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Abstract  

The EP (Enterprise-Participant) data model is a language semanti-
cally equivalent to a class of total recursive functions. Because of 
the equivalence, Froglingo, a programming language incorporated 
with the EP data model, is a monolith that consolidates databases 
with programming languages. In this paper, we discuss Froglingo 
by providing bidirectional mappings between Froglingo and the 
lambda expressions. With the mappings, as a mathematical foun-
dation of Froglingo, we can better relate Froglingo with the 
lambda calculus and other programming languages, and therefore 
objectively assess what is meant by the monolith of Froglingo. 

Categories and Subject Descriptors D.3.1 [Programming Lan-
guages]: Formal Definition and Theory – Syntax and Semantics; 
D.3.3 [Programming Languages]: Language Constructs and Fea-
tures – abstract data types, control structures; F.4.1 [Mathematical 
Logic and Formal Languages]: Mathematical Logic – Lambda 
calculus and related systems. 

General Terms  Languages, Theory,  

Keywords programming languages, lambda calculus, redex, 
normal forms.  

1. Introduction 

Many database applications were written in programming lan-
guages in the 1960s and 1970s, and are still in operation. The use 
of database management system (DBMS) came to database appli-
cation software around the 1970s. It significantly improves the 
productivity in software development and maintenance.  

The traditional data models and data structures, i.e., the rela-
tional data model, the hierarchical data model, and graph-oriented 
data structures, cannot express all desired business data. Hierar-
chical data, for example, can be folded into a relation, but its con-
tainment relationships cannot be captured by the relational data 
model with the expressive power of the relational algebra [3]. 

Another example would be relationships among the vertices in a 
directed graph, (e.g., is there a path from A to B?), which cannot 
be captured in both the relational data model and the hierarchical 
data model. As a result, database applications continuously re-
quire intense, though relieved, development and maintenance 
work, which could be avoided if a more expressive data model 
were realized and leveraged. 

The EP (Enterprise-Participant) data model is semantically 
equivalent to a class of total recursive functions [35]. The equiva-
lence says that programmers are not allowed to construct an appli-
cation program that may not terminate on an input. At the same 
time, it says mathematically that any meaningful application pro-
grams, i.e., those with the semantics falling into the class of total 
recursive functions, could be expressed in the EP data model with 
the hypothesis of infinite space and time.  

Because of the equivalence, the EP data model alone is able to 
consistently manage as much finite data as we need. Here the 
consistency meant that finite data from various application do-
mains, including database management, data communication, 
access control, and file management, is collectable and exchange-
able in the EP data model with a single data structure [39] and 
[37].  

Froglingo, a programming language incorporated with the EP 
data model, extends the EP data model to manage infinite data. 
The extension is implemented by incorporating variables, i.e., 
comparably variables in the lambda calculus, into the data struc-
ture of the EP data model. As a result, business data and business 
logic are stored in the same data structure, and operations on the 
data structure are expressed by the same set of operators, that 
constitutes Froglingo to be a programming language, a monolith 
consolidating databases with programming languages  [36]. 

Froglingo was originally proposed for database and data com-
munication issues [40]. It is closely related to the lambda calcu-
lus. Therefore it has been continuously guided by the lambda 
calculus in its development. Here, we give a simple example to 
quickly show the connections between the two systems. The func-
tion sq (x) = x * x, i.e., calculating the square of a number, has a 
lambda expression: 

λx. (*λ x  x) 

Here we assume that *λ is the lambda expression for the operator 
*. In Froglingo, we have a corresponding expression: 



create sq $x := ($x * $x) 

Here sq is an identifier, the name for the square function, $x is the 
variable. We added ‘$’ in the front of variables to distinguish 
them from identifiers. This expression would not make Froglingo 
much different from Scheme: 

(define sq (lambda (x) (((* x) x)) 

until we see another expression that instantly alters the function sq 
without modifying its original definition:  

create sq 1 := 20 

The above two statements result in two expressions in a database: 
{sq 1 := 20; sq $x := ($x * $x)}.  When a query sq 3 is provided, 
Froglingo will match the second expression in the database and 
return 9. But when a query sq 1 is provided, Froglingo will match 
the first expression and returns 20.  

From the examples above and from our discussion of this pa-
per, we will see that Froglingo is similar to the lambda calculus 
because applications and abstractions, via identifiers, are the pri-
mary concepts in programming. At the same time, Froglingo con-
struct abstractions without using variables, that is not a case in the 
lambda calculus. 

Contributions of this paper. We give a formal theory for 
Froglingo. Our discussion reveals that Froglingo, like ML and 
Scheme, appears to be solely a syntactical variation of the lambda 
calculus, e.g., λx.M is rewritten as p $x := M (Section 6). Further 
more, Froglingo has exactly one-to-one mappings on normal 
forms, head normal forms, and weak head normal forms with the 
lambda calculus and therefore with other functional programming 
languages (Sections 6 and 4). The similarity is attributed to 
Froglingo’s function as a programming language.  Constructing 
(higher-order) functions without variables is the unique feature 
that differentiates Froglingo from the lambda calculus and other 
programming languages. Syntactically, it is done through applica-
tive structure, e.g., p q := 3 (Section 2), again in a way similar to 
the lambda calculus. Semantically, however, it fundamentally 
introduces a new avenue to constructing (higher-order) functions 
by enumerating properties, in parallel to recursion. Enumeration 
makes database management easier, and it is a complement of 
recursion (Sections 4 and 5) while recursion is a complement of 
enumeration in describing infinite data with finite presentation.  

The formal theory serves as a foundation to support the con-
cept of Froglingo’s monolith and some results from other work. In 
paper [34], a set of built-in operators, reflecting ordering relations 
among higher-order functions, were introduced. Because of the 
EP data model with the built-in operators, we can easily express 
many known structures and queries with high complexities, such 
as directed graphs with cycles and self-applications. (We will 
have some examples to reiterate this feature in this paper.) Again 
because of the EP data model, an application system [32] imple-
mented in Froglingo (an award recipient in the ICCBR 2010 
Computer Cooking Contest) demonstrated that programmers can 
take advantage of the built-in data structure for various data that 
would otherwise have to be constructed in many data types of 
traditional programming languages, that users have the flexibility 
of  specifying queries in a unstructured textual string that would 
otherwise have to be chunked by users into pieces with an extra 
step of learning system-specific structure, and that similarities can 
be represented structurally that would otherwise have to be repre-
sented in weight in traditional technologies. Finally, because of 
the EP data model, the authors in the paper [31] contended that 

Froglingo is untyped and at the same time is safer than traditional 
programming languages. 
 
In Section 2, we discuss the EP data model as a quick step to in-
troduce the most important sub language of Frogling. Starting 
from 4, we discuss Froglingo as a whole, including the EP data 
model, about its normalization, reduction, semantics and comput-
ability. 

2. EP Data  model 

In traditional data models, an entity is either dependent on one 
and only one other entity, or independent from the rest of the 
world. The functional dependency in the relational data model and 
the child-parent relationships in the hierarchical data model are 
typical examples. These relationships are too simple, and don’t 
reflect the extent to which the complexities of the real world can 
be managed using a computer.  

The logic of the EP data model is that if one entity is depend-
ent on other entities, then those entities are precisely two in num-
ber. Drawing terminology from the structure of an organization or 
a party as in article [40], one dependent entity is called enterprise 
(such as organization and party), the other is called participant 
(such as employee and party participant), and the dependent entity 
is called participation. An enterprise consists of multiple partici-
pations. Determined by its enterprise and its participant, a partici-
pation yields a value, and this value is in turn another enterprise. 

2.1 Syntax  

DEFINITION 1 (EP terms) Terms T, ranged over by t, are given by 
the grammar  

t ::= c | a | (t t) 
where c ranges over a set of constants C where null is a special 
constant and a ranges over a set of identifiers P. 

Similar to lambda expressions, EP terms have application as 
the most noticeable structure. Therefore, we adopt many notations 
from the lambda calculus, including sub-term, left (right) sub-
term, SUB(t) for all sub-terms in t, FV(t) for all the variables in t, 
and a b instead of (a b) when there is no ambiguity.  

Different from the lambda calculus, the reduction process of 
the EP data model is based on a database. We start to define the 
concept of assignments first. 

DEFINITION 2 (assignments)  Assignments A, ranged over by s, are 
given by the grammar 

s ::= t | t :=  t 
where t ranges over T. 

Given an assignment, the assignee plays the dominant role in 
naming the assignment. A term without an assigner can be an 
assignee as well. 

NOTATION 3 (assignees)  Given an assignment m := n  ∈ A, a left 
sub term of m is called an assignee. Further, 
1. the term m is called the explicit assignee. 
2. An assignee that is not explicit assignee is called a derivable 
assignee. 
3. When we say that a term m is in a set of assignments A, i.e., m 

∈ A, we say that m is an assignee. 

Given an assignment a b (c d) := e, for example, the explicit as-
signee is a b (c d), and it acts as the name of the assignment. a, a 
b are derivable assignees for a b (c d). 



DEFINITION 4 (database)  An EP database D is a set of assignments 

A ⊂ A such that the following things are true:    
1. An assignee cannot be a constant, i.e., 

m ∈ D ⇒ m ∈ (T - C) 
2. If m n is an assignee in D, n must not have an assigner, i.e., 

m n ∈ D ∩ ∀k ∈ T, (n := k) ∉ D 
3. If an assignment (m := n) is in D, m cannot be the left sub-term 
of another assignee in D, i.e., 

(m := n) ∈ D  ⇒ ∀∀∀∀t  ∈ T, m t ∉ D 

4. The database D must have no circular set of assignments, i.e., 

m0 :=  m1, m1 :=  m2, …, mn-1 :=  mn ∈ D,  here n ≥ 1 ⇒  mn :=  m0 

∉ D. 
5. An assignee can serve only one assignment in D, i.e, 

(m := n1), (m := n2 )∈ D ⇒  n1 ≡ n2 

EXAMPLE 5   1 (A school administration database) 
SSD.gov John SSN := 123456789; 
SSD.gov John birth := ‘6/1/1990’; 
SSD.gov John photo.jpg := …; /* a binary stream*/ 
college.edu admin (SSD.gov John) enroll := ‘9/1/2008’; 
college.edu admin (SSD.gov John) Major := college.edu CS; 
college.edu CS CS100 (college.edu admin (SSD.gov John)) grade 
:= “F”; 
2 (a directed graphs with circles) A directed graph with connec-
tions v1 to v2, v2 to v1, and v2 to v3 has the following assignments 
in a database: 
v1 v2 :=v2; 
v2 v1 :=v1; 
v2 v3 :=v3; 

When we say that a term is in a database, in the Definition 4, we 
always say that the term is an assignee. The fact that a sub term of 
an assigner can also physically be in a database is not important 
and therefore is not discussed in this paper.  

According to Definition 4, if an assignee is in a database, one 
of its left sub terms is also in the database, e.g., SSD.gov and 
SSD.gov John must be in when SSD.gov John SSN is in a data-
base. We don’t show them here because it is clear and implied by 
the following propositions: 

PROPOSITION 6 1. If an application is in a database, so are its left 
sub-terms, i.e.   

m n ∈ D ⇒ m ∈ D 
2. If an assignment is in a database, so is its assignee, i.e.  

m :=  n ∈ D ⇒ m ∈ D   

PROOF.  6.1. It is clear from Definition 1 that the existence of an 
application must imply the existence of the sub terms. A database 
always stores the sub-terms when it stores an application. 

6 2. If is clear from Definition 2 that the existence of an as-
signment must imply the existence of the assignee. A database 
always stores the assignee and the assigner if it stores an assign-
ment. 

2.2 EP Normal Forms and Reductions 

Given a database, each term in the T can be reduced to a normal 
form. 

DEFINITION 7 Given a database D, the set of normal forms, de-
noted as EPNF, is defined as follows: 
1. All the constants, i.e., 

    c ∈ C  ⇒ c ∈ EPNF 

2. All the derivable assignees in D, i.e., 

    m ∈ D, ∀n ∈ T, (m := n) ∉ D  ⇒  m ∈ EPNF 

For example, terms “F”, SSD.gov, and SSD.gov John are normal 
forms, but not SSD.gov John birth in Example 5.1. 

We will see that EPNF is a strict subset of WHNF to be dis-
cussed in Section 4. 

DEFINITION 8 (EP one-step reduction rules) Given a database D, 
we have the one-step evaluation rules, denoted as �: 

1. A constant is reduced to itself, i.e., c ∈ C ⇒  c �  c 
2. An identifier not in D is reduced to null, i.e.,  

p ∈ P ∩  p ∉ D  ⇒  p �  null 
3. An assignee in D is reduced to its assigner, i.e.,  

(m := n) ∈ D ⇒  m � n 

4.  If m, n ∈ EPNF, and m n ∉ D, then m n is reduced to null, i.e., 

m, n ∈ EPNF, m n ∉ D ⇒ m n � null 

5. The application of two terms is reduced to the application of 
their normal forms, i.e., 

m, n ∈ T,  m � m’, n �n’ ⇒  m n � m’ n’. 

DEFINITION 9 Let m, n ∈ T with a given database D. If there is a 

finite sequence l0, …, lq ∈  T, where q ≥ 0, such that m ≡ l0,, l0 � 

l1, …, lq-1 � lq, lq ≡ n, then  
1. m is effectively, i.e., in finite steps, reduced to n, written as m 

→EP n. 

2. If m1 →EP n and m2 →EP n, then we say that m1 is equal to m2, 
denoted as m1 == m2. The relation == is the complete set of the 
equations derivable from the environment of D. 

EXAMPLE 10 Below are a few equations from the databases in 
Examples 4 and Examples 6:  
SSD.gov John SSN == 123456789; 
(college.edu admin (SSD.gov John) Major) == college.edu CS; 
v1 v2 v1 ==  v1; 
v1 v2 v1 v2 v1… v1 == v1; 

The reduction of the EP data model is strongly normalizing be-
cause every term can be effectively reduced to a normal form.  

2.3 Computability 

The EP data model, as a formal theory, has been studied in [35]. It 
has been proved to be semantically equivalent to a class of total 
recursive functions. It means that the complete set T, under a 
given database, is always interpreted as a total and higher-order 
function. Given a derivable assignee m, we can always find a set 
of distinguished terms (normal forms) ni, here i is 0 or a positive 
nature number, such that m ni is in D for each i. The relationships 
between m, ni, and m ni are exactly the relationship between func-
tion, argument, and the corresponding value of applying function 
to argument.  

On the other hand, the equivalence says that any total recur-
sive function, i.e., applying it to an arbitrary argument always 
terminates no matter it is finite or infinite, would be eventually 
enumerated and stored into a EP database with the complete set of 
the argument and value pairs that represent the complete proper-
ties of the function. The equivalence is based on the hypothesis 
that we had infinite time and space, in the same way that the com-
putability of a Turing-machine was given. The base of this claim 
is: a class of total recursive functions can be enumerated [4]. This 
also can be intuitively concluded from the known conclusion in a 
computability text book: a class of partial recursive functions can 



be enumerated by using a Turing machine. It doesn't say that a 
machine can collect all the property of a total recursive function at 
a given time in the future, but that a machine will eventually col-
lect every total recursive function with the hypothesis that the 
machine had infinite time and infinite space. 

To understand the EP data model’s computability, we can 
think of the following intuitive process: A Turing machine is 
enumerating the entire set of partial recursive functions, and it 
feeds output to a system in the EP data model. When the Turing 
machine computed the result of applying a function to an argu-
ment with termination, it passes the result to the EP system and 
the EP system records the argument and the result pair for the 
total function. What the EP system recorded are exactly those 
total recursive functions. With the hypothesis, the Turing machine 
would have enumerated the entire set of partial recursive func-
tions and the EP system would have collected the entire set of 
total recursive functions at the end of an infinite time, that would 
never come. 

A relational database or a programming language is able to 
collect the properties of a total recursive function with the given 
hypothesis. But only the EP data model, that is semantically 
equivalent to the class of total recursive functions, is able to re-
play the applicative behaviors of total recursive functions after the 
collection. 

With the same intention, many strongly typed programming 
languages, e.g., the purely typed lambda calculus [5], Total func-
tional programming [30], Gödel's system T, and Nominal system 
T [26], also limit the computations to total recursive functions. 
However the computability is limited to a strictly subset of a class 
of total recursive functions because of types. In other words, 
given a strongly typed programming language that always termi-
nate on arbitrary inputs, we always can find more total functions 
that can not be described in the language. The self-application 
function F = {<F, 1>, <2, 0>}, for example, cannot be expressed 
in a strongly typed system, but simply expressed in the EP data 
model as: 

F F := 1; 
F 2 := 0; 

Similarly, the EP data model expressions in Example 5.2 for a 
directed graphs with cycle cannot be expressed in a strongly typed 
system.  

For additional discussion about the computability, consistency, 
and soundness of the EP data model, please reference [35] and 
more discussions in Section 4 and 5 of this paper. 

3. Froglingo 

With the EP data model that is equivalent to a class of total recur-
sive functions, we can user the EP data model to model finite data 
as much as possible. But a programming language, i.e., a Turing-
complete system, is still needed. First, constructing arbitrary func-
tions for both queries and business logic on top of a managed data 
set requires a programming language. Although the built-in opera-
tors introduced in Section 2.4 can be used to construct many use-
ful queries, they don’t exhaust all the queries that are required for 
practicality and that are within a class of total recursive functions. 
Viewing an EP database as a finite set of higher-order functions, 
in addition to the built-in operators in Section 2.4, there are still 
an infinitely many total recursive functions that are potentially 
demanded by applications.  

Second, some business data may be expressed more conven-
iently as business logic. By business data, we normally mean fi-
nite properties. By business logic, we emphasize its finite 
presentation for mostly infinite properties. To express the opening 
hours of a shopping center, e.g., from 9:00 am to 9:00 pm except 
on weekends, one may prefer not to repeat the same schedule 5 
times for 5 workdays in a database, but instead to specify it only 
once. Representing this type of business data demands program-
ming language or other specialized language systems such as 
those called constraint databases [27]. 

In this section, we introduce variables which, along with the 
EP data model, constitute Froglingo as a programming language. 
For the features beyond variables, please reference [38]. 

A variable in Froglingo is represented by an identifier pre-

ceded by the symbol “$”. For example, $a_variable, and $stu-

dent. It is a new type of terms. 

DEFINITION 14 (F-terms) Terms F, ranged over by t, are given by 
the grammar  

t ::= c | x | a | (t t) 
where c ranges over C, x ranges over a set of variables V and a 
ranges over P. 

Obviously, T is a strictly subset of F. 

DEFINITION 15 (database extension) 1. If a variable is in an as-
signer in a database D, it must be in the assignee, i.e.,  

(m := n) ∈ D, x ∈ V, x ∈ SUB(n) ⇒ x ∈SUB(m) 
2. A variable cannot be an assignee by itself, i.e.,  

x ∈ V , x ∈ SUB(m), (m := n) ∈ D ⇒ x ≠ m ∈ SUB(m)  ˄  

∀b ∈T, (x b) ∉∈ SUB(m) 

With the addition of variables, we can have following valid 
assignments in a database:  

EXAMPLES 16 (database with variables) 
fac 0 := 1;  
fac $n := ($n * (fac ($n - 1)));  
fun $x 1 $y := ($x + $y); 
fun $x 2 $y := ($x * $y); 

A detailed discussion on the normalization and reduction rules 
will be fully discussed in Section 5. Before that point, we will use 
our intuition to reason reduction process. Here are a few sample 
query expressions and reduction results.   

fac 4 →→→→f 24; 

fun 3 2 4 →f 12; 

Semantically, the expressions above are equivalent to a database 
having infinite assignments. For example, the factorial function 
will have the following enumerations: fac 0 = 1; fac 1 = 1; fac 2 
= 2; fac 3 = 6; …. This demonstrates that variables semantically 
add nothing new to the EP data model, but syntactically to the 
finite expressions for possible infinite entities (semantics). At the 
same time, we have to be aware that variables also add non-
termination process back to Froglingo. 

A variable can be restricted within a range to prevent un-
wanted data from being its instances and (or) to prevent an opera-
tion from not terminating. For example, the following expressions 
can be used to represent the tax rule: The tax rate is 20% if a sal-
ary is less than $100,000, and 40% otherwise. 

EXAMPLE 17 (variables with ranges)  



 tax $s1:[$s1 >= 0 and $s1 < 100000] := ($s1 * 0.2); 
 tax $s2 := ($s2 * 0.4); 

From the example above, we see that multiple variables are possi-
ble under a single assignee for multiple ranges. When multiple 
ranges are needed, we require that each variable is named differ-
ently (otherwise, user would be prompted with an error message).  

In this paper, however, we limit ourselves to one variable 
without range because it is sufficient to reach out our goals in this 
paper. 

4. Normalization and Reductions 

With the addition of variables, the reduction process of Definition 
8 must be extended. For example, given the expressions in a data-
base D: 

g 7 2 := 4; 
g $x $y := ($x + $y); 

will have the following reductions: 

g 7 2 →F  4 

g 2 3 →F 5 
In addition to full reductions, a partial substitution, i.e., applying a 
function to too few arguments, is also allowed. For example, the 
expression g 2 will be converted to g $x [$x:=2], which would be 

equivalent to λy.(2 + $y). In this section, we formally discuss the 
extended normalization and reduction process of Froglingo. 

We further adopt additional notations from the lambda calcu-

lus. We denote m̅ as a sequence of terms, i.e., m̅ ≡ m1 m2… mk, 
here k is a nature number equal to or greater than 0. |m̅| is denoted 
the size of the sequence. Let m n ̅ be a term, here n ̅ is a sequence of 
terms, m n ̅ is denoted as m n1 n2… nk, here k is a nature number 
equal to or greater than 0. |n̅| is denoted the size of the sequence 
following m.  

To accommodate various forms of assignees in Froglingo, e.g., 
fun $x 1 $y in Example 16, we also use the form: m x̅ to denote a 
term: m x1 x2… xk, here each element in the sequence x̅  must ap-
pear in x1 x2… xk, and | x̅ | <= k.  

DEFINITION 18 (environment) Given a sequence of variables x1, 
…, xn, and a sequence of F-terms v1, …, vn, here n >= 0, we 

call the form: 
[x1:= v1,…, xn:= vn] 

an environment, denoted as [x̅ := v̅̅], or simply ε sometimes. An 
environment can be empty. 

DEFINITION 19 (assignee under environment) Let M  x̅ be an as-
signee in a database D, v̅̅ a sequence of terms, and | x̅ | = | v̅̅ |, we 
denote: 

M [x̅ := v̅̅] 
as the assignee M under the environment [x̅ := v̅̅].  

It actually can be viewed as a reduction: 

M  v̅̅ →F M [x̅ := v̅̅] 
Therefore, we have: 

M  v̅̅ == M [x̅ := v̅̅] 
When we see M [x̅ := v̅̅] in the rest of this section, it is equiva-
lently viewed as the F-term M  v̅̅. For example  

g 2 3 →F (g $x $y) [$x := 2, $y := 3] 
g 2 3 == (g $x $y) [$x := 2, $y := 3] 

DEFINITION 20 (substitution) Given a F-term M, and an assign-
ment [x̅ := v̅̅], we denote 

(x̅ :� v̅̅) M 
As the result of substituting  x̅  with v̅̅ in M.  

For example, ($x :� 2) ($x + $y) ≡ (2 + $y).  

Like assignee under environment, substitution is a reduction 
process as well. For example: 

($x + $y) [$x := 2] →F ($x :� 2) ($x + $y) 
($x + $y) [$x := 2] == ($x :� 2) ($x + $y) 

Therefore, when we see an expression like (x̅ :� v̅̅) M  in this 
section,  it is equivalently viewed as a F-term. 

NOTATION 21 (open and closed F-term) 1. If a term includes vari-
ables, we say that the term is open. 
2. If a term t doesn’t include a variable, then we call the term 
closed.  

An assignee under an environment, i.e., M [x̅ := v̅̅], is also called 
closed because its equivalent term  M  v̅̅ doesn’t include a vari-
able. 

In an assignment of a Froglingo database, every occurrence of 
a variable is bounded in the sense that the variable must also ap-
pear in the assignee if it appears in an assignee. As a matter of 
fact, assignments with variables in a database correspond to 

closed λ-terms as we will see in Section 6. The Froglingo term set 
F includes variables, such as $x fun and fun $x, but we are only 
interested in the terms without variables when we are evaluating 
Froglingo terms, as if we were only interested in the closed 
lambda terms when we evaluated lambda terms. 

Because of the restriction of bounded variables in a database, 
we are able to implement Froglingo without dealing free variables 
during reduction processes for any closed terms as inputs. It does 
simplify not only our discussion in this paper, but also the imple-
mentation of Frogingo. Therefore, we are going to give the reduc-
tion rules and its semantics only on closed terms.  

DEFINITION 25 (F-redex) Given a database D, a F-term t is an F-

redex if one of the following conditions is not true: 
1. a constant, 
2. a variable, 
3. a derivable assignee under an environment m [x̅ := v̅̅], 

here each v in v̅̅ is not a F-redex, and | x̅ | >= 0. 

DEFINITION 26 (WHNF, weak head normal forms) A term is a 
weak head normal form, denoted as WHNF, if it doesn’t include a 
F-redex as a sub-term. 

Clearly, a WHNF is a constant, a variable, a derivable assignee, or 
a derivable assignee under an environment. 

We used the notion “weak head normal form” to indicate that 
Froglingo’s implementation strategy can be comparable to those 
for conventional functional programming languages [25]. But we 
will not discuss in detail on how they are comparable in imple-
mentations. 

To simplify the discussion in this paper, we only give a reduc-
tion strategy that is similar to the leftmost and outermost reduc-
tion strategy in the lambda calculus, which guarantees that a 
normal form can be reached if it does exist for a term. 

DEFINITION 27 (one-step reduction rules, leftmost and outermost) 
Given a D and a F-term t, we have the following one-step reduc-
tion rules, denoted as �: 

1. A constant is reduced to itself, i.e., c ∈ C ⇒  c �  c. 



2. An identifier not in D is reduced to null, i.e.,   

p ∈ P ∩ p ∉ D  ⇒  p �  null. 
      Otherwise, p � p. 

3. If t ≡ m n and m is not a WHNF, then t � (m’ ε) n, here m � 

m’ ε by induction, ε will by empty when m’ is a closed term. 

4. If t ≡ (m ε1) n, and m ε1 is a WHNF and n is not a WHNF, t � 

(m ε1) (n’ ε2), here by induction, n � n’ ε2. 

5. If t ≡ (m ε1) (n ε2), here m ε1 and n ε2 are WHNFs,  

5.1. if m n  is a assignee in D, then t � (m n). Note that   ε1and 

ε2 must be empty, by induction. 
5.2.  else if there is a variable $x such that m $x is an assignee in  

         D, then  t � (m $x)  (ε1∪ [$x:= (n ε2)]) 

5.3.  else   t � null. 
6. if t is reduced to t’ [x̅ := v̅̅], and t’ is an explicit assignee such 

that: t’ := t’’, then  t’ [x̅ := v̅̅] � (x̅ :� v̅̅)  t’’. 
7. A variable is reduced to itself. 

EXAMPLE 28  (reductions) fac 1 � fac $x [$x := 1],  by 27.5.2 

� ($n :� 1) $n * (fac ($n – 1)) ≡ 1 * (fac (1 -1)),  by 27.6 
� 1 * (fac 0), by 1 – 1 = 0, a rule not included in Definition 27. 
� 1 * (fac 0 [ ]),  by 27.5.1 
� 1 * 1,  by 27.6 

DEFINITION 29 (reduction process and termination) Let m, n ∈ F 

with a given database D. If there is a finite sequence l0, …, lq ∈  F, 

where q ≥ 0, such that m ≡ l0,, l0 � l1, …, lq-1 � lq, lq ≡ n, then  
1. m is effectively, i.e., in finite steps, reduced to n, written as m 

→F n. 

2. If m1 →F n and m2 →F n, then we say that m1 is equal to m2, 
denoted as m1 == m2. 
3. If n is a WHNF, then the evaluation process terminates, and we 
say that m has a WHNF n. 

Clearly, →F includes →EP. The notations � and ==, the relations 
originally defined for the EP data model in Definition 9, are re-
used and extended for Froglingo.  

EXAMPLE 30 (a non-termination reduction process) Let’s define  
w $x := $x $x 

in correspondence to the lambda expression λx. (x x). We show 
that w w, doesn’t terminate: 
w w � w $x [$x:=w], by 24.3.2.2 

� ($x :� w) ($x $x) ≡ w w, by 24.4 
… 

Before we prove that a term ends up with a unique WHNF with 
the reduction rules in Definition 27 if it does have one, we prove 
that an assignee in a database is always unique and therefore a 
WHNF is always unique too. 

COROLLARY 28 1 (derivable assignee uniqueness) Given a data-

base D, a derivable assignee m is not reducible, i.e.,  m ∈ D, m 

→F n ⇒ m ≡ n. 
2 (derivable assignee under environment uniqueness) Given a 
database D, a derivable assignee under environment m [x̅ := v̅̅], 
where each v in v̅̅ is a WHNF, i.e., m [x̅ := v̅̅] is a WHNF, it is not 
reducible. 

PROOF  1 (derivable assignee uniqueness). 1. If m is an identifier, 
then m is reduced to itself by 27.2. 
4 If m ≡ a b, then a is a derivable assignee by Definition 4.1. 

By induction, assume it is not reducible. We prove a b is not 
reducible. First, we prove that b is not reducible, 

a). If b is a variable, it is not reducible, by Definition 27.7 
b).Otherwise, b is also an derivable assignee by Definition 4.2. 
Therefore, b is not reducible by induction. 
Since a b is a derivable assignee, it is not reducible by 27.5.1. 

2 (derivable assignee under environment uniqueness)  Since m 
is a derivable assignee (with variable), it is unique by Definition 
4.5, and it is not reducible by Corollary 28.1 above. Given an 
environment [x̅ := v̅̅], it is unique by itself because each value v in 
v̅̅ is a WHNF. Since there is not a rule in Definition 27 to reduce 
m [x̅ := v̅̅] further, m [x̅ := v̅̅]  is unique. 

COROLLARY 28’ (WHNF uniqueness) Given a database D, if two 
derivable assignees m an n are two distinguished WHNFs, i.e., m 
!≡ n, then there are not rules in Definition 27 that reduce them to 
be equal, i.e., 

m !→F n ∩ n !→F m 

PROOF  1. A constant is not further reduced according to 27.1. If 
two constants are distinguished, then there is no rules in 27 that 
make them equal. 
2. Given two distinguished derivable assignees, each derivable 
assignee is not reducible by Corollary 28. They could be identical 
only if two were identical in the given database D. It is not possi-
ble by Definition 4.5.  
3. Since both constants and derivable assignees are not reducible, 
one constant and one derivable assignee cannot be equal since 
there is no rules in Definition 27 to make it happen. 

COROLLARY 31 (reduction to unique WHNF) A closed F-term t 
under a database D has at most one WHNF. 

PROOF. We have proved in Corollary 28’ that each WHNF is 
unique. Since the reduction order in Definition 27 is fixed, each 
reduction would automatically result in a unique value. The re-
maining work is to prove that if a reduction process by the rules in 
Definition 27 terminates with a WHNF if it terminates. 
1. If t is a constant or an identifier, then the process terminates 

with the constant as the WHNF by 27.1 and 27.2. 

2. If t ≡ m n, m will be repeatedly reduced first by Definition 27. 

If the process does terminate, i.e., m →F m’ ε1, here m’ ε1 is a 
WHNF, then 

2.1. if m’ ε1 is a constant, then the entire process terminates 
with null (by Definition 4.1, i.e., a constant cannot be an 
assignee, and by 27.5.3), i.e.,  

m’ ∈ C , ε1 = φ ⇒ t  →F  null. 
The process terminates with the WHNF null. 

2.2. else we start to evaluate n. By induction, if the process 

terminates, i.e., n →F n’ ε2, here n’ ε2 is a WHNF, then 

2.2.1. if m’ n’ is in D, i.e. m’ n’ ∈ D, (by induction, ε1 and 

ε2 must be empty), then t →F m’ n’, by 27.5.1. If the re-
sult m’ n’ is a derivable assignee, the process will ter-
minate with the derivable assignee as the WHNF.  
Otherwise (m’ n’ is an explicit assignee) it will con-
tinue.  



2.2.2. else if  m’ $x is in D, then by 27.5.2, t � (m’ $x) ε1 ∪ 

[$x:= (n’ ε2)]. If (m’ $x) is a derivable assignee, the 

process will terminate with the WHNF: (m’ $x) ε1 ∪ 

[$x:= (n’ ε2)]. Otherwise, i.e., (m’ $x) is an explicit as-
signee, the process will continue. 

2.2.3. else by 27.5.3, t � null. The process terminates with the 
WHNF null. 

3. if t is reduced to t’ [x̅ := v̅̅], and t is an explicit assignee such 
that: t’ := t’’, then by 27.6, t [x̅ := v̅̅] � (x̅ :� v̅̅)  t’’. The proc-
ess will continue. 

The reduction strategy defined by Definition 27 is restricted to the 
leftmost and outermost order and ignored other possible reduction 
orders. We only discuss this specific reduction order in this paper 
by requesting that the reduction strategy in Section 6 and 7 for 
lambda expressions is also restricted to the leftmost and outermost 
order. An additional work is needed to show that Froglingo also 
obeys a reduction behavior similar to the Church-Rosser reduc-
tion behavior of the lambda calculus. 

A formal theory with equations as formulas is consistent if the 
formal theory doesn’t prove every equation. In other words, given 
the Froglingo with the syntax definition in Definitions 2, 4, 14, 
and 15, and the equation formulas, ==, defined in Definition 29, 
we will see that Froglingo is consistent if there is no reduction 
rules to reduce one WHNF to another WHNF.  

THEOREM 32 (consistency) Froglingo is consistent. 

PROOF. Given a database D, let N be the complete set of WHNFs. 
We need to show that at least two WHNFs are not reducible. 
1. Assume N has at least two elements, then Corollary 28’ has 

already proved that the two elements are not reducible. 
2. To make sure that N has at least two elements, we first re-

quire that null is a mandatory constant because the rules in 
Definition 27 used null. Then the consistency is satisfied if 
we add an additional WHNF from either a constant in C or 
from a non empty database D.  

5. Semantics 

In this section, we will show that a F-term under a database can 
be mapped to a lambda expression, and two equal terms in 
Froglingo will be equal in the lambda calculus as well after con-
verted to lambda expressions. This will result in the soundness if 
Froglingo. We start from the syntax of the lambda calculus first.  

Through the discussion, we shall see that the EP data model is 
the system that makes database management easier. Many simple 
expressions in the EP data model have to converted to very com-
plex lambda expressions with multiple fixed point combinators. 

NOTATION 33 (lambda terms) Terms ˄, ranged over by t, are given 
by the grammar  

t ::= x | λx.t | (t t) 
where x ranges over a set of variables V.  

Mapping F-terms to lambda expressions will take multiple steps. 

Given a F -term a, we use aλ for the corresponding λ-expression. 

DEFINTION 34 (mapping variables) a variable x in F is also a vari-

able in ˄, i.e., xλ =  x. 

DEFINTION 35 (mapping constants) 1. Each constant c in C is 

mapped to a closed term cλ that doesn’t have a head normal form 

in ˄. By denoting Cλ for the entire set of such lambda terms, we 

further require that each cλ for a c is distinguished in Cλ.  

2. The special constant null is mapped to Ω ≡ (λx.(x x)) (λx.(x x). 

Since each element in Cλ is unique and doesn’t have a normal 
form, we often use Ωi to denote an element. A sample definition 

of such lambda expression is Ωi ≡ (λx.(x x iλ)) (λx.(x x iλ)), here i 

is a nature number, and iλ is a lambda expression modeling the 
number. Also we use Ωnull for the F -term null. 

We chose a term without head normal form for a constant to 
counterpart the reduction rule specified in Definitions 8.1 and re-
iterated in 27.5.3. The choice of resulting in null from applying 
null to an arbitrary term was to simplified our discussion. In real-
ity, many built-in operators such as those ordering relations in 
Definitions 2.11 and 2.12 are constants and should have been 
mapped to closed terms that have head normal forms. 
 

DEFINTION 36 (mapping identifiers not defined in database) Given 
a database D, each identifier p not defined in D is mapped to Ωnull. 

NOTATION 38 (derivable assignee set) Given a database D,  
1. We use DA for the complete set of the derivable assignees in D. 
2. We use EA for the complete set of the explicit assignees in D. 
3. The remaining F-terms, denoted as F-, that we haven’t counted 

is: F – (DA  ∪ EA  ∪ Cλ). 

4. Given a set X ∈ F, we use Xλ for the set of the lambda expres-
sions mapped from the elements in X. (We use |X| for the size of 
the set, i.e., the number of elements in the set.) 

Given a derivable assignee m in a database D, the plan to map m 
is to find all the ni, here i is zero or a positive number, such that m 
ni is in D. By induction, we assume the ni and m ni had already 

being mapped to ni
λ and (m ni)

λ, then m can be written as a func-
tion consisting a set of argument and value pairs: 

NOTATION 38X (idea of mapping F -term to λ-term). 

m  = {<n1, m n1)>, …, < nk, m nk>}. The idea of mapping the func-
tion m is the following: 

m λ = λarg. if arg = n1
λ then (m n1)

λ 
… 

else if arg = nk
λ then (m nk)

λ, 
else Ωnull. 

Recall that a derivable assignee d in D is defined by Definition 27 
as a unique WHNF, even if there is not any term t such that d t is 
in database. It means that each identifier in derivable assignee 
must have a unique lambda expression to make a sound mapping. 
However the mapping will not work because two derivable as-
signees which are defined with the same set of argument and 
value pairs would be calculated with the same lambda expression. 
To resolve the issue, we add an extra pair that can make each d 
unique among DA in D.  



DEFINITION 38XX (numbering DA symbols) Given DA under a 
database D, we find a set of lambda expressions, denoted as 

(#DA)λ, such that each element d ∈ DA has an element, denoted 

as Ωd ∈ (#DA)λ, that Ωd is unique and has no normal form. 
 
Then we can add another pair < Ωd Ωd> to Notation 38X. 

The biggest challenge in the mapping is on derivable assignees 
that may include self-applications and circular references among 
them  when they are defined in a database. For example, a data-
base like: {A B := B; B A := A; and A A := M;}, in which the first 
two form a bidirectional circular reference, and the third one is a 
self-application. If that is the case, the size of the lambda expres-
sion in Notation 38X will grow infinite. To overcome this prob-
lem, we are going to use multiple fixed point combinators [5] and 
[17]. In preparing the mapping by using multiple fixed point 
combinators, we need to predefine a set of variables dedicated, 
i.e., never being used for other purpose, for the derivable assign-
ees in DA. 

DEFINITION 39 (dedicated variables for DA) Given DA under a 
database D, we choose a set χ such that | χ | = |DA| and each vari-

able x ∈ χ is different from others appeared in D. Further we write 

χ (di) for the variable in corresponding to di ∈ DA. 
 
An assignee under an environment, i.e., M [x̅ := v̅̅],  appears not a 
F-term, but it is actually equivalent to a F-term. Therefore a term 
with the form of M [x̅ := v̅̅] has a corresponding lambda expres-
sions. The following equations are taken as granted due to the 
syntactical structure of an environment defined in  Definition 19: 

NOTATION 40X  (mapping m [x̅ := v̅̅]) 

(m ε)λ = mλ ελ 

[x̅ := v̅̅] λ = [x̅ := v̅̅λ] 
 
Now we are ready to map DA, EA, and F-. We start with explicit 
assignees first. For each explicit assignee, we want the occur-
rences of all the derivable assignees in the assigner to be replaced 
with their variables from χ. 

DEFINTION 40 (mapping explicit assignees) Let m y ̅  := V ∈ D, 
here | y̅| >= 0.  We have the following definitions: 

1.          (m )λ = λ y̅. Vλ 
2. Let d̅ ≡ {d1, …, dj} be the complete set of derivable assignees 
appeared in v, here j >= 0.  We identify the corresponding vari-
ables x̅ ≡ {x1, …, xj} from χ. Then we substitute all the instances 
of d̅ in v with x̅. Then we have: 

m λ = V’’ [x̅  := d̅ λ] 

Here V’’ ≡   λ y̅. (V’)λ, V ≡ (x̅  :� d̅) V’. 

For example, Given fac $n := ($n * (fac ($n – 1)) in D, then facλ = 

V’’ [d:=facλ], here V’’ ≡ λn. (n* (d(n-1))). Here V’’ will be used 

in Definition 42, and V’’ [d:=facλ] will be used in Theorem 45.  

NOTATION 40Y (Mapping F-) Given m n ∈ F- under a database D, 
then define 

(m n)λ = mλ nλ 

NOTATION 41 (Curry’s multiple fixed point combinators) Given a 
natural number n, we have the following fixed point combinators: 

YCurry
n

j = λf1f2…fn.((λx1λx2…xn. fj (x1x1…xn) 

           (x2x1…xn) 
    … 
           (xnx1…xn)) 

(λx1λx2…xn. f1 (x1x1…xn) 
           (x2x1…xn) 
    … 
           (xnx1…xn)) 

(λx1λx2…xn. f2 (x1x1…xn) 
           (x2x1…xn) 
    … 
           (xnx1…xn)) 
   … 

  (λx1λx2…xn. fn (x1x1…xn) 
           (x2x1…xn) 
    … 
           (xnx1…xn))) 
for each nature number j, where j >= 1 and j <= n. 

DEFINTION 42  For each dj ∈ DA under a database D, here 0 <= j 

<= |DA|, we find all dj e1, …, dj en such that each dj ei ∈ D, here i 
and n are natural numbers, and 0 <= i <= n.  
1. We inductively assume that each pair ei  and  dj ei have already 

been mapped to the lambda expressions:  ei 
λ and  (dj ei)

λ.  

2. For each ei 
λ  obtained above, we find the corresponding vari-

ables xei ∈ χ. 
3. We further define a lambda expression for dj 

     Gj = λx1 x2 … x|DA |.λarg. if arg ≡λ  xe1 
λ then (dj e1)

λ 

        else if arg ≡λ  xe2
λ then (dj e2)

λ  

  … 

        else if arg ≡λ  xen 
λ then (dj en)

λ  

        else if arg ≡λ  Ωd then Ωd 

        else Ω 

Here, x1,  x2, …, x|DA | ∈ χ; xe1, xe2…, xen ∈ χ; Ω ≡ (λx.(xx)) 

(λx.(xx)). The symbol ≡λ  is a lambda expression to compare 
the syntactical body of a parameter of arg with Gk that is rep-

licated from an parameter of xek
λ, called a “self-replicator”, 

here 0 <= k <= n. (we didn’t provide a definition for ≡λ, but 
take the fact that it exists as granted). The clause of “if”, 
“then”, and “else” are the standard lambda expressions for 
the “if … then … else …” conditional statement. 
(Note that we will have: dj = Gj d1 d2 … dj … d|DA | ) 

4. dj = YCurry
n

j G1 … Gj … G|DA |. 

In the definition above, Gj was a modification from Notation 38X, 
which makes every derivable assignee to be defined independent 
of itself or others that it depends on.  

EXAMPLE 43 (F-term in lambda expression) Given a database D =  
{A B := B; B A := A; and A A := M}, we define the following func-
tions: 

1. Mλ  = ΩM.  
2. We define G1 for A and G2 for B: 

G1 = λx1 x2.λarg. if arg ≡ λ x2 then x2 

          else if arg ≡ λ  x1 then ΩM 

         else if arg ≡λ  ΩA then ΩA 

                   else Ω 

G2 = λx1 x2.λ arg. if arg ≡ λ  x1 then x1 



         else if arg ≡λ  ΩB then ΩB 

          else Ω 
d1 = YCurry

2
1 G1 G2 

d2 = YCurry
2

2 G1 G2 

YCurry
2

1 = λf1f2.((λx1λx2. f1 (x1x1xs) 

              (x2x1x2)) 

                          (λx1λx2. f1 (x1x1x2) 
               (x2x1x2)) 

                          (λx1λx2. f2 (x1x1x2) 
               (x2x1x2))) 

YCurry
2

2 = λf1f2.((λx1λx2. f2 (x1x1xs) 

              (x2x1x2)) 

                          (λx1λx2. f1 (x1x1x2) 
               (x2x1x2)) 

                          (λx1λx2. f2 (x1x1x2) 
               (x2x1x2))) 

3. Then we can call the functions. For example, d1  d1 ≡ YCurry
2

1 
G1 G2   d1 →λ  ΩM. During the reduction process, the “self-

replicator” was H1 H1 H2, here H1≡ λx1λx2. G1 (x1x1x2) (x2x1x2), 

and H2 ≡ λx1λx2. G2 (x1x1x2) (x2x1x2). The replicated Gj was G1. 

COROLLARY 44 (applicative structure preservation)  

M, N ∈ F, (M  N)λ == Mλ Nλ. 

PROOF   1. If M N is an (explicit or derivable) assignee, then M ∈ 
DA, here DA is the complete set of the derivable assignees in a 
database D, then Definition 42 maps all the derivable assignees in 
DA, including M, to a set of lambda expressions, accordingly 

including Mλ, such that Mλ Nλ →F (M  N)λ. Therefore (M  N)λ == 

Mλ Nλ. 
2. When M is not an assignee, neither is M N. Then Definition 

40Y says that (M  N)λ == Mλ Nλ. 

THEOREM 45 (soundness)  ∀M, N ∈ F, ∃D,  

M ==F N ⇒ Mλ ==λ Nλ. 

PROOF  Given a database D and an arbitrary closed F-term t, we 
prove that if t’ is the result from a one-step reduction, according 
to the reduction rules in Definition 27, then the lambda expres-

sions t’λ and tλ mapped from t to t’, according to the mapping 
rules in Definitions 34, 35, 36, 40X, 40, 40Y, and 42, will be 
equal. (See the body of the proof in the Appendix). 

The symbol � and == were introduced in Definition 29 be-
tween two F-terms. During the proof, we also used them between 

two λ-terms.  

1. If t is a constant, i.e., t ∈ C, then t’ == t by Definition 27.1. By 

Definition 35, t →F t
λ. Therefore: t == t ⇒ t’λ == tλ. 

2. If t is an identifier not defined in D, 

t →F null, by Definition 27.2.  

(null)λ =  Ωnull, by Definition 35 

      tλ = Ωnull, By Definition 36,  

      t  →F null ⇒  tλ  →λ  (null)λ. 

3. If t ≡ m n and m is not a WHNF, then 

m n →F (m’ ε) n, by Definition 27.3.  

m λ == (m’ ε) λ, by induction  

(m n)λ == mλ nλ, by Corollary 44 

((m’ ε) n)λ == (m’ ε)λ n λ, by Corollary 44. 

m n →F (m’ ε) n  ⇒ (m n) λ == ((m’ ε) n) λ. 

4. If t ≡ m n, and m is a WHNF and n is not a WHNF, then 

m n →F m (n’ ε), by Definition 27.4. The proof is done in a 
similar way as we did for Step 3 above. 

5. If t ≡ (m ε1) (n ε2), here m ε1 and n ε2 are WHNFs,  then 

5.1.   if m n  is a derivable assignee, then 

(m n) →F (m n), by 27.5.1 

(m n) λ ==λ (m n) λ 
5.2.   else if m $x is an assignee, then  

(m ε1) (n ε2) → F (m $x)   ε1 ∪ [$x:=(n ε2)], by 27.5.2.  

We  need to prove: 

((m ε1) (n ε2))
 λ  == ((m $x)   ε1 ∪ [$x:=(n ε2)])

 λ 

((m ε1) (n ε2))
 λ   

= (m ε1)
λ (n ε2)

λ, by Corollary 44 

= (mλ  ε1
λ) (nλ  ε2

λ), by Notation 40X 

((m $x)   ε1 ∪ [$x:=(n ε2)])
 λ 

= (m $x) λ   (ε1 ∪ [$x:=(n ε2)])
 λ, by Definition 40X 

(m $x) λ   = m λ $x λ, by Definition 42 (Multi fixed Point) 

= m λ $x , by Definition 34 

(ε1 ∪ [$x:=(n ε2)])
 λ  

= ε1
λ

 ∪ [$x:=(n ε2)
λ] , by Notation 40X 

(m λ $x)  ε1
λ

 ∪ [$x:=(n ε2)
λ], by lambda beta reduction 

= ((m λ) ε1
λ

 ∪ [$x:=(n ε2)
λ]) ($x ε1

λ
 ∪ [$x:=(n ε2)

λ]), by 

beta reduction, 

=(m λ ε1
λ) (n ε2)

λ, By lambda beta-reduction. 

= (mλ  ε1
λ) (nλ  ε2

λ), by Notation 40X 

((m ε1) (n ε2))
 λ  == ((m $x)   ε1 ∪ [$x:=(n ε2)])

 λ.. 

5.3.  else (if there is no variable $x such that m $x is an assignee, 

i.e., (m ε1) (n ε2) is not a WHNF), then 

(m ε1) (n ε2) → F null, by 27.5.3. 
We need to prove: 

((m ε1) (n ε2))
λ

  == nullλ 

((m ε1) (n ε2))
λ

   

=(mλ  ε1
λ) (nλ  ε2

λ), by Notation 40X 

= (mλ  nλ) (ε1
λ ∪ ε2

λ), by the lambda beta conversion. 

Since m ε1 is a WHNF, m is a derivable assignee. Then 

mλ  nλ = Ω, by Definition 42. 

((m ε1) (n ε2))
λ

   

= Ω (ε1
λ ∪ ε2

λ) 
= Ω, by the lambda beta reduction 

nullλ = Ω, by Definition 35. 

((m ε1) (n ε2))
λ

  == nullλ 
6. if t is reduced to t’ [x̅ := v̅̅], and t’ is an explicit assignee such 

that: t’ := t’’, then 
t’ [x̅ := v̅̅] � (x̅ :� v̅̅)  t’’, by Definition 27.6.  
We need to prove:  

(t’ [x̅ := v̅̅]) λ  == ((x̅ :� v̅̅)  t’’) λ 

(t’ [x̅ := v̅̅]) λ 

= t’λ [x̅ := v̅̅] λ , by Notation 40X.1 

((x̅ :� v̅̅)  t’’) λ  

= (x̅ :� v̅̅) λ  t’’λ, by 40X.1 

= t’’λ[x̅ := v̅̅] λ 
Now we need to prove: 

t’λ =  t’’λ 



Since (t’ := t’’) (rewritten as k z̅ := t’’) ∈ D,  Definition 40.2 
defines the mapping for the assigner given an assignee. Let d̅ 
be the complete set of all the derivable assignees in t’’, and y̅ 
be the corresponding variables from χ. From Definition 40.2, 
we have, 

t’ λ ≡ (k z ̅ )  λ = ( V’’ [y̅   := d̅ λ]) z̅λ 

Here V’’ ≡   λ z̅. (V’)λ, t’’ ≡ (x̅  :� d̅) V’. Then 

t’ λ  

= (V’’ [y̅   := d̅ λ] ) z̅λ, by the formula above 

= (V’’ [y̅   := d̅ λ] ) z̅, by  Definition 34 

≡ (λ z̅. (V’)λ [y̅   := d̅ λ]) z̅, by the formula above 

= (λ z̅. ((V’)λ [y̅   := d̅ λ])) z̅, by the lambda beta conversion,   

because y̅  are free in λ z̅. (V’)λ 

= (λ z̅. (((V’) [y̅   := d̅ ]) λ)) z̅, by Notation 40X 

=  (λ z̅.t’’λ) z̅, by the lambda beta reduction 

= t’’λ 

 

6. Computability 

So far, we have considered constants as a part of the theory. Con-
stants, specially null, is a critical component of the EP data model. 
Without null, we can still construct an EP database, such as the 
one for circular directed graph in Example 5.2. But the reduction 
process in Definition 8 would be stuck when a term was not de-
fined as an assignee in a database. This is exactly the reason that 

we map null to a λ-term Ωnull that doesn’t have a normal form in 
Section 6.   

To have an exact correspondence with the lambda calculus, we 
exclude constants from Froglingo. That is: 

DEFINITION 14’ (F-terms without constants) Terms F, ranged over 
by t, are given by the grammar  

t ::= x | a | (t t) 
where x ranges over a set of variables V, and a ranges over a set of 
identifiers P. 

Without constants, we will continue to use the reduction rules in 
Definition 27 except that a reduction will not terminate if the 
special constant null is encountered.  

Excluding constants doesn’t mean that we will not use con-
stants like 3.14 or “a string” in examples. We view the constant 
symbols as identifiers that take built-in function as default mean-
ings and will never by explicitly defined or having their meanings 
altered via a database. 

In an assignment of a database, a variable is always bounded, 
i.e., if a variable is in the assigner, it must be in the assignee. an 
assignment with variables is comparable to a closed abstraction in 
the lambda calculus. Therefore we must convert all the abstrac-
tions with free variables to closed abstractions. 
 
DEFINITION 47 (closed abstractions)  1. Given a lambda expression 
t, i.e., t ∈ ˄, we define the following rules to convert t to another 
term, denoted as t0, such that each abstraction in e is closed, i.e., 
∀e  ∈ SUB(t0), e ∈ ˄0: 
1. x0 = x, here x is a variable. 
2. (a b)c == a 0 b 0. 
3. For an abstraction λx̅.m, let y̅, here | y̅ | >= 0, is the complete list 
of free variables in m,  i.e., y̅ ∈ FV(m), define 

(λx̅.m) 0 = (λy̅. λx̅. m0) y̅. 
 

For example, (λx. (lz. y x)  x) 0 = (λh. (λx. (λz. h z)  x)) y. 
From now on, we assume all the closed λ-terms, before being 

mapped to a F -term, are converted to one in which each abstrac-
tion is closed. 
 
DEFINITION 48 (mapping λ-terms)  Given a database D, a λ-term t, 
we define the following rules to convert t to a F -term during 
which D is enhanced to be D’: 
1. xf = x, 
2. (a b) f = af bf 
3. (λx̅.m)f = p, here | x̅|>0, p ∈ P, and  p is obtained by the fol-

lowing process: If λx̅.m has been mapped to p’ ∈ D, then p ≡ 
p’, and D’ ≡ D. Otherwise, we find a p ∈ P,  p ∉ D, such that 
D’ =  D ∪ (p  x̅ := mf ). Further remember (λx̅.m)f has been 
mapped to p in D.  

 
Since (x̅1 :� n̅) m is nothing by a lambda expression, the mapping 
can be distributed into (x̅1 :� n̅)  and m according to Definition 
48.2. We record it as a notation: 

NOTATION 49 (mapping distribution)   
((x̅1 :� n̅) m)f ≡ (x̅1

f
 :� n̅f) mf 

 
EXAMPLE 50 (sample mappings)  (λz. z (λx. x x)) f = p,  
here D = {p $z := $z  q; q $x: = $x $x}. 
 
We will show that when two λ-terms are convertible under the β-
reduction rule, their corresponding F-terms are convertible as well 
in Froglingo.  To do this, we need to extend the rules in Defini-
tion 27, where given an assignment, e.g., (m x̅ := n), applying a 
derivable assignee, e.g., m y̅, here y̅ is a sub sequence of x ̅ and  | y̅ | 
< | x̅ |, to a too few arguments, e.g., n̅, here | n̅ | = | y̅ |,  results in its 
own derivable assignee with an environment as its WHNF, e.g., 
(m y̅) [y̅ := n̅]. Given the assignment g $x $y := ($x + $y), for ex-
ample, g 6 is converted to g $x [$x := 6] and no further reduction 
is performed. To extent the reduction to the body of the assigner, 
Definition 27.6 is extended as a new rule: 
 
DEFINITION 51 (intermediate reduction result)  Given a database 
D, if t, a F-term, is reduced to t’ [x̅ := v̅̅], and t’ z̅ , here | z̅ | >0, is 

an explicit assignee, i.e., (t’ z̅ := t’’) ∈ D, then we do the follow-
ings: 

1. If there is p∈ P, p ∈ D, such that (p  z ̅  := (x̅ :� v̅̅)  t’’) ∈ D, 
then p is returned as the WHNF. Otherwise, 

2. Enhance D with (p  z ̅  := (x̅ :� v̅̅)  t’’), here p, an identifier, 
was not in D before.  Then return p. 

 
For a F-term g 6 with (g $x $y := ($x + $y)) in a database D, for 
example, we will temporarily add a new assignment p $y := (6 + 
$y) to D. 

By the way, the rule above is not necessary in an implementa-
tion of Froglingo. It is defined solely for the purpose of relating 
Froglingo with the lambda calculus. 
 
COROLLARY 52 (β-reduction and equivalence) For a closed term 
(λx̅.m) n̅ , here x̅ ≡ x̅1 x̅2, | x̅1 |=| n̅ |, and an empty database D = φ,  

((λx̅.m)n̅ )f = (λx2.((x̅1 :� n̅) m))f. 
 

PROOF    ((λx̅.m)n̅ )f  
= (λx̅.m)f  n̅ f , by Definition 48.2. 
=  t n̅ f, here t ∈ P, t ∉ D, and 

D is added with t x̅ :=  mf, by Definition 48.3. 
= t [x̅1:= n̅ f], by Definition 27.5.2 



Case 1: | x̅2 | = 0 
t [x̅1:= n̅ f]  
=  (x̅1:� n̅ f) mf , by Definition 27.6. 
(λx2.((x̅1 :� n̅) m))f  
= ((x̅1 :� n̅) m)f , since | x̅2 | = 0 
= (x̅1:� n̅ f) mf, by Definition 48.2. 
((λx̅.m)n̅ )f = (λx2.((x̅1 :� n̅) m))f is true. 

Case 2: | x̅2 | > 0 
t [x̅1:= n̅ f]  
= p, here (p x̅2:= (x̅1:� n̅ f) mf ) ∈ D, by Definition 51. 
(λx2.((x̅1 :� n̅) m))f 
= p, by Definition 48.3. 
((λx̅.m)n̅ )f = (λx2.((x̅1 :� n̅) m))f is true. 
 
Most languages in practice don’t have a concept comparable to η-
reduction of the lambda calculus, i.e., λx.Mx  � M, here x ∉ 
FV(M). This is especially a case in Froglingo. For example, one 
may create p $x := q $x in a database first, and then add p 3 := 6 
later. Then most likely p and q are not equal. Actually, two arbi-
trary identifiers (or generally two derivable assignees in a data-
base), are two distinguished WHNFs, and intentionally make them 
not convertible.  

To ensure Froglingo’s full correspondence with the lambda 
calculus in computability, we need a special attention to avoid η-
redex before a lambda expression is converted to a F-term, as if a 
programmer needed a special attention to avoid a doubled effort 
of writing two procedures for the exactly same function. To this 
end, we add another requirement to automatically remove η-redex 
for our λ-term to F-term mapping process: 

DEFINITION 53 (η-redex elimination)  Given a lambda expression 
t, i.e., t ∈ ˄, we define the following rules to convert t to another 
term t’, denoting the conversion process as  

t �η-f t’ , or 
tη- = t’, 

such that t’ doesn’t contain a η-redex as a sub term: 
1. if t ≡ λx.Mx, here x ∉ FV(M), then tη- = Mη- 
2. if t ≡ x, x ∈ V, tη-  = t 
3. if t ≡ m n, m, n ∈ F, tη-  = mη- nη- 
4. t ≡ λx.M, M ∈ F, tη- ≡ λx.Mη- 

We understand that a λ-term that doesn’t contain a η-redex may 
be reduced to a term containing a η-redex. For example, 
λx.((λyz.z)xM)x doesn’t contain a η-redex. But it can be converted 
to λx.Mx , a η-redex. Therefore the definition 53 needs to applied 
whenever a lambda expression is to be converted to a  F-term. 

Again the definition above is not a part of Froglingo imple-
mentation. We defined it here to analyze Froglingo’s computabil-
ity and will be referenced in Corollary 57.3. In practice, we rely 
on programmers to write one function only once. 

The α–reduction rule in the lambda calculus, i.e., λx. M � ly. 
M[x:=y], has never been discussed. We simply assume that each 
variable is unique in the context where it is used.  

Now let’s show that the concepts of normal forms and head 
normal forms in the lambda calculus have correspondence in 
Froglingo and therefore we prove that Froglingo is Turing-
complete while the lambda calculus is Turing-complete. The re-
sult should not be any surprise. But by doing so, we have a better 
understanding on Froglingo by relating it with the lambda calcu-
lus. 

 

DEFINITION 54 (redex) Given a database D, a closed term t ∈ F  is 
an redex if 
1. If t is an identifier not defined in D to represent an abstraction, 
then it is a redex, i.e., 

t ≡ p, here p ∈ P, ∀ x̅, v ∈ F, | x ̅ |> 0, (p x̅ := v) ∉ D. 
2. If t is an application, then it is a redex, 

t ≡ p m̅, here p ∈ P, m̅ ∈ F, | m̅ |  > 0 

DEFINITION 55  Given a database D, 

1. (normal form,  NF) a term  t ∈ F is a normal form if it 
doesn’t contain a redex as a sub term. 

2. (head normal form, HNF) a term t ≡ a m̅ ∈ F , t is a head 
normal form if a is not a redex.  

Here we map some standard lambda expressions to F-term as 
examples.  
 
 
EXAMPLE 56 Given a database D =  
{ w $x := $x $x;  
   w’ $y $x := y(xx);  
   Ω f := w w; 
   FIX f $f := (w’ f) (w’ f); 
   A B := B;  
   B A := A; 

}, where w, w’, A, B,  Ω f, FIX f ∈ P, $x, $y ∈ V.  
Then w, A, $x, w’ are in normal forms. The terms w $x, A B, and 
Ω f are not in normal forms. 
 

COROLLARY 57 Given a term t, t ∈ ˄, and a database D, 
1. (redex correspondence) t is a redex if and only if tf is a redex. 
2. (HNF correspondence 1) t is a HNF if and only if tf is a HNF. 
3. (HNF correspondence 2) t has a HNF if and only if tf has a 

HNF. 
4. (NF correspondence 1) t is a NF if and only if tf is a NF. 
5. (NF correspondence 2) t has a NF if and only if tf has a NF. 
 
PROOF  1 (redex correspondence)  

a) If t is a redex, i.e., t ≡ (λx.M) N. then 

    tf ≡ ((λx.M) N )f 
    = (p Nf), here (p $x := M) ∈ D 
    Then tf is a redex in Froglingo. 
b) Let t be a F-term, and it is a redex in Froglingo, 
     Case 1: t ≡ p, here p ∈ P, ∀ x̅, v ∈ F, | x ̅ |> 0, (p x ̅ := v) ∉ D, 

When p is in D, pλ = Ωp, by Definition 42. 
When p is not in D, pλ = Ωnull, by Definition 36.  
Ωp and Ωnull are not redex. 

Case 2: t ≡ p m̅, here p ∈ P, m ̅ ∈ F, | m ̅ |  > 0 

(p m̅)
 λ

 = p
 λ

 m̅ λ, by Corollary 44 

p
 λ

 ≡ λx.M, for some M ∈ F, by Definition. 

We have proved that t
 λ

 is a redex. 

PROOF  2 (HNF correspondence 1) If a lambda term t is in 
HNF, then it doesn’t contain a redex. According to Corollary 

57.1, tf will not contain a redex either. If a  F-term t is in HNF, tλ
 

will not contain a redex according to Corollary 57.1. Proved. 
PROOF  3 (HNF correspondence 2). If a lambda term t has a 

HNF t’, then (t’)f is the HNF for tf by 57.2. We know that t→λ t’ 
is done by β-reduction and η-reduction. For each reduction step m 
�λ n, here t →λ m, 
Case 1: m �λ n ≡ m �β n. By Corollary 52, we have 
mf �f n

f 
Case 2: m �λ n ≡ m �η n. By Definition 53, we have 
mf �η−f n

f.  
This has proved that if a λ-term t has a HNF t’, then tf can be ef-
fectively reduced to (t’)f as the HNF. 



Reversely, if t, t ∈ F, has a HNF t’, i.e., t  == t’, we prove that 
tλ has a HNF (t’)λ. When t’ is a HNF, so is (t’)λ in Froglingo by 
Corollary 47.2. Now we need to prove that tλ == (t’)λ. That is true 
by Theorem 45. 

PROOF  4 (NF correspondence 1). Similar to Proof 2 
PROOF  5 (NF correspondence 2). Similar to Proof 3 

Froglingo is Turing-complete since the lambda calculus is Turing-
complete, and we proved in this paper that Froglingo, with Defini-
tion 53, is equivalent to the lambda calculus.  

7. Related Work 

Integrating databases with programming languages has been a 
longstanding and hard issue. Many database programming lan-
guages have been proposed between the late 1970s and the early 
1990s. The work on Machiavelli [24] was a typical example that 
used functional programming language over relations. Driven by 
the concept of the semantic web [16], many descriptive languages 
geared toward the management of the web-related data have been 
currently proposed. The examples are OWL (Web Ontology Lan-
guage), a language taking ontology as the underneath data struc-
ture, RuleML (Rule Marked Language), a family of Web rule 
language using XML as the underneath data structure ([7] and 
[23]), the Linked Data, a language to publish and to connect data 
available on the web by taking RDF as the underneath data struc-
ture ([6], [21], and [41]), and XQuery, a language taking XML as 
the underneath data structure [8]. Obviously each approach has its 
unique features in terms of methodologies and the scopes of their 
applications. All the approaches are based on the traditional data 
models, i.e., the relational data model, the hierarchical data 
model, or data structures, such as graph-oriented data structures.  

The work in searching for a better data model had been started 
as soon as we realized the limitations of the relational and the 
hierarchical data models in the early 1970s. The most active work 
in this area have focused on graph-oriented data structures, such 
as CODASYL [42], ER (Entity-Relational) [12], DAPLEX[28], 
and semi-structured data [10]. The graph-based approaches at-
tempt to be more universal, in the sense of expressive power, and 
at the same time to have set-oriented operations similar to those in 
the traditional data models.  

 

8. Summary 

Application software started with a monolith where a program-
ming language was the only component in the 1960s. To achieve 
a better productivity and to adapt to a rapid change of business 
requirements, a typical database application today consists of 
multiple components including database management system, 
programming language, web server, data exchange server, and 
access control server. With the EP data model that is semantically 
equivalent to a class of total recursive function, a monolithic ar-
chitecture becomes available again for database applications. The 
new monolith is not a physical combination of traditional multiple 
components, but a logical consolidation of functions out of the 
traditional multiple components. 

In this paper, we discussed the syntax, reductions, semantics, 
and computability of Froglingo. By going through the areas com-

mon to all languages, we gave Froglingo a precise definition, that 
identifies the features common to other languages, and the fea-
tures that make Froglingo a system integrating databases with 
programming languages.  
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