
Data Model and Total Recursive Functions

Kevin H. Xu, Jingsong Zhang, Shelby Gao, Roger R. McKeown

Bigravity Business Software LLC

2306 Johnson Circle Bridgewater, New Jersey 08807, U.S.A.

{Kevin, Jingsong, Shelby, Roger}@froglingo.com

ABSTRACT
Data models square off programming languages by preventing

software applications from having exceptions and from not

terminating. The more expressive a data model is, the easier the

process of developing and maintaining software. When a data

model is semantically equivalent to a class of total recursive

functions, it, along with a programming language, achieves the

greatest possible ease in software development and maintenance.

The purpose of this paper is to demonstrate that the EP is such a

data model.

Categories and Subject Descriptors
D.3.1 [Formal Definition and Theory]: Semantics, Syntax.

General Terms
Languages, Theory, Management, Design, Security.

Keywords
Data model, programming language, ordering relations, normal

form, reduction, total recursive functions, applicative structure.

1. INTRODUCTION
Many database applications were written in programming

languages in the 1960s and 1970s, and they are still in operation.

The use of Database Management System (DBMS) came to

database application software in and around the 1970s. Although

a significantly improved productivity in the development and

maintenance of database applications, its limited expressive power

forced it (DBMS) to be used with a programming language.

Froglingo is a system consolidating the multi-component system

architecture of the traditional technologies into a single

component. It is a unified solution for information management,

and an alternative to having to combine a programming language,

DBMS, a file system, and a web server. It is a “database

management system” (DBMS) that stores and queries business

data; a "programming language" that supports business logic; a

"file system" that stores and shares files; and a "web server" that

interacts with users across networks. It does more than combine

existing technologies; it is a single language that uniformly

expresses both data and application logic. It is a system

supporting integrated applications without using application-

based data exchange components and data access control

mechanism [24, 26].

Assessing a language’s ease-of-use is generally considered

subjective. Froglingo, however, suggests how one might assess

ease-of-use more objectively. The authors in [25] made a case for

this view. It started with two assumptions:

(1). A data model is easier to use than a programming language in

the development and maintenance of those applications

expressible in the data model.

(2). If one data model is more expressive than another data model,

the former is easier than the latter in the development and

maintenance of those applications where a programming language

is involved.

The authors in the article concluded that ease-of-use reached the

limit mathematically when the data model was semantically

equivalent to a class of total recursive functions.

This article formalizes the notions presented in the paper [25].

Specifically, they are as follows:

1. There exists a language, called the EP data model, Froglingo

without variables, that is semantically equivalent to a class of

total recursive functions.

2. The concept of “data model” is formally defined to

quantitatively tell differences between a programming

language and a data model.

3. From the definition above and the two assumptions earlier,

EP data model is concluded to be the easiest.

The notion that EP data model is equivalent to a class of total

recursive functions stands by itself and is the main course of this

article. We devote the entire article to demonstrate it except for

Section 2 and the theorem 4.3. Independent from the discussion of

ease-of-use of languages, the article [24] concluded that

consolidating the multi-component system architecture of the

current technologies into a single component in Froglingo starts

from this notion.

To relate the work of Froglingo with the rest in the fields

programming language and database management, we reiterate in

Section 2 the ease-of-use discussed in the article [25]. Further, we

carefully choose a mathematical definition for the concept of

“data model” so that any (set-oriented) queries expressible by a

data model are decidable. This decidability justifies the

assumption that the data model is easier to use than a

programming language for the software applications expressible

by data model. It follows from this that the more expressive a data

model is, the easier it will be in the development and maintenance

of arbitrary software applications that involve a programming

language. By assuming this ease-of-use, we are able to determine

the position of a language system in the coordinate with the

following two dimensions: expressive power and ease-of-use.

Also, to stress the notion that the EP data model is the easiest, we

point out that the upper limit of the ease-of-use is reached when a

data model is equivalent to a class of total recursive functions.

EP data model is at the center of Froglingo. Froglingo is not the

main focus of this article. For its language specification, one can

reference the article [26]. For its formal theory aspects of

2

semantics, consistency, soundness, and completeness, one can

reference the article [28].

While facilitated as sample business applications through the

article, the following examples are also intended to demonstrate

that the data discussed here is no longer limited to relational table

and hierarchical structure, but extended to a more generic

semantics: (total recursive) high-order functions.

Example 1.1: 1. The unary function s(n) = n2, where n ∈ N. It

can be equivalently expressed by its properties: s = {<0, 0>, <1,

1>, <2, 4>, …}.

2. The 2-ary function f(x, y) = x + y, here x, y are non-zero

positive integers. It can be equivalently expressed by its properties

in ordered triples: f = {

<1, 1, 2>, <1, 2, 3>, …,

<2, 1, 3>, <2, 2, 4>, …,

…}

3. A database application for the Social Security department in the

United States; and a central administration office in a college or

university. In the social security department (SSD), each resident

has his/her social security number (SSN), name, and birth date,

etc. For the college or university, a student registers. The college

has departments, each department offers classes, and each class

has students who attend.

2. EASY OF USE
Expressive power is a well-established dimension on which to

measure the quality of a computer language. Ease of use is

another. This has been the main stream of development in

programming language and database management.

2.1 Language
A language has its syntax and its semantics. Semantics

characterizes a quality of language, i.e., the effect or outcome of

the programs written in language. It has been well studied and

quantitatively measurable by expressive power.

Syntax characterizes another quality of language, i.e., the effort of

writing the programs in language. In this article, we call it ease-of-

use. When two languages have the same expressive power, one

may prefer to use one rather than another. There hasn’t been a

precise measurement on easiness. We raise the issue here because

it has been a factor in the evolution of computer languages.

Two languages can be comparable in ease of use only if they are

equivalent in terms of expressive power. It is meaningless to

compare two languages in ease of use if they contain two

completely different sets of semantics; however, if the semantics

of one language are a superset of the semantics of a second

language, the ease of use of the first language can be compared

with the ease of use of the second when that first language is used

to express the semantics of the second.

2.2 Programming Language
A programming language is a language with the semantics

equivalent to a class of computable (or partial recursive) functions

that determine the upper limit of what a computer can handle.

Programming languages have evolved from low-level

machine/assembly languages to higher-level languages. One

aspect of programming languages remains unchanged,

thoughtheir expressive power, the Turing equivalent.

What, then, has changed in the process of programming language

evolution? What has changed is the ease of use. Driven by the

need for programmers to be ever more productive in software

development and maintenance, we have worked continuously to

produce easier programming languages.

Now we note here the key difference between a programming

language and a DBMS: A programming language can represent

computable functions, and therefore infinite data, in expressions

that are themselves finite.

The semantics of programming languages inevitably falls into a

class of partial recursive functions. We strive hard to design and

to use programming languages so that the programs written in the

programming languages can eventually fall into a more narrow

classa class of total recursive functions. The class of total
recursive functions is all those useful in representing software

applications within the given limitations of a computer.

2.3 Data Model
A data model is a language. As far as the existing data models

and the objective of this article are concerned, we contend that the

semantics of a data model is a subset of a class of total recursive

functions. A data model is the mathematical abstraction of a

database management system (DBMS) for database applications.

A data model normally refers to a data structure that stores a set of

data and that has a set of built-in operators under which that set is

closed. (By closed, we mean that an operation always terminates

and returns members from the set.) To emphasize the dominant

role of data structure, we will define a data model as a data

structure that stores a set of objects and that offers decidable

dependencies among those objects. The second definition is

intended to be equivalent to the first one, while the dependency

attributes attend the built-in operators.

We define dependency as follows: If one object depends on

another in a set, and that first object is in the set, then the second

must be in the set as well. This dependency is bi-conditional, so

conversely, if the second object is not in the set, then the first

object cannot be there either. (E.g., an attribute in a relational

table depends on its row; a child object depends on its parent

object in hierarchy, and the birth of an infant depends on both its

mother and father.) This dependency restriction avoids exceptions

in a programming language.

Dependency must also be decidable. A data model must always

be able to tell if two arbitrary objects in a set are dependent or not.

This restriction disallows an object whose dependence is on itself

(i.e., data that is organized to have a cyclical loop) in the managed

sets. Such a situation disqualifies a computer language as a data

model. There can be a program in the language that doesn’t

terminate on an input.

This definition should preserve the essence of the concept of a

data model that DBMSs started with in the 1970s; at the same

time, the definition distinguishes a data model from a

programming language. The essence of a data model is that it is

set-oriented and always halting in queries and update operations

on finite data. In expressing a finite set of objects (usually referred

3

to as business data), using a data model is easier than using a

programming language. The dependency is the supporting factor.

Below, we provide a formal definition for a data model. For

convenience, we will specify that a data model is itself a set,

rather than a language to manipulate a set. This does not mean

that a data model is a set alone, but that it is a language system

that maintains the set and its integrity.

The concept of relation is critical to our argument, and we start

with it and its familiar notational symbols:

A (binary) relation ρ in a set A is a subset of the Cartesian product
ρ ⊆ A × A, i.e., a set of ordered pairs. If ρ is a relation in A, we
write <x, y> ∈ ρ and x ρ y exchangeably, here x, y ∈ A. We also

say that x is ρ-related to y. Given a set A = {1, 2, 3, a}, for
example, we can have the following notations: the relation “less

than”: < = {<1, 2>, <1, 3>, <2, 3>}; <1, 2> ∈ <; 1 < 2; 1 is less
than (<-related to) 2. The characteristics of a specific relation can

be named, e.g., we say that < is transitive in A, i.e., <1, 2> ∈ < ∩
<2, 3> ∈ < ⇒ <1, 3> ∈ <.

Relations can be dependent, decidable, and tree-structured. We

explain below:

Definition 2.1: Given a non-empty set A, a strict subset B ⊂ A,
and x, y ∈ A, x is dependent on y in B, denoted as x ρ y, if and
only if x ∈ B implies that y ∈ B, i.e., ρ = {<x, y> | x, y ∈ A; if x ∈
B, then y ∈ B}.

This definition specifies a dependent relationship between two

entities. It does not forbid one entity from depending upon two

entities. Given a function f(x) = x + 1 and an argument 4, as

another example, we say that the process of applying f to 4 and

ending up with the value 5 is dependent on both the function f and

the argument 4.

A dependent relation has to be transitive, but this is not

biconditional: not all transitive relations are dependent.

Definition 2.2: A relation ρ in A is decidable if and only if ∀x, y
∈ A, there is an algorithm that determines if x ρ y holds in finite
steps.

Definition 2.3: A data model is a set containing at least one

dependent and decidable relation.

This definition does not restrict the data model to only one

dependent relation; instead, the more dependent relations or other

relations exist, (as long as they are decidable), the easier the

process of software development and maintenance will be. But

one dependent relation does distinguish a data model from a

programming language in ease of use, as the relational data model

and the hierarchical data model did in the software industry.

A decidable relation will prevent an operation from not

terminating. A computer language cannot qualify itself as a data

model if a program in that language allows non-termination on an

input. With the definition above, we say that stack and queue in a

programming language are examples of data models. This is also

true of the relational data model and the hierarchical data model

with the containment relationship. The “network data model,” as

it is traditionally called, allows cyclical data, and because it does

not clearly define the dependencies among this cyclical data, it is

excluded from being a data model in this article. An operation on

cyclical data may not terminate. Obviously, those languages with

variables and while-loops (or self-reference procedures) can cause

infinite loops and they too are not data models. One example is

Datalog [1], but this applies to any programming language.

Our definition does not specify whether or not a data model is

finite or infinite. Mathematically, we allow a data model to be an

infinite and countable, even though this is not possible in practical

terms. This allows us to show that there is a data model that can

“store” the entire class of total recursive functions.

Before continuing, we briefly note the research effort that has

been put into developing more expressive data models, the models

that go beyond the relational data model, the hierarchical data

model, and the network structure (called network data model at

the time). Starting in the 1970s, there were many proposals

toward more semantic data models, such as CODASY [17],

DAPLEX [22], Entity-Relationship [10], X.500 [13], XML [12],

semi-structured database [8], ORA-SS [15], and EP data model

[29, 28, and 27]. While a large number of them appeared to be

variations of the three well-recognized data models [7], these

efforts lacked a mathematical definition of data model concept,

which made an objective measurement of the proposals

impossible.

2.4 Hybrid
Programming languages define functions by coding algorithms;

data models define functions by enumerating properties. One

might say that although a data model is preferable, a programming

language is inevitable.

There are several reasons for this. First of all, a lot of business

data falling into a class of total recursive functions may be

desired, but not expressible in a traditional data model. (By not

expressive, we mean that some dependencies would be lost even if

they were placed, that is to say decomposed, into the data

structure of a data model.) Hierarchical data, as a typical

example, can be folded into a table, but its containment

relationships cannot be captured by the relational data model.

Another example would be the relationships among the vertices in

a directed graph (e.g., is there a path from A to B), which cannot

be captured in both relational data model and hierarchical data

model.

Secondly, constructing arbitrary queries on the top of a managed

data set requires a programming language. Although built-in

operators can be used to construct a class of useful queries, they

don’t exhaust all the queries that practicality requires, and they

fall into a class of total recursive functions. For example, a query

in the relational data model cannot simply return a single attribute

or a sequence of attributes out of a relational database. There is no

exception to this. This holds true even for a unification, which

will be discussed in the next section.

A system having both a programming language and a data model

is called a hybrid. Hybrids started with the research efforts into

“database programming language” in 1970s to the early 1990s.

They offered programming languages on the top of relational data

models, hierarchically data models, and network structures (called

network data models at that time). Some proposals were Galileo

(surveyed in [4]), Functional Object Language [14], Machiavelli

[16], PFL [23], BULK [18], and XML/XQUERY [6]. This, the

combined relational data model and programming language, is the

most popular hybrid today. This approach, however, due to the

4

lower expressive power of the underlying data models [7], didn’t

start from a well-established foundation.

In database applications, a hybrid is easier than a stand-alone

programming language. A hybrid is easier because a data model

is used for a part of database application. A hybrid is easier than

another hybrid if the data model of the first hybrid is semantically

is a superset of the data model of the second hybrid. It is not

meaningful to compare the ease of use of hybrids based on

relational and hierarchical data models because their semantics

overlap, and are not inclusive.

2.5 Unification
A hybrid becomes a unification when its data model is

semantically equivalent to a class of total recursive functions.

Mathematically, this means that the data model could represent

arbitrary software applications as long as they are totally

recursive, without a programming language, assuming space was

unlimited.

We conclude, given the understanding of ease of use that we have

provided in this article, that the easiest hybrid to use is a

unification.

This brings us back to Froglingo. Froglingo is just such a

unification. First, Froglingo, without a variable, is an EP data

model, which we prove in Section 4. Second, an EP data model is

semantically equivalent to a class of total recursive functions,

which we prove in Sections 6 and 7. Finally, Froglingo is a

programming language. It has variables to express infinite data in

finite algorithms.

Practically, the easiest implies a consistent and terminating

method for as much finite data as a business application needs. In

addition, it implies the consolidations of the multi-component

architecture of traditional technologies into a single component.

The two components that are completely eliminated are (1) data

exchange agent in data communication and (2) data access control

mechanism. Froglingo handles data communication and data

access control as if NFS (Network File System) handled file

communication and file access control. For more discussion about

the second implication, readers can reference [24].

3 EP DATABASE
In traditional data models, an entity is either dependent on one

and only one other entity, or independent from the rest of the

world. The functional dependency in relational data model and the

child-parent relationships in Hierarchical data model are typical

examples. This restriction, however, doesn’t reflect the

complexities of the real world that can be managed by using a

computer. The logic of the EP data model is that if one entity is

dependent on entities, then those entities are precisely two in

number. Drawing terminology from the structure of an

organization or a party in article [29], one dependent entity was

called enterprise (such as organization and party), the other was

called participant (such as employee and party participant), and

the dependent entity was called participation. An enterprise

consists of multiple participations. Determined by its enterprise

and its participant, a participation yields a value, and this value is

in turn another enterprise.

Definition 3.1: Let P be a set of identifiers, and C a set of

constants where null is a special constant. The set of terms T is

formed by the following rules:

1. A constant is a term, i.e., c ∈ C ⇒ c ∈ T
2. An identifier is a term, i.e., a ∈ P ⇒ a ∈ T
3. The application of a term to another is a term, i.e., m ∈ T, n ∈
T ⇒ (m n) ∈ T

For example, the expressions 3.14, “a string”, a_id, (f 1),

((country state) county), ((a b) (c d)) are terms.

For convenience in the discussion, we use the following

notations:

Notation 3.2 1: Given an application (m n) ∈ T; m is called the
left sub-term, and n the right sub-term.

2. The parentheses surrounding an application can be omitted

when the right sub-term is not another application. For

example, (f 3), ((country state) county), and ((a b) (c d) can be

re-written the following way: f 3, country state and county, and

a b (c d) correspondingly.

3. A term t ∈ T has an iteration size, denoted as ||t||, and the
iteration size is calculated with the following formulas: if a ∈
C, or a ∈ P, then ||a|| = 1; otherwise ||m n|| = ||m|| + ||n||.

Unlike Lambda Calculus, the EP database doesn’t have variables.

Note that Froglingo does have variables (this is not discussed

here). EP carries high-level functions by using identifiers;

Lambda Calculus doesn’t have identifiers. Assignment is the

starting point in the EP database that carries high-level functions.

Definition 3.3: Given m, n ∈ T, the form m =: n is an assignment.
Here, m is called the assignee; and n the assigner. All the

assignments in a given T make up a set: A = { m =: n | m ∈ T, n
∈ T }.

Notation 3.4 1. Given an expression a ≡ b, the symbol ≡ indicates
that the two symbols a and b are identical.

2. Given an expression a !≡ b, the symbol !≡ indicates that the two
symbols a and b are not identical.

3. Let N be the set of natural numbers {0, 1, 2, …}.

4. Let m, n0, ..., ni ∈ T, here i ∈ N. We write:

 m n0... ni ≡ mn ≡ (...((m n0) n2) ... ni).

We further write:n ≅ n0, ..., ni ∈ T; and ||n || = i.

5. Given a term mn, m is called the left-most term of mn, here

||n || ≥ 0.

Now we can introduce the formal, logical definition of an EP

database:

Definition 3.5 An EP database D is the union of a set of terms T

⊂ T and a set of assignments A ⊂ A, i.e., D = T ∪ A, such that the
following are true:

1. If an application m n is in D, the left sub-term m must not be a

constant and the right sub-term n must not have an assigner, i.e.,

 m n ∈ D ⇒ m ∈ (T - C) ∩ ∀k ∈ T, (n =: k) ∉ D
2. If an assignment (m =: n) is in D , m can not be the left most

term of another term in D, i.e.,

 (m =: n) ∈ D ⇒ ∀∀∀∀t ∈ T and ||t || ≥ 1, mt ∉ D
3. The database D must have no circular set of assignments, i.e.,

m0 =: m1, m1 =: m2, …, mn-1 =: mn ∈ D, here n ≥ 1 ⇒ mn =: m0 ∉
D.

5

The above restrictions force users to enter those and only those

business applications that are semantically equivalent to a class of

total recursive functions. This will be discussed formally in

Sections 5 and 6.

We adduce a few EP database examples below. They will be used

later in the article:

Example 3.6 1. The function s(x) = x2 in Example 1.1.1 can be

expressed in EP database S = {s, s 1 =: 1, s 2 =: 4, …, 1, 2, 3,

…}.

2. The function f(x, y) = x + y in Example 1.1.2 can be expressed

in EP database F =: {f, f 1, f 1 1 =: 2, f 1 2 =: 3, … f 2, f 2 1 =:

3, f 2 2 =: 4, …1, 2, 3, …}

3. A sample EP database for the database application in Example

1.1.3 can be expressed as: D = {SSD, SSD John, SSD John

birth =: ‘6/1/90’, SSD John SSN =:123456789, College,

College admin, College admin (SSD John), College admin

(SSD John) enroll =: ‘9/1/08’, College admin (SSD John)

Major =: College CS, College, College CS, College CS100,

College CS100 (College admin (SSD John)), College CS100

(College admin (SSD John)) grade =: “F”, ‘6/1/90’,

123456789, ‘9/1/08’, “F”}

4. G = {a, a b, (a b c =: 3), a b d, b, c, 3}.

5. H = {p s =: 1, q s =: 1, p, q, s, 1}.

6. The union of the sets above S ∪ F ∪ D ∪ G ∪ H form an EP
database.

There are two obvious propositions for a database D:

Proposition 3.7 1. If an application is in a database, so are its left

sub-term and its right sub-term, i.e.

 m n ∈ D ⇒ m ∈ D ∩ n ∈ D
2. If an assignment is in a database, so are its assignee and

assigner, i.e.

 m =: n ∈ D ⇒ m ∈ D ∩ n ∈ D

Proof: Q. E. D. from the EP database definition itself.

4 ORDERING RELATIONS
Among terms, sub-terms, and assignments, there are rich relations

(and therefore built-in operators) developed for the EP data model

[26] and [28]. For the purposes of this article, we limit our

discussion to a few relevant ones.

Definition 4.1 1. Given terms m n ∈ T, we define the relation
“has the left sub-term”, denoted as m n {+ m; and the relation “has

the right sub-term”, denoted as m n {- n, i.e.,

{+ = {<m n, m> | m, n ∈ T};
{- = {<m n, n> | m, n ∈ T }.

The relations {+ and {- are among those built-in operators in

Froglingo.

Proposition 4.2

1. {+ and {- are dependent in a database D.

2. {+ and {- are decidable in a database D.

Proof: 1.1. {+ is dependent in D. Because:

l {+ m ⇒ ∃n ∈ T, l ≡ m n. (by 4.1.1)
l ∈ D ⇒ m n ∈ D ⇒ n ∈ D (by 3.7.1).

Then {+ is dependent in D by Definition 2.1.

1.2. {-. The proof is similar to {+.

2.1. {+ is decidable in a database D.

Given m, n ∈ D, here ||m||, ||n|| ∈ N, find an algorithm to

determine if m {+ n holds in finite steps:

i). We see if the iteration size ||m|| is equal to 1. If it is, then m

{+ n must be false because m {+ n would imply that m was

an application by 4.1.1 and therefore ||m|| should be greater

than 1.

ii). If ||m|| > 1, then compare to see if m’s left sub-term is

identical to n. If yes, then m {+ n is true. Otherwise m {+ n

is false.

All the decisions take finite steps because ||m|| and ||n|| are

finite. Therefore {+ is decidable.

In fact, {+ is decidable in the whole term set T.

2.2 {-. The proof is similar to {+.

Theorem 4.3 An EP database is a data model.

Proof. By 3.5 and 4.2.

To support our arguments in subsequent sections, we provide here

some additional properties of an EP database.

Definition 4.4 A set X is tree-structured under a relation ρ if there
is no circular set of relation elements: e0 ρ e1, e1 ρ e2, …, en-1 ρ
en, here n ∈ N and e0 ≡ en.

Proposition 4.5 An EP database is tree-structured under the

relations {+ and {-.

Proof 1 {+. Given a database D, if there was a set of elements in

{+ that form a circle: e0 {+ e1, e1 {+ e2, …, en {+ e0, where ei ∈ D
for all i ≤ n ∈ N, then there were a set of elements l0, l1, …, ln-1 ∈
D such that e1 l0 ≡ e0, e2 l1 ≡ e1, …, e0 ln-1 ≡ en-1. It implied that e0
ln-1 ln-2 … l0 ≡ e0. This is not possible.
2 {-. The proof is similar to the proof for {+.

Notation 4.6 1. The assignment =: in a database D is a relation:

=: = {<m, n> | m, n ∈ D, m =: n}.

Proposition 4.7 D is tree-structured under the relation =:.

Proof. It is true according to Definition 3.5.3

To show that each of the relations {+, {-, and =: is tree-structured

in a database, we provide a graphic of the sample database. (This

is Example 3.6.3).

Each circle represents an assignee in the database. A root node

represents an identifier, where the identifier is spelled out in the

circle center. A non-root node represents an application, where

the left sub-term is spelled out in the circle center. The leaf nodes

are the assignments normally having explicit assigners. A solid

up-down link connects an application to its left sub-term. A

dashed arrow connects an application to its right sub-term. A solid

arrow connects an assignee to its assigner. For those assignees

whose values are constants or other non-assignees, their values

are spelled out in the cycles

6

College

CS admin

CS100

grade

‘F’

Major enroll
‘9/1/08’

SSD

John

birth
‘6/1/90’

SSN
123456789

The up-down links, dash arrows, and solid arrows represent the

relations {+, {-, and =:. By ignoring two of the three types of the

links, the remaining graph is a tree structure.

5 NORMAL FORM AND REDUCTION
The normal form and reduction rules are adduced below to further

prove that the EP data model is equivalent to a class of total

recursive functions.

Definition 5.1 Given a database D, the set of normal forms NF is

defined as follows:

1. All the constants are normal forms, i.e., c ∈ C ⇒ c ∈ NF
2. All the terms in D that don’t have assigners are normal forms

by themselves, i.e.,

 t ∈ D – A ⇒ t ∈ NF

For example, the database F in Example 3.6.2 has the normal

forms: f, f 1, f 2, f 3,…, 1, 2, 3, ….

Definition 5.2 Given a database D, we have the one-step

evaluation rules, denoted as �:

1. An identifier not in D is reduced to null, i.e.,

 p ∈ P ∩ p ∉ D ⇒ p � null

2. A term having its assignment in D is reduced to its assigner,

i.e.,

 (m =: n) ∈ D ⇒ m � n

3. If m, n ∈ NF, and m n ∉ D, then m n is reduced to null, i.e.,
m, n ∈ NF, m n ∉ D ⇒ m n � null

4. The application of two terms are reduced to the application of

their normal forms, i.e.,

 m, n ∈ T, m � m’, n �n’ ⇒ m n � m’ n’.

Definition 5.3 Let m, n ∈ D. If there is a finite sequence l0, …, ln

∈ D , where n ≥ 0, such that m ≡ l0,, l0 � l1, …, ln-1 � ln, ln ≡ n,
then

1. m is effectively, i.e., in finite steps, reduced to n, written as

 m →EP n.

2. if n is a normal form and m →EP n, then we write: nf(m) = n.

3. If m1 →EP n and m2 →EP n, then we write: m1 == m2.

Lemma 5.4 A term having an assignment in a database can be

effectively reduced to its normal form, i.e.,

 ∀m ∈ D ∩ A ⇒ m →EP n, here n ∈ D ∩ NF.
Proof. When m ∈ D ∩ A, we are always able to find one and only
one chain: m =: l0, l0 =: l1, …, ln-1 =: ln, where n ∈N because one

assignee can only have one assigner (Definition 3.4). The

reduction process can be done in finite steps because the relation

=: forms tree structures in D (Proposition 4.7). Since ln ∈ D has
no more assigner, itself is a normal form (Definition 5.1.1).

Therefore ln ≡ n ∈ NF.

Theorem 5.5 An arbitrary term under a database can be

effectively reduced to one and only one normal form, i.e., given

D, ∀m ∈T, m →EP n1, m →EP n2, and n1, n2 ∈ NF ⇒ n1 ≡ n2
Proof. 1. Case m ∈ D,
 a). If m ∈ D ∩ A, then m is a term with an assignment in D and
it can be effectively reduced to one and only one normal form

(Lemma 5.4).

b). If m ∈ D - A, then m is a term without assignment, and then
it is the normal form by itself (Definition 5.1.2)

2. Case m ∉ D,
 a). if m ∈ P, then m →EP null (Definition 5.2.1).

 b). if m ∈ C, then m itself is the unique normal form (Definition
5.1.1).

 c). if m ≡ n1 n2. By induction, n1, n2 are effectively reduced to
two normal forms n1’, n2’ correspondingly, then m →EP n1’ n2’

(Definition 5.2.4) :

 i). If n1’ n2’ ∉ D, then n1’ n2’ →EP null (Definition 5.2.3).

 ii). If n1’ n2’ ∈ D, then m will be effectively reduced to the
normal form of (n1’ n2’) according to the step 1 of the proof.

 All of the processes are effective (in finite steps).

EP data model, as a formal theory, is consistent. A formal system

is said to be consistent if it lacks contradiction, i.e. the ability to

derive both a statement and its negation from the system's axioms.

For a formal theory that has a decidable reduction process, i.e.,

that any term it contains can be reduced to its normal form in a

finite number of steps, we can redefine the consistency as the

following:

Definition 5.6 A formal theory is consistent if a term doesn’t

have two distinguishable normal forms.

If a term were to have two normal forms, this is equivalent to

saying that two normal forms were equal. This is because they

would be derived from the same term. At the same time, it would

also be saying that two normal forms were not equal, because they

were not identically defined in the theory’s axioms.

This definition is more straightforward and stronger than the one

given in [5] for Turing-equivalent formal systems such as Lambda

Calculus, where a reduction process may not terminate with a

normal form.

Corollary 5.7 The EP data model is consistent.

Proof. It is clear from Theorem 5.5.

6 APPLICATIVE STRUCTURE
We will show here that an EP database is interpreted as a high-

order function.

An applicative structure is commonly used to interpret a Turing-

equivalent language [5]. A class of total recursive functions is a

strict subset of a class of partial recursive functions, and therefore

it can be fitted well into an applicative structure [3]. We will

develop an applicative structure in this section such that each term

of the EP data model, under a database, is interpreted as an

element in the applicative structure. Conversely, an element from

the applicative structure can be expressed as an EP database. It is

7

done by proving that the entire applicative structure can be

expressed as an EP database in the next section.

To construct this applicative structure, we first divide the normal

forms in a database into three different categories:

Notation 6.1 Given a database D, and therefore its NF,

1. All the constants belong to a category, i.e., NF 0 ≡ C
2. All the terms in D that are not constants, don’t have assigners,

and are not functionally depended on by other terms, i.e.,

 NF 1 = {m | m ∈D - A – C ∩ (∀x ∈ T, m x ∉ D)}
3. The remaining normal forms belong to the third category, i.e.,

 NF + = NF - NF 0 - NF 1

As it will become clear soon, a member in the last category NF +

has a derived semantics; a member in the second category NF 1 is

interpreted as nothing else but its syntactical information; and a

constant is mapped to a constant (0-ary) function.

Example 6.2 For the database G = {a, a b, (a b c =: 3), a b d, b,

c, 3} defined in Example 3.6.4:

1. NF 1 ≡ {b, c, a b d}
2. NF + ≡ {a, a b}

The applicative structure to be developed will be a class of total

recursive functions. Within the applicative structure, applying an

element (as a function) to another element (as an argument)

always effectively (in finite steps) yields a third element (as the

value), and all three elements belong to the collection.

Application is the only operation in the applicative structure.

The applicative structure is built on the top of a set of constant

functions, or called 0-ary functions. We map the syntactical form

of each term from T, except for the special term null, to an

element of the set of the 0-ary functions. It is done by the Gödel

numbering # as it was done for lambda expressions (6.5.6 of [5]):

Definition 6.3 # is an effective one-to-one map:

 #: T − {null} → N.

Note that this mapping is purely syntactical, i.e., the syntactical

form of a term becomes a 0-ary function in the applicative

structure. Note that applying a 0-ary function to any element in

the applicative structure yields to a least element, denoted as ⊥.

The map # is applied not only to the constants C, but also to the

non-constant terms in T. Mapping the non-constant terms to N is

to carry the syntactical information to the applicative structure,

i.e., to provide an index for the EP terms in the applicative

structure. To make it happen, we further introduce an extra 0-ary

function, denoted as i.

Now we denote the entire set of the 0-ary functions as R0.

Definition 6.4 R0 = N ∪ {i, ⊥}, where i and ⊥ are two unique 0-
ary functions beyond N.

We will not address the issue of how to generate the whole class

of total recursive functions over the 0-ary functions R0. Previous

work on this establishes that such a class exists, and that it can be

enumerated and represented in an effective applicative structure

[the Corollary on page 169 of the text book 11 and the article 2].

We simply denote such a class as R, and represent it in a form of

effective applicative structures.

Definition 6.5 The applicative structure (R0, R, *) satisfies:

1. The set of the 0-ary functions R0.

2. The complete set of total recursive functions R over R0,

therefore R0 ⊂ R.
3. ∀a, b ∈ R, there is a operator *, such that a * b is effectively
(in finite steps) reduced to c ∈ R , denoted as a * b = c.

Here, we are not interested in how a * b is reduced to c, the

result, but what the result is.

To help the discussion later, and to understand better the

applicative behavior of a total recursive function, we give an

alternative notion of an element f ∈ R.
Notation 6.6 1. let f ∈ R, f is alternatively expressed as:
 f = {<e, j> | e ∈ R ∩ f * e = j}
2. The set is also called the properties of f.

Below are the rules for mapping EP terms under a database to R.

Definition 6.7 Given a database D, and an arbitrary m ∈ T, the
semantics [m] is derived according to the following rules:

1. The term null in T is interpreted as the least element in R,

i.e., [null] = ⊥,
2. A constant in C − {null} is mapped to the corresponding
Gödel number, i.e.,

 ∀c ∈ C, [c] = # c,
3. A normal form in NF

1
is mapped to the function that only

contains its syntactical information, i.e.,

 ∀m ∈ NF1, [m] = {<i, #m>} ∪ {<[o], ⊥> | o ∈ T },
4. A normal form in NF

+
 is mapped to the function containing its

syntactical information and mainly its derived information, i.e.,

 ∀m ∈ NF+, [m] = {<i, #m>}
 ∪ {<[ni], [m ni]> | for all ni ∈ T, such that m ni ∈ D }
 ∪ {<[oi], ⊥> | for all oi ∈ T, such that m oi ∉ D},

5. The semantics of an arbitrary term is the semantics of its

normal form, i.e.,

 ∀m ∈ T, [m] = [nf (m)].

We will prove that [m] is an element in R. In Definition 6.7.4

above, we attempted to find all m ni, where i = 0, …, n for an

integer n ≥ 0, such that m ni ∈ D. By induction, we assumed that
m and ni have their semantics [ni] and [m ni]. The collection of all

the elements <[ni], [m ni]> is the derived information.

For each normal form m ∈ NF1 ∪ NF+, we added its syntactical
information {<i, #m>}. This ensures that the normal form has a

unique interpretation. There are cases in which an element

<[ni], [m ni]> might not be interpreted uniquely among the
derived information if the syntactical information was not a part

of the semantics [m]. In the database H = {p s =: 1, q s =: 1, p, q,

s, 1} from Example 3.6.5, for example, both [p] and [q] would

end up with the same interpretation: {<[#s], [#1]>} if <i, #p> and

<i, #q> were not a part of their corresponding semantics.

Carrying the syntactical information to the interpretation makes

sense in the practice of database application. It is not unusual for

two database entities to represent two distinct objects in the real

world while temporarily having the same set of attributes.

Before demonstrating that a term in a database is interpreted as a

high-level function, we present two intermediate results: If two

terms are equal, their interpretations are equal, and if two terms

cannot be reduced to the same normal form, their interpretations

8

are not equal. Note that the interpretation of a term is not formally

claimed to be a high-level function (a member in R) yet until

Theorem 6.11.

Lemma 6.8 m →EP n ⇒ [m] ≡ [n]
Proof. It is clear from Definition 6.7.

Notation 6.9 If a term m is reduced to its normal form n and n is

not identical to another normal form k, then we write m !→EP k.

Lemma 6.10 m !→EP n ⇒ [m] !≡ [n].
Proof.

1. If m, n ∈ NF0 U NF1, then [m] ≠ [n] by Definitions 6.7.1,
6.7.2, and 6.7.3.

2. If m, n ∈ NF+,
If m !→EP n, then

⇒ m !≡ n (by 5.1, the normal form definition)
⇒ #m !≡ #n (By 6.3, the Gödel numbering)
⇒ [m] !≡ [n] (By 6.7.4, distinguished syntactical information)

3. If m ∈ NF+ and n ∈ NF0 ∪ NF1, then [m] !≡ [n] because [m]
has derived information while [n] doesn’t (by 6.7, the

interpretation definition). Also they have different syntactical

information.

4. If m, n ∈ T , then
If m !→EP n, then

⇒ m →EP m’, n →EP n’ (by 5.5, the reduction theorem)

⇒ m’ !→EP n’ (by the given condition of this lemma).

⇒ [m’] !≡ [n’] (by the proof 2 above)
⇒ [m] !≡ [n] (by 6.7.5)

Theorem 6.11 (soundness) An arbitrary term under a database has

an interpretation of function, i.e., given D, ∀m ∈ T ⇒ [m] ∈ R.

Proof. 1. m ∈ NF0. [m] is a 0-ary function, and therefore [m] ∈ R

 (by Definition 6.7.1 and 6.7.2).

2. m ∈ NF1. [m] ∈ R and is a unary function by 6.7.3.

3. m ∈ NF+.
⇒ [m] = {<i, #m>} ∪ {<[ni], [m ni]> | m ni ∈ D, i is 0, 1, …

k for a k > 0} (by 6.7.4, here the formula is rewitten)

⇒ ni !→EP nj, here ni, nj ∈ NF, for any i and j between 0 and
k and i ≠ j. (by 3.5.1, the right sub-term of an application
in D has no assignment)

⇒ [ni] !≡ [nj] (By lemma 6.10), and
 i !≡ [ni], for all i < k (By Definition 6.5)
⇒ [m] ∈ R (by 6.6, where the first coordinates of all the
elements in a function are distinguishable)

The soundness becomes stronger with the proof that the reduction

rules of the EP data are consistent with the applicative behavior of

functions.

Corollary 6.12 [m n] = [m] * [n]

Proof.

1. m ∈ NF 0.
⇒ [m] ∈ R0 (by 6.7.2)

⇒ [m] * a = ⊥, here a ∈ R (by 6.5.1)
Because m is a constant, then for any term n, we have

m n →EP null (by 5.2.3)

⇒ [m n] = [m] * [n] = ⊥ (by 6.7.1)
2. m ∈ NF 1.
⇒ [m] = {<i, #m>} ∪ {<[o], ⊥> | o ∈ T } (by 6.7.3)

⇒ [m] * [n] = ⊥, here [n] ∈ R – {i} (by 6.7.3, 6.6)
m n →EP null (by 5.2.3)

⇒ [m n] = [m] * [n] = ⊥ (by 6.7.1)
3. m ∈ NF +.
⇒ [m] = {<i, #m>}
 ∪ {<[ni], [m ni]> | m ni ∈ D, i is 0, 1, … k for a k > 0}

∪ {<[oi], ⊥> | for all oi ∈ T, such that m oi ∉ D}
 (Definition 6.7.4, the formula in the middle was written)

If n →EP n’ and n’ is the normal form (Theorem 5.5),

a). If n’ ≡ ni, where i ≤ k such that m ni ∈ D, then
i). [n] ≡ [ni] (by 6.7.5)
ii). [m] * [ni] = [m ni] (by 6.7.4 and 6.6. Since the

function [m] has an element <[ni], [m ni]>, then [m] *
[ni] = [m ni] is true)

⇒ [m] * [n] = [m ni]

iii). m n →EP m ni (by 5.2.4)

⇒ [m n] = [nf(m n)] (by 6.7.5)
⇒ [m ni] = [nf(m ni)] (by 6.7.5)
⇒ nf(m n) ≡ nf(m ni) (by 5.5)
⇒ [m ni] ≡ [m n] (by 6.8)
⇒ [m n] = [m] * [n] (based on the results earlier)

b). If m n’ ∉ D, then
⇒ [m] * [ni] = ⊥ (by 5.2.3)
⇒ m ni →EP null (by 6.7.4)

⇒ [m n] = [m] * [n] (By 6.7.1)
4. m ∈ T.
Assume that m →EP m’, n →EP n’, and m’, n’ ∈ NF. Then
[m’ n’] = [m’] * [n’] (by proof step 3 of this corollary)

i). [m] = [m’], [n] = [n’] (by 6.7.5)

 ⇒ [m] * [n] = [m’] * [n’] (by 6.6)
ii). m’ n’ →EP nf(m' n’), m n →EP nf(m n)

⇒ nf(m' n’) ≡ nf(m n) (by 5.5)
iii). [m’ n’] = [nf (m’ n’)], [m n] = [nf (m n)] (by 6.7.5)

⇒ [m’ n’] ≡ [m n] (from the two equations above)
⇒ [m n] = [m] * [n] (based on the results earlier)

7 PROPERTY ENUMERATION
In Section 6, we showed that a term in a database is interpreted as

a high-level function. We show in this section that an arbitrary

function can be mapped back to a database.

Rather than show that a single total recursive function is

computable, we show that the complete set of properties of a total

recursive function can be mapped to, and therefore “stored,” in an

EP database. It will be true mathematically even if the properties

of a function are infinitely long, as the database space is

unlimited, hypothetically.

In practice, a database always stores a very small portion of a

class of total recursive functions; however, we will show that the

entire class of total recursive functions can be mapped to a

database. This simplifies our work in this section in two folds.

First of all, we don’t have to deal with the issues between the

functions being stored, and the rest of the functions not being

stored, in a database. Therefore the issue of the data evolution

process in an actual database is not addressed in the interpretation.

Secondly, because each function in R is a curried and therefore a

unary function, the iteration size of each term m in the database

will not be more than 2, i.e., ||m|| ≤ 2. This doesn’t utilize all the
syntactical flexibilities in the EP data model, i.e., allowing the

9

iteration size of a term to be as large as a business needs.

Therefore, the issues that attend the management of dependent

data via independent data in an actual database are not addressed

in the interpretation. Nevertheless, the simplification doesn’t

impact our conclusion that the EP data model is equivalent to a

class of total recursive functions.

Recall that we introduced an extra 0-ary function i in R in Section

6. This special constant is not necessary for this section, but it

doesn’t affect our conclusions by continuing to use R without

worrying about if the special constant is in R or not. The set of

constants over which a class of total recursive functions is

constructed is inessential [3].

Now we need to develop a complementary mapping of the

function #:

Definition 7.1 1. ϒ0 denotes an effective one-to-one map: ϒ0: R0

→ C.
2. ϒ1 denotes an effective one-to-one map: ϒ1: R - R0 → P,
3. Let a ∈ R, define a inductively as the following:
a ∈ R0 ⇒ a = ϒ0 a
a ∈ R - R0 ⇒ a = ϒ1 a

This time, the 0-ary functions are mapped to the constants C, and

the rest of functions in R are mapped to the identifiers P.

Lemma 7.2 ∀ a ∈ R, ||a||= 1.
Proof. It is clear from 7.1.1 and 7.1.2.

Definition 7.3 1. Given a m ∈ R, let℘(m) be a set of

assignments:

℘(m) = {m n =: o | n ∈ R, m * n = o, o ! ≡ ⊥}
2. ℑ = ∪m ∈ R ℘(m) ∪ R

℘(m) is nothing but the collection of its properties of a function

m in the form of EP assignments. ℑ is nothing but the collection
of the properties of the entire class of total recursive functions R,

i.e, ∪m ∈ R ℘(m).

To satisfy Property 3.7, we automatically consider that m n,
m, and n are the additional elements of ℘(m) in Definition

7.3.1 though they were not explicitly spelled out.

As noted earlier, we didn’t consider an accumulative process of

adding data piece by piece during the mapping of R’s properties

to a database; instead, we assume that R’s properties in the form

of EP terms and EP assignments are available already. This

assumption is valid, again because previous work establishes that

the properties of R, a class of total recursive function, can be

enumerated [the Corollary on page 169 of the text book 11 and

the article 2].

Lemma 7.4 ℑ is an EP database.
Proof. We need to show that each assignment in ℑ satisfies the
conditions of an EP database defined in 3.5, and also specify that

ℑ is enumerable, i.e., it can be effectively produced under the
assumption of infinite time and space.

I). Prove m n =: o is a valid assignment in a database D,
for ∀m, n ∈ R, m * n = o, and o !≡ ⊥.

i). Prove that m is valid to be a left sub-term in D
a). m must be a non 0-ary function, i.e., m ∈ R - R0 (by

7.3.1)

b). m ∈ P (By 7.1.2)
c). m is valid to be a left sub-term in D (partially satisfy
Definition 3.5.1)

ii) Prove that n is valid to be a right sub-term in D
a). ||n|| = 1, ||m|| = 1 (by Lemma 7.2)
b). For each m n =: o in ℑ, ||m n|| = 2.
c). n must not have an assignment, i.e., n ∈ℑ – A (by
7.3.1, i.e., the only form of assignments is m n =:
o in ℑ)

d). n is valid to be a right sub-term in database. (partially
and then completely satisfy Definition 3.5.1)

iii). According to Definition 7.3.1, there is not a third element

o from R such that m n o is in ℑ. Therefore
Definition 3.5.2 is satisfied.

iv). Prove that there is not a set of assignments that forms a

circle in ℑ in satisfying Definition 3.5.3. Assume that ∃ e0,
e1, …, ej ∈ℑ, here j ≥ 0, e0 =: e1, e1 =: e2…, ej =: e0 ∈ ℑ.
Assume such a circle existed,

a). If j = 0, then we would have: e0 ≡ m n , m n =:
m n, and m n ≡ o. The assigner’s iteration
size ||m n|| = 2. It is contradictory to Lemma 7.2 that
o = 1.

 b). If j > 0, the proof is similar to the case of j = 0 when ej

=: e0, and e0 ≡ m n.
We conclude that ℑ satisfies the restrictions to be an EP
database (by 3.5).

II). According to the conclusions from the Corollary on page 169

in [11] and the articles [2 and 3], there is an effective

procedure to generate such a set ℑ.

Lemma 7.5 ∀m ∈ R, m is a normal form in ℑ
Proof. 1. If m is a 0-ary function, then m ∈C, and m ∈ NF
(by 7.1.1 and 5.1.1).

2. If m is a non 0-ary function, then m ∈ P (by 7.1.2). Since
the iteration size of an assignee in ℑ is 2 (By the definition 7.3.1),
and m’s iteration size is 1 (By Lemma 7.2), then m must not

have an assignment. Then m is a normal form in ℑ (By 5.1.2).

Definition 7.6 ∀m1, m2, …, mn ∈ R, ∀ n ∈ N, if the equation:

 m 1 m 2 … m n == m 1 * m 2 * …* m n
is true, then all the total recursive functions are EP-definable.

Here m 1 * m 2 * …* m n ≡ [n] while m 1 * m 2 * …* m n ≡
(…(m 1 * m 2)* …* m n)= n for a n ∈ R according to the
property of functions in 6.6.

Theorem 7.7 (completeness) Total recursive functions are EP-

definable.

Proof. Prove by induction.

1. If n = 1, prove m 1 == m 1 . It is true by itself and by the
theorem 5.5.

2. If n = 2, prove m 1 m 2 == m 1 * m 2. By 7.3, we have
 m 1 * m 2 = o, here o ∈ R
 i). If o ≡⊥, then o  ≡ m 1 * m 2 ≡ null (by 7.1)

10

a). m 1 m 2 ∉ ℑ (by Definition 7.3)
b). m 1 , m 2 are in normal form (lemma 7.5)
c). m 1 m 2 == null (By 5.2.3).

e). m 1 m 2 == m 1 * m 2 is true.
 ii). If o ≠ ⊥

a). Because  m1  m2 =: o (by 7.3), then
 m1 m2 == o  (by 5.2)

b). Since m1 * m2 = o (by 7.3), then

m1 * m2 ≡ o  (by 7.6)
c). m1 m2 == m1 * m2 is ture

3. If n > 2, prove m 1 m 2 … mn == m 1 * m 2 * …*

mn. by induction. Assume m1 m2 … mn-1 == m1 *

m2 * …* mn-1. Then
a). m1 * m2 * …* mn-1 = o, here o ∈ R (by 6.6)
b). m1 * m2 * …* mn-1 ≡ o  (by 7.6)
c). m1 m2 … mn-1 == o  (by the assumption in step
3)

d). m1 m2 … mn-1 mn == o  mn (by 5.5)
e). m1 m2 … mn-1 mn == o * mn (by step 2
above)

e). m1 m2 … mn-1 mn == m1 * m2 * …* mn-1 *

mn 

7 SUMMARY
There are many language systems, such as lambda calculus,

Turing machine, and combinatory logic, that are equivalent to

classes of partial recursive functions [5]. This article has proven

that EP data model is a language system that is equivalent to a

class of total recursive functions. Obviously, the relational data

model and the hierarchical data model are the special cases. Our

proof was accomplished by showing that a term in an EP database

is a (high-order) function, and that the properties of a class of total

recursive functions, presented in a certain format, form an EP

database. This doesn’t mean that all the software applications can

be practically managed by using EP data model alone; rather, it

offers a consistent and always-halting method to manage as much

finite data as a business application requires and by so doing

minimizes the effort of software development and maintenance.

Forcing software applications to be totally recursive is what

distinguishes a data model from a programming language, but it is

not the sole difference. Built-in operators of data model, derived

from dependent and other relations, have been well recognized as

a functionality that extends beyond a programming language.

Without exception, the EP data model offers a set of rich, built-in

operators. (A typical example is the Froglingo expression “Z <=+

A” for the query "Is there a path between A to Z in a directed

graph?" [28, 26].)

A database is an evolving subset of the class of total recursive

functions, rather than a whole class of total recursive functions.

Obtaining the semantics of database evolving process in the

context of the class of total recursive functions requires discussion

beyond the scope of this article. This issue can be addressed by

expanding Section 7 with various applicative structures.

The EP data mode is a type-free system. Since it is equivalent to a

totally recursive function, the type-free aspect doesn’t cause any

exception or failure to terminate. Instead, it can easily express

self-reference and totally recursive functions. (For example, the

function F = {<0, 1>, <F, 1>}, which has no straightforward

expression in Lambda Calculus, can be expressed in EP data

model as F = {F 0 =: 1, F F =: 1}.)

The EP data model expresses functions by enumerating their

properties. Its system performance is independent of the

complexity of the functions themselves. No matter how long it

takes to enumerate the properties of functions, the system

performance of the EP data model (i.e., the time complexity of

constructing the functions in the database and querying against

the properties), is solely dependent on the generic data structure

used to implement the EP data model.

Froglingo is not aimed to address the issue of “computable

queries”, i.e., the computable functions from relation to relations

discussed in [9 and 19], though it can be a special case in

Froglingo.

Provided that a data model is easier than a programming language

in representing the semantics of the given data model, a

programming language like Froglingo that is based on EP data

model is ultimately the easiest to use in database application

development and maintenance.

REFERENCES:
1 S. Abiteboul, R. Hull, and V. Vianu. “Foundations of

Databases”. Addison-Wesley Publishing Company, 1995.

2 A. Ambainis and J. Smotrovs. “Enumerable Classes of Total

Recursive Functions: Complexity of Inductive Inference”. Lecture

Notes in Computer Science: Vol. 872, Page 10 – 25. Proceedings

of the 4th International Workshop on Analogical and Inductive

Interence: Algorithmic Learning Theory. 1994.

3 A. Asperti and A. Ciabattoni. “Effective Applicative

Structures”. Category Theory and Computer Science, Lecture

Notes in Computer Sicence, Volume 953/1995, Page 81-95.

4 M. P. Atkinson, P. Buneman. “Types and Persistence in

Database Programming Languages”. ACM Computing Surveys.

Vol. 19, NO. 2. June 1987.

5 H. P. Barendregt. “The Lambda Calculus - its Syntax and

Semantics”. North-Holland, 1984.

6 P. Boncz, T. Grust, M.V. Keulen, S. Manegold, J. Rittinger,

J. Teubner. “MonetDB/XQuery: A Fast XQuery Processor

Powered by a Relational Engine”, SIGMOD 2006, June 27-29,

2006, Chicago, Illinois, USA.

7 P. Buneman. “Functional Database Language and the

Functional Data Model, A position paper for the FDM

workshop”. Workshop of Functional Data Model, June 1997.

8 P. Buneman, M Fernandez, D. Suciu. “UnQL, A Query

Language and Algebra for Semistgructured Data Base on

Structural Recursion”, VLDB Journal: Very Large Database,

Volume 9, Number 1, page 76 – 110, 2000.

9 A. K. Chandra, and D. Harel. “Computable Queries for

Relational Data Bases”. Journal of Computer and System Sciences

21, 1980, Page 156 - 178.

10 P. Chen. “The Entity Relationship Mode – Toward a Unified

View of Data”, TODS, 1:1, March 1976.

11

11 J. E. Hopcroft, J. D. Ullman. “Introduction to Automata

theory, Languages, and Computation”. Addison-Wesley

Publishing Company, Inc., 1979.

12 H. V. Jagadish, Laks V. S. Lakshmanan, D. Srivastava, K.

Thompson. “TAX: A Tree Algebra for XML.

13 ITU-T Recommendation X.500 (1993). Information

Technology – Open Systems Interconnection – The Directory:

Overviews of Concepts, Models, and Services.

14 C. Laasch, M. H. Scholl. “A Functional Object Database

Language”, Proceedings of DBPL4, 1993.

15 T. W. Ling, M. L. Lee, G. Dobbie, “Applications of ORA-

SS: An Object-Relationship-Attribute Data Model for

Semistructured Data”, Third International Conference on

Information Integration and Web-based Applications & Services

(IIWAS 2001), September 2001, Linz, Austria.

16 A. Ohori, P. Buneman, V. Breazu-Tannen. “Database

Programming in Machiavelli – a polymorphic language with static

type inference. In ACM SIGMOD, 1989, page 46 – 57.

17 Report of the CODASYL Data Base Task Group, ACM,

April 1971.

18 S. Rozen, D. Shasha. “Rationale and Design of BULK”,

Proceedings of DBPL3, 1992, page 71-85.

19 Peter Schauble. “On the Expressive Power of Query

Languages”. ACM Transactions on Information Systems, Vol. 12,

No. 1, January 1994, Page 69 - 91.

20 D. Scott. “Outline of a Mathematical Theory of

Computation”. Proceedings of the Fourth Annual Princeton

Conference on Information Sciences and Systems, Princeton

University. 1970, page 169 - 176.

21 D. Scott. “Models for Various Type-Free Calculi”. Suppes et

al. 1973, page 157 - 187.

22 David W. Shipman. “The Functional Data Model and the

Data Language DAPLEX”. ACM Transactions on Database

Systems, Vol. 6, No. 1, March 1981, Pages 140 – 173.

23 C. Small, A. Poulovassilis. “An Overview of PFL”,

Proceeding of DBPL3, 1992, page 96-110.

24 K. H. Xu, Jingsong Zhang, Shelby Gao. “Froglingo, When a

Data Model is Equivalent to the Class of Total Recursive

Functions”. Submitted to SIGMOD 2010 Demo Proposal.

25 K. H. Xu, Jingsong Zhang, Shelby Gao. “Assessing Easiness

with Froglingo”. The Second International Conference on the

Application of Digital Information and Web Technologies, 2009,

page 847 - 849.

26 K. H. Xu, Jingsong Zhang. “A User’s Guide to Froglingo,

Database Application Management System”. To appear at the

website: http://www.froglingo.com.

27 K. H. Xu, B. Bhargava. “A Functional Approach for

Advanced Database Applications”. Third International

Conference on Information Integration and Web-based

Applications & Services (IIWAS 2001), September 2001, Linz,

Austria.

28 K. H. Xu. “EP Data Model, a Language for Higher-Order

Functions”. Manuscript unpublished, March 1999.

http://www.froglingo.com/ep99.pdf.

29 K. H. Xu and B. Bhargava, “An Introductioin to Enterprise-

Participant Data Model”, Seventh International Worshop on

Database and Expert Systems Applications, September, 1996,

Zurich, Switzerland, page 410 – 417.

