
Weak hnf but not hnf λ-terms and their finitely
measurable properties

Abstract. A closed lambda term M with head normal form (hnf) is said to have
infinitely measurable properties, i.e., for all closed lambda terms N , there are an
infinite set of non-beta-convertible terms Q such that M N can be beta-reduced
to Q. Precisely, a hnf represents a partial recursive function that has an infinite
co-domain and doesn’t map certain inputs to meaningful outputs. In this paper,
we show that a closed lambda term M with weak head normal form (whnf) but
not hnf has finitely measurable properties, i.e., for all closed lambda terms N ,
there are a finite set of non-beta-convertible terms Q such that M N can be beta-
reduced to Q with a size not larger than M. (Precisely, a whnf but not hnf repre-
sents a bounded and recursive function that has a finite co-domain and effectively
maps an arbitrary input to a output within the finite co-domain.)

Keywords: lambda calculus · head normal form · weak head normal form · com-
putability · bounded function

1 Introduction

We use H to denote all closed hnfs and Hλ for the closed λ-terms having a hnf, and
W\H for all closed whnfs without a hnf, and Wλ\Hλ for those closed λ-terms having
a whnf but without a hnf ( [1] and [4]). We also use Z for the set of zero-terms.

A closed term M ∈ H is in the form of λx1...xn.xit0...tk where n > 0, k ≥ 0,
1 ≤ i ≤ n, and FV (tl) ⊆ {xj : 1 ≤ j ≤ n} for all l between 0 and k. When M
is applied to an arbitrary number of second terms N ∈ Λ0, one term at a time, there
are an arbitrary number of third terms Q such that the third terms have hnf and are not
β-convertible, i.e., |{Q : M N ↠β Q,N ∈ Λ0, Q ∈ H}| = ∞. We say M is active
because of the head variable xi that can be freely substituted by a second term in an
application. Formally, we say M ∈ H represents a partial recursive function.

When a term M ∈ Z, M always keeps in the form of an application. When M is
applied to a second term N ∈ Λ0 and M N ↠β Q, the size of Q is never be less than
the sum of the terms M and N , i.e., |Q| ≥ |M |+ |N |. We say M is inactive. Formally,
we say M is "undefined". Here the size of a term M refers to the number of symbols
appearing in M .

A closed M ∈ W\H is in the form of λx1...xn.(λy.s)ut0...tk where n > 0, k ≥ 0,
and {FV (ti) : 0 ≤ i ≤ k} ∪ FV (s) ∪ FV (u) ⊆ {xj : 1 ≤ j ≤ n} ∪ {y} for all j
between 1 and n. We know such a term has its activeness between those of the inactive
zero terms and the active hnf terms. In this paper, we quantify this common sense by
showing a term M ∈ W\H is one of the following:
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1. M is meaningful, i.e., we say M identifies a finite number of W\H terms. When
M is applied to an arbitrary number of second terms N ∈ Λ0, one term at a time,
there are only a finite number of third terms such that each of the third terms is a
W\H term and has a size less or equal to the size of M , i.e., |{Q : M N ↠β

Q,N ∈ Λ0, Q ∈ W\H, |Q| ≤ |M |} is finite.
2. M is meaningless like a Z term, i.e., when a term M ∈ W\H is applied to a

second term N ∈ Λ0 and M N ↠β Q where Q ∈ W\H, the size of Q is always
larger than the size of term M , i.e., |Q| > |M |. When M is meaningless, we also
say that M doesn’t identify any W\H terms.

In Section 2, we develop the conclusion only in the context of the standard lambda
calculus as the conclusion is directly related to the lambda calculus itself. For the read-
ers who are interested in the applications of the conclusion, we relate the main conclu-
sion of this paper to an extended lambda calculus and the notion of bounded functions
developed in [9]. For those readers who are interested in the theory of Possibly Approx-
imately Correct (PAC) learnability, we further related it to the work in [8]. The related
work is provided in Section 3.

2 A W\H term identifies only a finite set of W\H terms

We start from the basic properties of the set Wλ\Hλ:

Proposition 1. ∀M ∈ W\H, ∀N ∈ Λ0, and M N ↠β Q, then Q cannot have a hnf,
i.e., Q ∈ (Wλ\Hλ) ∪ Zλ.

Proof. A term M is defined to have a hnf, i.e., M ∈ Hλ, if there is a sequence of
terms M0, ...,Mi ∈ Λ0 such that M M0 ... Mi ↠β I, where i ≥ 0 and I ≡ λx.x.
To differentiate itself from a term with a hnf, a term having a whnf but not a hnf, i.e.,
M ∈ Wλ\Hλ, must have: ∀xi ∈ Λ0, M x0 ... xi ↠β Q, where Q ̸≡ I and i ≥ 0.
(Otherwise, there would be a M x0 ... xi →β I for a i ∈ N , which is a contradiction.)

We further determine: Q ∈ (Wλ\Hλ) ∪ Zλ. (Otherwise, if Q ∈ Hλ\I, then we
would have M N P →β QP �β I, for a P ∈ Λ0 and |P | ≥ 0, which is another
contradiction.) □

For any M ∈ Λ0, if we know M can be reduced to N ∈ Λ0, there is a standard
reduction to reduce M to N (Theorem 11.4.7 of [2]). This theorem says that not all term
M can be effectively reduced to N when only the leftmost reduction strategy is used if
we know M can be reduced to N . For example, Ω(II) would never be reduced to ΩI if
only the leftmost reduction strategy is used, where the zero term Ω ≡ (λx.xx)(λx.xx).
However, if we know M has a normal form, then only the leftmost strategy is sufficient
to effectively reduce M to its normal form (Theorem 13.2.2 of [2]). Similarly, we show
that if we know that M is reducible to N , where N ∈ W, then we can effectively
reduce M to N using the leftmost reduction strategy only. The strategy of proving the
conclusion is not different from the proof for Theorem 13.2.2 provided in [2]: a non
leftmost reduction doesn’t help to contract the leftmost redex of a Wλ term that must
be contracted in order to be reduced to an abstraction.
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Proposition 2. If M ∈ Wλ, M ↠β Q, where Q ∈ W and ↠β is a multi-step β-
reduction (in the standard reduction strategy), then the leftmost reduction strategy is
sufficient to reduce M to Q, i.e., M ↠l Q.

Proof. We prove it by induction on the size of the term M :
Case 1: M ∈ W. It is true by itself.
Case 2: M ≡ (λx.M0)M1.

1. The leftmost reduction strategy always makes progress in reducing M to Q: (λx.M0)M1

→l M0[M1/x].
(a) If M0[M1/x] ∈ W. Therefore we have M ↠l Q.
(b) If M0[M1/x] ≡ M01 M11...Mn1. We conclude M ↠l Q by induction.

2. A non leftmost reduction strategy doesn’t make any progress in reducing M to Q:
(λx.M0) M1 →not l (λx.M

′
0) M

′
1, where M ′

0 and M ′
1 denote alternated terms of

M0 and M1 after a non leftmost reduction. Because a non leftmost reduction cannot
get rid of the leftmost redex though the components M0 and M1 may be altered.
To reduce (λx.M ′

0) M
′
1 to an abstraction, a leftmost reduction must be used. This

tells us that if we use a non leftmost reduction, it may be able to reduce M to Q
eventually, but it would take more steps before a leftmost reduction must be applied.
Therefore, we conclude that a non leftmost reduction is not necessary to reduce an
application to an abstraction.

3. Because only a leftmost reduction makes progress and a non leftmost reduction is
not essential, and because there is an effective standard reduction strategy to reduce
M to Q, we conclude that the leftmost reduction strategy is sufficient to effecctively
reduce M to Q.

Case 3 M ≡ (λx.M0) M1...Mn. We assume that (λx.M0) M1...Mn−1 has been
reduced to Q′ ∈ W. According to Case 2, we prove that (λx.M0) M1...Mn ↠l

Q′ Mn ↠l Q by induction. □

Proposition 3. If M ∈ Wλ\Hλ, M ↠β Q, where Q ∈ W\H and ↠β is a multi-step
β-reduction (in the standard reduction strategy), then the leftmost reduction strategy is
sufficient to reduce M to Q, i.e., M ↠l Q.

Proof. This is true by following Proposition 2: if M ∈ Wλ\Hλ, i.e., M ∈ Wλ,
M ↠l Q, where Q ∈ W. We further determine Q ∈ W\H according to the definition
of terms having whnf but not hnf. □

Proposition 4. If M ∈ Wλ\Hλ and ∀N ∈ Λ0, M N ↠β Q, where Q ∈ W, then

1. Q ∈ W\H.
2. the leftmost reduction strategy is sufficient to reduce M N to Q, i.e., M N ↠l Q.

Proof. 1. It follows Proposition 1.
2. According to Proposition 1, we have M N ↠β Q′, where Q′ ∈ Wλ\Hλ. Q′

cannot be a zero term as Q is not a zero term. Because Q′ ∈ Wλ\Hλ, so is
M N ∈ Wλ\Hλ. Then according to Proposition 3, we have M N ↠l Q. □
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Proposition 5. ∀M ∈ W\H, ∀N ∈ Λ0, M N ↠l Q, where Q ∈ (W\H), the head
redex of each reduction step from M N to Q doesn’t have N being contracted, i.e., for
all P ≡ R0R1...Rn, where n > 0, such that M N ↠l P ↠l Q, we have: N ̸≡ R0.

Proof. If N is contracted, i.e., ∃P ≡ R0R1...Rn, where n > 0 such that M N ↠l

P ↠l Q and N ≡ R0, we will be able to choose N to be a hnf, i.e., N ∈ H, and
further choose R1, ..., Rn for a n such that M N ↠l NR1...Rn ↠l I. Choosing
N ∈ H is possible because N is a random term in Λ0. According to the definition of
hnf, such a reduction is possible, a contradiction to Proposition 1. □

When N is not contracted and Q is an abstraction, N must either appear in Q as a
substitution instance or never be a substitution instance in Q:

Notation 1 ∀M ∈ W\H, ∀N ∈ Λ0, i.e., M ≡ λx1...xn.(λy.P0)P1...Pk, when only
the leftmost reduction strategy is used to make the reduction: (λx1...xn.(λy.P0)P1...Pk)
N ↠l Q, where Q ∈ (W\H) and N is never contracted, then we use [N ] ∈ Q to de-
note that N is a substitution instance remaining in Q if it is, and [N ] ̸∈ Q to denote N
is not a substitution instance remaining in Q if it isn’t.

Sometimes, we simply say N disappears from Q when [N ] ̸∈ Q. A reduction like
(λxy.y)NR →l R is a typical example of making N to disappear.

Note, we avoided to say N is a subterm of Q when [N ] ∈ Q or N is not a subterm
in Q when [N ] ̸∈ Q because Q may include N as a subterm which is not from a
substitution but from M .

Definition 1. Let M ∈ W\H, ∀N ∈ Λ0, and let I(M) ≡ {Q : M N ↠l Q,Q ∈
(W\H), [N ] ̸∈ Q}, then we say M identifies the set I(M).

We are almost ready to show that I(M) is finite as long as the size |M | is finite.
Before doing so, we give examples on what various I(M) sets look like. We start from
the W\H term NULL ≡ λz.(λx.λy.(xx))(λx.λy.(xx)) introduced in [9], where
NULL N ↠l NULL for all N ∈ Λ0. Therefore we have I(NULL) = {NULL}, a
singleton set.

Theorem 5.9 in [9] also shows an element in an Enterprise-Participant (EP) database
can be expressed by a W\H term. For example, we may have a database D = {a b :=
b; b a := a; b c := c; } that defines a cyclical directed graph with connections from a to
b, from b to a, and from b to c, where we have EP reductions a b c ↠D c, a b ... b ↠D b,
and a d ↠D d for having paths a b c and a b ... b but not having a path a d respectively.
When we use λ(a), λ(b), and λ(c) for the corresponding W\H terms of a, b, and
c respectively, we have λ(a) λ(b) λ(c) ↠l λ(c), λ(a) λ(b) ... λ(b) ↠l λ(b), and
λ(a) λ(d) ↠l NULL, where NULL is in a correspondence of a special EP-term null
1 2. Therefore, we have: I(λ(a)) = {λ(b), NULL}, I(λ(b)) = {λ(a), λ(c), NULL},
and for the rest of the identifiers: I(λ(c)) = I(λ(d)) = ... = {NULL}, where any

1 Essentially, the lambda term representing a conditional statement like
"if...else if...then NULL" [2] plays an important role in defining a W\H term that
identifies a finite number of W\H terms

2 When we say N disappears from Q after a reduction M N ↠l Q, where M,Q ∈ W\H,
we will say that N doesn’t have an impact to the fact that M identifies a finite set I(M) and
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identifiers like d not in D and D-reduced to null have NULL as the corresponding
W\H term. Note that a term like λ(a) could be better denoted as λ(D, a) because it is
determined by a specific database instance of D in addition to a being defined in D.

When M N ↠l Q, where M,Q ∈ W\H, N may not disappear from Q. An ex-
ample is developed by slightly modifying the NULL λ-term, and denoted as NULL0:
NULL0

≡ (λx.λy.(xxy))(λx.λy.(xxy))
=β λy1.((λx.λy.(xxy))(λx.λy.(xxy))y1)
=β λy1.(λy2.((λx.λy.(xxy))(λx.λy.(xxy))y2)y1)
...
=β λy1.(λy2.(...(λyn.((λx.λy.(xxy))(λx.λy.(xxy))yn)...)y2)y1), for any n ≥ 1.

When applying NULL0 to other terms:
NULL0N1N2...Nn

≡ (λx.λy.(xxy))(λx.λy.(xxy))N1N2...Nn

=β λy1.((λx.λy.(xxy))(λx.λy.(xxy))N1)N2...Nn

=β λy1.(λy2.((λx.λy.(xxy))(λx.λy.(xxy))N2)N1)N3...Nn

...
=β λy1.(λy2.(...(λyn.((λx.λy.(xxy))(λx.λy.(xxy))Nn)...)N2)N1), for any n ≥ 1.

According to Definition 1, we have I(NULL0) = ∅.

Lemma 1. Let M ∈ (W\H) and I(M) be the set identified by M :
1. for each Q ∈ I(M), |Q| ≤ |M |
2. If I(M) = ∅, then for each N ∈ Λ0 and M N ↠l Q, |Q| > |M |.

Proof. A term M ∈ W\H is in the form of λx1...xn.(λy.s)ut0...tk where n > 0, k ≥
0, and FV (s) ∪ FV (u) ∪ {FV (ti) : 0 ≤ i ≤ k} ⊆ {xj : 1 ≤ j ≤ n} ∪ {y}. When
a N ∈ Λ0 is applied to M , we have: M N ≡ (λx1...xn.(λy.s)ut1...tk) N →l Q ≡
λx2...xn.(λy.s[N/x1)u[N/x1]t1[N/x1]...tk[N/x1].

1. When N disappears from Q, we have: s[N/x1] ≡ s, ti[N/x1] ≡ |ti|, and therefore
|s[N/x1]| = |s|, |ti[N/x1]| = |ti| for all 0 ≤ i ≤ k.
(a) When n > 1, we have |λx2...xn.| = |(λx1...xn.|−1. it is clear that |Q| < |M |.
(b) When n = 1, Q ≡ (λy.s[N/x1)u[N/x1]t1[N/x1]...tk[N/x1] ≡ (λy.s)ut1...tk,

where (λy.s)u becomes a new head redex, which is a Wλ\Hλ term. After
the contraction, the resulting s[u/y] must be another abstraction λy′.C[ ],
where C[ ] is a context containing another head redex, y′ has a chance to
become a variable that is never a symbol in C[ ], i.e., {y′} ∩ FV (C[ ] =
∅. This means that λy′ arises to be additional symbol after the elimination
of λx1 from its contraction. Therefore, when M N →l (λy.s)ut1...tk →l

λy′.C[ ]t1...tk, we have: |λy′.C[ ]t1...tk| = |M |. For example NULL ≡
λy.(λx.λy.(xx))(λx.λy.(xx)) =β (λx.λy.(xx))(λx.λy.(xx)) →l NULL,

each Q ∈ I(M) is independent from N . However N plays a role of which Q is ended with
when M N is reduced. Therefore, N should be embedded as a subterm in M , for a role to be
syntactically compared with other using the λ-term of comparing syntactical structures of two
λ-terms that is defined in [3].
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and we have NULL N ≡ (λy.(λx.λy.(xx))(λx.λy.(xx))) N ↠l NULL.

We don’t need to worry about the size of the term (λy.s) vs. the size of s[u/y]:
because (λy.s) is a W\H term, we have |s[u/y]| ≤ |(λy.s)| by induction.

2. When N doesn’t disappear from Q, we have at least one subterm P , either s or a
ti for 0 ≤ i ≤ k, such that N appears in P , i.e., [N ] ∈ P . Because the size of x1

is 1 and the size of N is at least 2, the substitution |[N/x1]| > |x1| and therefore,
|Q| > |M |.□

Theorem 1. Let M ∈ W\H, |M | is finite, and M identifies a set of terms, i.e.,
I(M) ≡ {Q : M N ↠l Q,Q ∈ (W\H), [N ] ̸∈ Q}, then I(M) is finite.

Proof. Given a W\H term M ≡ (λx1...xn.(λy.s)ut1...tk) and let Q ∈ I(M). For
any N ∈ Λ0,
1) if we have:
M N
≡ (λx1...xn.(λy.s)ut1...tk) N
→l Q
≡ λx2...xn.(λy.s[N/x1)u[N/x1]t1[N/x1]...tk[N/x1]
≡ λx2...xn.(λy.s)ut1...tk, (because N disappears from Q),
the last expression Q ≡ λx2...xn.(λy.s)ut1...tk clearly indicates that Q is one of the
symbol permutations of the symbols in M , independently from N . Because |M | is
finite, there are only a finite number of permutations that potentially are terms Q ∈
I(M). Therefore I(M) must be finite. □

3 Related work

In [9], an approximation [Λ0]s to the lambda calculus was developed, where s ∈ N
denotes a number of steps a partial computation takes to enumerate the closed λ-terms.
Such a finite set [Λ0]s is syntactically converted to a database D in the Enterprise-
Participant (EP) data model [10]. Independently from approximations to the lambda
calculus, we can construct an EP for certain applications such as a graph as an example
given in Section 2.

An EP database is interpreted as a bounded function that is recursive and has a finite
co-domain while an infinite domain. Let f : X → Y be a function, where X has an
arbitrary number of objects and Y a finite number of objects, let A ⊆ X and a be a
special object in Y , i.e., a ∈ Y , and further let

f(x) = b, where b ∈ Y and b ̸= a, if x ∈ A

= a if x ∈ X\A.

Then we say f is bounded, particularly when A ≡ X . When A is finite, i.e., A ⊂ X ,
we say f has a finite support, or simply we say f is finite. A finite function is bounded,
but a bounded function may not be finite as it potentially has an infinite domain X .
Further, we require a bounded function be always recursive, i.e., the computation on
f(x) terminates and f(x) ∈ Y for any x ∈ X .
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By saying a function being bounded, we mean that under a given EP database D,
potentially an arbitrary number of EP expressions are meaningful. For example, the EP
database that is defined by a finite number of EP expressions for a directed cyclic graph,
as given in Section 2, supports infinite queries for infinite possible paths in the graph.

With the setting of the partial computations for approximations to the lambda calcu-
lus, where we can infinitely increase computation steps, it was concluded that EP is se-
mantically equivalent to the lambda calculus because we have a sequence of databases:
D0, D1, ... and the union of all the databases essentially contains all the properties of
the lambda calculus. Consequently, we say the sequence of the bounded functions in
the correspondence to D0, D1, ... is semantically equivalent to Turing machine as well.

An approximation to the lambda calculus, i.e., an EP database converted from the
approximation, has been found to have a space in the lambda calculus itself: an EP
database D is expressed in a finite set of weak head normal forms (whnf) without a
head normal form (hnf). Given a database with a finite set of elements, denoted as
NF (D), there is a corresponding set of λ-terms, denoted as λ(NF (D)) ⊂ W\H that
interprets the database 3, i.e.,

∀m ∈ NF (D), ∀n ∈ NF (D), ∃q ∈ NF (D),m n =D q =⇒ M N =β Q (1)

where M,N,Q ∈ λ(NF (D)) ⊂ W\H in a correspondence to the given m,n, q ∈
NF (D) respectively, and =D denotes an equality relation in EP.

The bounded function defined by a database is recursive in the sense that for any
m,n ∈ NF (D), m n can be effectively reduced to q ∈ NF (D) in EP, i.e., m n ↠D q.
More generally, for all m ∈ NF (D) and all n ∈ E 4, m n ↠D q, where q ∈ NF (D).

The corresponding recursiveness in λ(NF (D)) is in the sense of the following:

1. We know what each element in λ(NF (D)) looks like because we converted the
elements in NF(D) to the corresponding elements in λ(NF (D)). Therefore for a
reduction M N ↠β Q, where M,N,Q ∈ λ(NF (D)), M is defined to produce Q
when it is applied to N .

2. For each M ∈ λ(NF (D)), any λ term M ′ ∈ Λ0 that is β-convertible to M can be
effectively reduced to M in the extended lambda calculus introduced in Section 5
of [9], i.e., M ′ ↠β,NULL,λ(D) M

3. For each M ∈ λ(NF (D)) and for any N ′ ∈ Λ0 that is not β-convertible to a term
N ∈ λ(NF (D)), applying M to N ′ can be effectively reduced to NULL, i.e.,
MN ′ ↠β,NULL,λ(D) NULL in the extended lambda calculus defined in Section
5 of [9].

In Section 2 of this paper, we showed that a W\H term identifies a finite set of
other W\H terms, i.e., let M ∈ W\H, ∀N ∈ Λ0, we have I(M) ≡ {Q : M N ↠l

Q,Q ∈ (W\H), [N ] ̸∈ Q}, and 0 ≤ |I(M)| ≤ ∞. Theorem 1 essentially says that
a W\H terms represent a bounded function and the entirety of its properties can be
inventoried in a finite EP database while the properties of a partial recursive function
can only be approximated in a finite EP database. To this end, we conclude:

3 See Theorem 5.6 of [9] for the full description. The description provided here is simplified but
sufficient.

4 E denotes the set of all EP terms in a correspondence to all the closed λ terms. See more in
[9].
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Theorem 2. A function is bounded if and only if it can be represented in a W\H term.

What is the sense of recursiveness of W\H terms when we may not know the
corresponding EP databases? Given a M ∈ Wλ\Hλ, we randomly choose a N ∈ Λ0

and make a leftmost multi-step reduction M N ↠l Q. According to Proposition 4, we
will effectively obtain Q ∈ W\H. Further,

1. if we find that N is a substitution occurrence in the resulting Q after the contraction,
then we conclude M is not meaningful, or I(M) = ∅.

2. if N disappears from Q, then we conclude that M identifies Q. Further by the
standard reduction strategy, we can effectively confirm that Q can be β-convertible
to a term formed from a permutation of the symbols in M , where the size of a
formed term is always not larger than the size of M itself.

3. By remembering all the permutations of the symbols in M , where the size of each
permutation is not more than the size of M , we can estimate what are the elements
in I(M).

In [8], it is concluded that a class of bounded functions is Probably Approximately
Correct (PAC) learnable. In practice, it means that an EP database can be automatically
constructed purely based on sample EP expresses and the constructed database can
produce fresh data that are not entered through samples. According to Theorem 2, we
have to say that W\H terms can be automatically constructed too. Instead of taking
W\H terms as samples, e.g., (M0...Nn, Q) when M0...Nn ↠β Q for a n > 0, we
take EP expressions, e.g., (m0...nn, q) when m0...nn ↠D q for a n > 0, as samples for
a learning algorithm to construct an EP database first and then convert the EP database
to the corresponding W\H terms using the converted algorithm given in Definition 5.4
of [9].

Given a Turing-complete system, we can analyze each known sub languages and
their corresponding functions to find out if any of those is PAC learnable. Some systems,
such as Kleene’s systems of equations [7] that represents the class of n-ary number-
theoretic partial recursive functions, don’t have any known subclass PAC learnable [5]
5. But it doesn’t say there doesn’t exists another formal system with a sublanguage
that is both PAC learnable and semantically equivalent to Turing machine. The EP data
model and the W\H λ-terms are such languages. Given all the known sublanguages
Hλ, Wλ\Hλ, and Z that are available in the lambda calculus, we may conclude as a
thesis: A class of functions is PAC learnable if and only if a function is bounded.

Acknowledgment Thank Prof. Anselm Blumer for his extensive discussion with the
author regarding the mathematical upper bound of Probably Approximately Correct
(PAC) learnables in terms of computability.
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