Another example is Example 2.6.6: DG =

{v1 v2 =: v2; v2 v1 =: v1} for a directed graph with

a circle.

We say that a function expressed in an EP

database is in infinitely high-order when its derived

information cannot be finitely expressed. The term v1

in Example 2.6.6, as an example, was said being an

infinitely high-order function because its derived

information is:

{<[v2], [v2]>}
(-- by 4.7.4 and 4.7.6 due to v1 v2 =: v2)

= {<{... <[v1], [v1]> …}, {... <[v1], [v1]> …}>}

 (-- by 4.7 due to v2 v1 =: v1)

…

= …

The deriving process above would never end due to a

circle in the directed graph.

The infinitely high-order functions, a native subset

of a class of total recursive function, caused us to use

a strong induction in introducing Definition 4.7.4 and

in proving Theorem 4.14. (That is, [v1] in Example

4.9, as an example, was proved to be a higher-order

function by assuming that [v2] was a lower-order

function while it was difficult to express and

therefore to prove any 0-ary functions as the base of

[v2].) Nevertheless, the usage of the strong induction

didn’t impact our results since it has the same

effectiveness as a weak induction does.

Discussing the properties of infinitely high-order

functions is not in the scope of this article. The

authors would like to redirect readers to the topic of

continuous functions or the function space initiated in

the articles [5 and 6] for the concept of function

limits, i.e., infinitely high-order functions,

approximated by finitely high-order functions. It

covers the complete information about how infinitely

high-order functions co-exist with finitely high-order

functions in a class of total (and further partial)

recursive functions.

The EP database expresses functions by

enumerating their properties. Its system performance

is independent of the complexity of the functions

themselves. No matter how long it takes to enumerate

the properties of functions, the system performance

of the EP database (i.e., the time complexity of

constructing the functions in the database and

querying against the properties), is solely dependent

on the generic data structure used to implement the

EP database.

REFERENCES:
1 A. Ambainis and J. Smotrovs. “Enumerable

Classes of Total Recursive Functions:

Complexity of Inductive Inference”. Lecture

Notes in Computer Science: Vol. 872, Page 10 –

25. Proceedings of the 4
th
 International

Workshop on Analogical and Inductive

Interence: Algorithmic Learning Theory. 1994.

2 A. Asperti and A. Ciabattoni. “Effective

Applicative Structures”. Category Theory and

Computer Science, Lecture Notes in Computer

Sicence, Volume 953/1995, Page 81-95.

3 H. P. Barendregt. “The Lambda Calculus - its

Syntax and Semantics”. North-Holland, 1984.

4 J. E. Hopcroft, J. D. Ullman. “Introduction to

Automata theory, Languages, and Computation”.

Addison-Wesley Publishing Company, Inc.,

1979.

5 D. Scott. “Outline of a Mathematical Theory of

Computation”. Proceedings of the Fourth Annual

Princeton Conference on Information Sciences

and Systems, Princeton University. 1970, page

169 - 176.

6 D. Scott. “Models for Various Type-Free

Calculi”. Suppes et al. 1973, page 157 - 187.

7 K. H. Xu, J. Zhang, S. Gao. “An Assessment on

the Easiness of Computer Languages”. To appear

in the Journal of Information Technology

Review, 2010.

8 K. H. Xu, Jingsong Zhang, Shelby Gao.

“Consolidations Following Froglingo, An

Alternative to DBMS, Programming Language,

Web Server, and File System”. Submitted to the

5th International Conference on Evaluation of

Novel Approaches to Software Engineering”,

2010.

9 K. H. Xu, J. Zhang, S. Gao, R. R. McKeown.

“Data Model and Total Recursive Functions”.

Technical Report 2009-11,

http://www.froglingo.com/TR200911.pdf.

10 K. H. Xu, J. Zhang, S. Gao. “Assessing Easiness

with Froglingo”. The Second International

Conference on the Application of Digital

Information and Web Technologies, 2009, page

847 - 849.

11 K. H. Xu, J. Zhang. “A User’s Guide to

Froglingo, An alternative to DBMS,

Programming Language, Web Server, and File

System“. Available at the website:

http://www.froglingo.com/FrogUserGuide10.doc.

12 K. H. Xu, B. Bhargava. “A Functional Approach

for Advanced Database Applications”. Third

International Conference on Information

Integration and Web-based Applications &

Services (IIWAS 2001), September 2001, Linz,

Austria.

13 K. H. Xu. “EP Data Model, a Language for

Higher-Order Functions”. Manuscript

unpublished, March 1999.

http://www.froglingo.com/ep99.pdf.

14 K. H. Xu and B. Bhargava, “An Introductioin to

Enterprise-Participant Data Model”, Seventh

International Worshop on Database and Expert

Systems Applications, September, 1996, Zurich,

Switzerland, page 410 – 417.

