

A Bi-directional Mapping between Froglingo Programming
Language and the Lambda Calculus

Kevin Xu
2306 Johnson Circle

Bridgewater, New Jersey 08807, U.S.A.
kevin@froglingo.com

Abstract

The EP (Enterprise-Participant) data model is a language semanti-
cally equivalent to a class of total recursive functions. Because of
the equivalence, Froglingo, a programming language incorporated
with the EP data model, is a monolith that consolidates databases
with programming languages. In this paper, we discuss Froglingo
by providing bidirectional mappings between Froglingo and the
lambda expressions. With the mappings, as a mathematical foun-
dation of Froglingo, we can better relate Froglingo with the
lambda calculus and other programming languages, and therefore
objectively assess what is meant by the monolith of Froglingo.

Categories and Subject Descriptors D.3.1 [Programming Lan-
guages]: Formal Definition and Theory – Syntax and Semantics;
D.3.3 [Programming Languages]: Language Constructs and Fea-
tures – abstract data types, control structures; F.4.1 [Mathematical
Logic and Formal Languages]: Mathematical Logic – Lambda
calculus and related systems.

General Terms Languages, Theory,

Keywords programming languages, lambda calculus, redex,
normal forms.

1. Introduction

Many database applications were written in programming lan-
guages in the 1960s and 1970s, and are still in operation. The use
of database management system (DBMS) came to database appli-
cation software around the 1970s. It significantly improves the
productivity in software development and maintenance.

The traditional data models and data structures, i.e., the rela-
tional data model, the hierarchical data model, and graph-oriented
data structures, cannot express all desired business data. Hierar-
chical data, for example, can be folded into a relation, but its con-
tainment relationships cannot be captured by the relational data
model with the expressive power of the relational algebra [3].

Another example would be relationships among the vertices in a
directed graph, (e.g., is there a path from A to B?), which cannot
be captured in both the relational data model and the hierarchical
data model. As a result, database applications continuously re-
quire intense, though relieved, development and maintenance
work, which could be avoided if a more expressive data model
were realized and leveraged.

The EP (Enterprise-Participant) data model is semantically
equivalent to a class of total recursive functions [35]. The equiva-
lence says that programmers are not allowed to construct an appli-
cation program that may not terminate on an input. At the same
time, it says mathematically that any meaningful application pro-
grams, i.e., those with the semantics falling into the class of total
recursive functions, could be expressed in the EP data model with
the hypothesis of infinite space and time.

Because of the equivalence, the EP data model alone is able to
consistently manage as much finite data as we need. Here the
consistency meant that finite data from various application do-
mains, including database management, data communication,
access control, and file management, is collectable and exchange-
able in the EP data model with a single data structure [39] and
[37].

Froglingo, a programming language incorporated with the EP
data model, extends the EP data model to manage infinite data.
The extension is implemented by incorporating variables, i.e.,
comparably variables in the lambda calculus, into the data struc-
ture of the EP data model. As a result, business data and business
logic are stored in the same data structure, and operations on the
data structure are expressed by the same set of operators, that
constitutes Froglingo to be a programming language, a monolith
consolidating databases with programming languages [36].

Froglingo was originally proposed for database and data com-
munication issues [40]. It is closely related to the lambda calcu-
lus. Therefore it has been continuously guided by the lambda
calculus in its development. Here, we give a simple example to
quickly show the connections between the two systems. The func-
tion sq (x) = x * x, i.e., calculating the square of a number, has a
lambda expression:

λx. (*λ x x)

Here we assume that *λ is the lambda expression for the operator
*. In Froglingo, we have a corresponding expression:

create sq $x := ($x * $x)

Here sq is an identifier, the name for the square function, $x is the
variable. We added ‘$’ in the front of variables to distinguish
them from identifiers. This expression would not make Froglingo
much different from Scheme:

(define sq (lambda (x) (((* x) x))

until we see another expression that instantly alters the function sq
without modifying its original definition:

create sq 1 := 20

The above two statements result in two expressions in a database:
{sq 1 := 20; sq $x := ($x * $x)}. When a query sq 3 is provided,
Froglingo will match the second expression in the database and
return 9. But when a query sq 1 is provided, Froglingo will match
the first expression and returns 20.

From the examples above and from our discussion of this pa-
per, we will see that Froglingo is similar to the lambda calculus
because applications and abstractions, via identifiers, are the pri-
mary concepts in programming. At the same time, Froglingo con-
struct abstractions without using variables, that is not a case in the
lambda calculus.

Contributions of this paper. We give a formal theory for
Froglingo. Our discussion reveals that Froglingo, like ML and
Scheme, appears to be solely a syntactical variation of the lambda
calculus, e.g., λx.M is rewritten as p $x := M (Section 6). Further
more, Froglingo has exactly one-to-one mappings on normal
forms, head normal forms, and weak head normal forms with the
lambda calculus and therefore with other functional programming
languages (Sections 6 and 4). The similarity is attributed to
Froglingo’s function as a programming language. Constructing
(higher-order) functions without variables is the unique feature
that differentiates Froglingo from the lambda calculus and other
programming languages. Syntactically, it is done through applica-
tive structure, e.g., p q := 3 (Section 2), again in a way similar to
the lambda calculus. Semantically, however, it fundamentally
introduces a new avenue to constructing (higher-order) functions
by enumerating properties, in parallel to recursion. Enumeration
makes database management easier, and it is a complement of
recursion (Sections 4 and 5) while recursion is a complement of
enumeration in describing infinite data with finite presentation.

The formal theory serves as a foundation to support the con-
cept of Froglingo’s monolith and some results from other work. In
paper [34], a set of built-in operators, reflecting ordering relations
among higher-order functions, were introduced. Because of the
EP data model with the built-in operators, we can easily express
many known structures and queries with high complexities, such
as directed graphs with cycles and self-applications. (We will
have some examples to reiterate this feature in this paper.) Again
because of the EP data model, an application system [32] imple-
mented in Froglingo (an award recipient in the ICCBR 2010
Computer Cooking Contest) demonstrated that programmers can
take advantage of the built-in data structure for various data that
would otherwise have to be constructed in many data types of
traditional programming languages, that users have the flexibility
of specifying queries in a unstructured textual string that would
otherwise have to be chunked by users into pieces with an extra
step of learning system-specific structure, and that similarities can
be represented structurally that would otherwise have to be repre-
sented in weight in traditional technologies. Finally, because of
the EP data model, the authors in the paper [31] contended that

Froglingo is untyped and at the same time is safer than traditional
programming languages.

In Section 2, we discuss the EP data model as a quick step to in-
troduce the most important sub language of Frogling. Starting
from 4, we discuss Froglingo as a whole, including the EP data
model, about its normalization, reduction, semantics and comput-
ability.

2. EP Data model

In traditional data models, an entity is either dependent on one
and only one other entity, or independent from the rest of the
world. The functional dependency in the relational data model and
the child-parent relationships in the hierarchical data model are
typical examples. These relationships are too simple, and don’t
reflect the extent to which the complexities of the real world can
be managed using a computer.

The logic of the EP data model is that if one entity is depend-
ent on other entities, then those entities are precisely two in num-
ber. Drawing terminology from the structure of an organization or
a party as in article [40], one dependent entity is called enterprise
(such as organization and party), the other is called participant
(such as employee and party participant), and the dependent entity
is called participation. An enterprise consists of multiple partici-
pations. Determined by its enterprise and its participant, a partici-
pation yields a value, and this value is in turn another enterprise.

2.1 Syntax

DEFINITION 1 (EP terms) Terms T, ranged over by t, are given by
the grammar

t ::= c | a | (t t)
where c ranges over a set of constants C where null is a special
constant and a ranges over a set of identifiers P.

Similar to lambda expressions, EP terms have application as
the most noticeable structure. Therefore, we adopt many notations
from the lambda calculus, including sub-term, left (right) sub-
term, SUB(t) for all sub-terms in t, FV(t) for all the variables in t,
and a b instead of (a b) when there is no ambiguity.

Different from the lambda calculus, the reduction process of
the EP data model is based on a database. We start to define the
concept of assignments first.

DEFINITION 2 (assignments) Assignments A, ranged over by s, are
given by the grammar

s ::= t | t := t
where t ranges over T.

Given an assignment, the assignee plays the dominant role in
naming the assignment. A term without an assigner can be an
assignee as well.

NOTATION 3 (assignees) Given an assignment m := n ∈ A, a left
sub term of m is called an assignee. Further,
1. the term m is called the explicit assignee.
2. An assignee that is not explicit assignee is called a derivable
assignee.
3. When we say that a term m is in a set of assignments A, i.e., m

∈ A, we say that m is an assignee.

Given an assignment a b (c d) := e, for example, the explicit as-
signee is a b (c d), and it acts as the name of the assignment. a, a
b are derivable assignees for a b (c d).

DEFINITION 4 (database) An EP database D is a set of assignments

A ⊂ A such that the following things are true:
1. An assignee cannot be a constant, i.e.,

m ∈ D ⇒ m ∈ (T - C)
2. If m n is an assignee in D, n must not have an assigner, i.e.,

m n ∈ D ∩ ∀k ∈ T, (n := k) ∉ D
3. If an assignment (m := n) is in D, m cannot be the left sub-term
of another assignee in D, i.e.,

(m := n) ∈ D ⇒ ∀∀∀∀t ∈ T, m t ∉ D

4. The database D must have no circular set of assignments, i.e.,

m0 := m1, m1 := m2, …, mn-1 := mn ∈ D, here n ≥ 1 ⇒ mn := m0

∉ D.
5. An assignee can serve only one assignment in D, i.e,

(m := n1), (m := n2)∈ D ⇒ n1 ≡ n2

EXAMPLE 5 1 (A school administration database)
SSD.gov John SSN := 123456789;
SSD.gov John birth := ‘6/1/1990’;
SSD.gov John photo.jpg := …; /* a binary stream*/
college.edu admin (SSD.gov John) enroll := ‘9/1/2008’;
college.edu admin (SSD.gov John) Major := college.edu CS;
college.edu CS CS100 (college.edu admin (SSD.gov John)) grade
:= “F”;
2 (a directed graphs with circles) A directed graph with connec-
tions v1 to v2, v2 to v1, and v2 to v3 has the following assignments
in a database:
v1 v2 :=v2;
v2 v1 :=v1;
v2 v3 :=v3;

When we say that a term is in a database, in the Definition 4, we
always say that the term is an assignee. The fact that a sub term of
an assigner can also physically be in a database is not important
and therefore is not discussed in this paper.

According to Definition 4, if an assignee is in a database, one
of its left sub terms is also in the database, e.g., SSD.gov and
SSD.gov John must be in when SSD.gov John SSN is in a data-
base. We don’t show them here because it is clear and implied by
the following propositions:

PROPOSITION 6 1. If an application is in a database, so are its left
sub-terms, i.e.

m n ∈ D ⇒ m ∈ D
2. If an assignment is in a database, so is its assignee, i.e.

m := n ∈ D ⇒ m ∈ D

PROOF. 6.1. It is clear from Definition 1 that the existence of an
application must imply the existence of the sub terms. A database
always stores the sub-terms when it stores an application.

6 2. If is clear from Definition 2 that the existence of an as-
signment must imply the existence of the assignee. A database
always stores the assignee and the assigner if it stores an assign-
ment.

2.2 EP Normal Forms and Reductions

Given a database, each term in the T can be reduced to a normal
form.

DEFINITION 7 Given a database D, the set of normal forms, de-
noted as EPNF, is defined as follows:
1. All the constants, i.e.,

 c ∈ C ⇒ c ∈ EPNF

2. All the derivable assignees in D, i.e.,

 m ∈ D, ∀n ∈ T, (m := n) ∉ D ⇒ m ∈ EPNF

For example, terms “F”, SSD.gov, and SSD.gov John are normal
forms, but not SSD.gov John birth in Example 5.1.

We will see that EPNF is a strict subset of WHNF to be dis-
cussed in Section 4.

DEFINITION 8 (EP one-step reduction rules) Given a database D,
we have the one-step evaluation rules, denoted as �:

1. A constant is reduced to itself, i.e., c ∈ C ⇒ c � c
2. An identifier not in D is reduced to null, i.e.,

p ∈ P ∩ p ∉ D ⇒ p � null
3. An assignee in D is reduced to its assigner, i.e.,

(m := n) ∈ D ⇒ m � n

4. If m, n ∈ EPNF, and m n ∉ D, then m n is reduced to null, i.e.,

m, n ∈ EPNF, m n ∉ D ⇒ m n � null

5. The application of two terms is reduced to the application of
their normal forms, i.e.,

m, n ∈ T, m � m’, n �n’ ⇒ m n � m’ n’.

DEFINITION 9 Let m, n ∈ T with a given database D. If there is a

finite sequence l0, …, lq ∈ T, where q ≥ 0, such that m ≡ l0,, l0 �

l1, …, lq-1 � lq, lq ≡ n, then
1. m is effectively, i.e., in finite steps, reduced to n, written as m

→EP n.

2. If m1 →EP n and m2 →EP n, then we say that m1 is equal to m2,
denoted as m1 == m2. The relation == is the complete set of the
equations derivable from the environment of D.

EXAMPLE 10 Below are a few equations from the databases in
Examples 4 and Examples 6:
SSD.gov John SSN == 123456789;
(college.edu admin (SSD.gov John) Major) == college.edu CS;
v1 v2 v1 == v1;
v1 v2 v1 v2 v1… v1 == v1;

The reduction of the EP data model is strongly normalizing be-
cause every term can be effectively reduced to a normal form.

2.3 Computability

The EP data model, as a formal theory, has been studied in [35]. It
has been proved to be semantically equivalent to a class of total
recursive functions. It means that the complete set T, under a
given database, is always interpreted as a total and higher-order
function. Given a derivable assignee m, we can always find a set
of distinguished terms (normal forms) ni, here i is 0 or a positive
nature number, such that m ni is in D for each i. The relationships
between m, ni, and m ni are exactly the relationship between func-
tion, argument, and the corresponding value of applying function
to argument.

On the other hand, the equivalence says that any total recur-
sive function, i.e., applying it to an arbitrary argument always
terminates no matter it is finite or infinite, would be eventually
enumerated and stored into a EP database with the complete set of
the argument and value pairs that represent the complete proper-
ties of the function. The equivalence is based on the hypothesis
that we had infinite time and space, in the same way that the com-
putability of a Turing-machine was given. The base of this claim
is: a class of total recursive functions can be enumerated [4]. This
also can be intuitively concluded from the known conclusion in a
computability text book: a class of partial recursive functions can

be enumerated by using a Turing machine. It doesn't say that a
machine can collect all the property of a total recursive function at
a given time in the future, but that a machine will eventually col-
lect every total recursive function with the hypothesis that the
machine had infinite time and infinite space.

To understand the EP data model’s computability, we can
think of the following intuitive process: A Turing machine is
enumerating the entire set of partial recursive functions, and it
feeds output to a system in the EP data model. When the Turing
machine computed the result of applying a function to an argu-
ment with termination, it passes the result to the EP system and
the EP system records the argument and the result pair for the
total function. What the EP system recorded are exactly those
total recursive functions. With the hypothesis, the Turing machine
would have enumerated the entire set of partial recursive func-
tions and the EP system would have collected the entire set of
total recursive functions at the end of an infinite time, that would
never come.

A relational database or a programming language is able to
collect the properties of a total recursive function with the given
hypothesis. But only the EP data model, that is semantically
equivalent to the class of total recursive functions, is able to re-
play the applicative behaviors of total recursive functions after the
collection.

With the same intention, many strongly typed programming
languages, e.g., the purely typed lambda calculus [5], Total func-
tional programming [30], Gödel's system T, and Nominal system
T [26], also limit the computations to total recursive functions.
However the computability is limited to a strictly subset of a class
of total recursive functions because of types. In other words,
given a strongly typed programming language that always termi-
nate on arbitrary inputs, we always can find more total functions
that can not be described in the language. The self-application
function F = {<F, 1>, <2, 0>}, for example, cannot be expressed
in a strongly typed system, but simply expressed in the EP data
model as:

F F := 1;
F 2 := 0;

Similarly, the EP data model expressions in Example 5.2 for a
directed graphs with cycle cannot be expressed in a strongly typed
system.

For additional discussion about the computability, consistency,
and soundness of the EP data model, please reference [35] and
more discussions in Section 4 and 5 of this paper.

3. Froglingo

With the EP data model that is equivalent to a class of total recur-
sive functions, we can user the EP data model to model finite data
as much as possible. But a programming language, i.e., a Turing-
complete system, is still needed. First, constructing arbitrary func-
tions for both queries and business logic on top of a managed data
set requires a programming language. Although the built-in opera-
tors introduced in Section 2.4 can be used to construct many use-
ful queries, they don’t exhaust all the queries that are required for
practicality and that are within a class of total recursive functions.
Viewing an EP database as a finite set of higher-order functions,
in addition to the built-in operators in Section 2.4, there are still
an infinitely many total recursive functions that are potentially
demanded by applications.

Second, some business data may be expressed more conven-
iently as business logic. By business data, we normally mean fi-
nite properties. By business logic, we emphasize its finite
presentation for mostly infinite properties. To express the opening
hours of a shopping center, e.g., from 9:00 am to 9:00 pm except
on weekends, one may prefer not to repeat the same schedule 5
times for 5 workdays in a database, but instead to specify it only
once. Representing this type of business data demands program-
ming language or other specialized language systems such as
those called constraint databases [27].

In this section, we introduce variables which, along with the
EP data model, constitute Froglingo as a programming language.
For the features beyond variables, please reference [38].

A variable in Froglingo is represented by an identifier pre-

ceded by the symbol “$”. For example, $a_variable, and $stu-

dent. It is a new type of terms.

DEFINITION 14 (F-terms) Terms F, ranged over by t, are given by
the grammar

t ::= c | x | a | (t t)
where c ranges over C, x ranges over a set of variables V and a
ranges over P.

Obviously, T is a strictly subset of F.

DEFINITION 15 (database extension) 1. If a variable is in an as-
signer in a database D, it must be in the assignee, i.e.,

(m := n) ∈ D, x ∈ V, x ∈ SUB(n) ⇒ x ∈SUB(m)
2. A variable cannot be an assignee by itself, i.e.,

x ∈ V , x ∈ SUB(m), (m := n) ∈ D ⇒ x ≠ m ∈ SUB(m) ˄

∀b ∈T, (x b) ∉∈ SUB(m)

With the addition of variables, we can have following valid
assignments in a database:

EXAMPLES 16 (database with variables)
fac 0 := 1;
fac $n := ($n * (fac ($n - 1)));
fun $x 1 $y := ($x + $y);
fun $x 2 $y := ($x * $y);

A detailed discussion on the normalization and reduction rules
will be fully discussed in Section 5. Before that point, we will use
our intuition to reason reduction process. Here are a few sample
query expressions and reduction results.

fac 4 →→→→f 24;

fun 3 2 4 →f 12;

Semantically, the expressions above are equivalent to a database
having infinite assignments. For example, the factorial function
will have the following enumerations: fac 0 = 1; fac 1 = 1; fac 2
= 2; fac 3 = 6; …. This demonstrates that variables semantically
add nothing new to the EP data model, but syntactically to the
finite expressions for possible infinite entities (semantics). At the
same time, we have to be aware that variables also add non-
termination process back to Froglingo.

A variable can be restricted within a range to prevent un-
wanted data from being its instances and (or) to prevent an opera-
tion from not terminating. For example, the following expressions
can be used to represent the tax rule: The tax rate is 20% if a sal-
ary is less than $100,000, and 40% otherwise.

EXAMPLE 17 (variables with ranges)

 tax $s1:[$s1 >= 0 and $s1 < 100000] := ($s1 * 0.2);
 tax $s2 := ($s2 * 0.4);

From the example above, we see that multiple variables are possi-
ble under a single assignee for multiple ranges. When multiple
ranges are needed, we require that each variable is named differ-
ently (otherwise, user would be prompted with an error message).

In this paper, however, we limit ourselves to one variable
without range because it is sufficient to reach out our goals in this
paper.

4. Normalization and Reductions

With the addition of variables, the reduction process of Definition
8 must be extended. For example, given the expressions in a data-
base D:

g 7 2 := 4;
g $x $y := ($x + $y);

will have the following reductions:

g 7 2 →F 4

g 2 3 →F 5
In addition to full reductions, a partial substitution, i.e., applying a
function to too few arguments, is also allowed. For example, the
expression g 2 will be converted to g $x [$x:=2], which would be

equivalent to λy.(2 + $y). In this section, we formally discuss the
extended normalization and reduction process of Froglingo.

We further adopt additional notations from the lambda calcu-

lus. We denote m̅ as a sequence of terms, i.e., m̅ ≡ m1 m2… mk,
here k is a nature number equal to or greater than 0. |m̅| is denoted
the size of the sequence. Let m n ̅ be a term, here n ̅ is a sequence of
terms, m n ̅ is denoted as m n1 n2… nk, here k is a nature number
equal to or greater than 0. |n̅| is denoted the size of the sequence
following m.

To accommodate various forms of assignees in Froglingo, e.g.,
fun $x 1 $y in Example 16, we also use the form: m x̅ to denote a
term: m x1 x2… xk, here each element in the sequence x̅ must ap-
pear in x1 x2… xk, and | x̅ | <= k.

DEFINITION 18 (environment) Given a sequence of variables x1,
…, xn, and a sequence of F-terms v1, …, vn, here n >= 0, we

call the form:
[x1:= v1,…, xn:= vn]

an environment, denoted as [x̅ := v̅̅], or simply ε sometimes. An
environment can be empty.

DEFINITION 19 (assignee under environment) Let M x̅ be an as-
signee in a database D, v̅̅ a sequence of terms, and | x̅ | = | v̅̅ |, we
denote:

M [x̅ := v̅̅]
as the assignee M under the environment [x̅ := v̅̅].

It actually can be viewed as a reduction:

M v̅̅ →F M [x̅ := v̅̅]
Therefore, we have:

M v̅̅ == M [x̅ := v̅̅]
When we see M [x̅ := v̅̅] in the rest of this section, it is equiva-
lently viewed as the F-term M v̅̅. For example

g 2 3 →F (g $x $y) [$x := 2, $y := 3]
g 2 3 == (g $x $y) [$x := 2, $y := 3]

DEFINITION 20 (substitution) Given a F-term M, and an assign-
ment [x̅ := v̅̅], we denote

(x̅ :� v̅̅) M
As the result of substituting x̅ with v̅̅ in M.

For example, ($x :� 2) ($x + $y) ≡ (2 + $y).

Like assignee under environment, substitution is a reduction
process as well. For example:

($x + $y) [$x := 2] →F ($x :� 2) ($x + $y)
($x + $y) [$x := 2] == ($x :� 2) ($x + $y)

Therefore, when we see an expression like (x̅ :� v̅̅) M in this
section, it is equivalently viewed as a F-term.

NOTATION 21 (open and closed F-term) 1. If a term includes vari-
ables, we say that the term is open.
2. If a term t doesn’t include a variable, then we call the term
closed.

An assignee under an environment, i.e., M [x̅ := v̅̅], is also called
closed because its equivalent term M v̅̅ doesn’t include a vari-
able.

In an assignment of a Froglingo database, every occurrence of
a variable is bounded in the sense that the variable must also ap-
pear in the assignee if it appears in an assignee. As a matter of
fact, assignments with variables in a database correspond to

closed λ-terms as we will see in Section 6. The Froglingo term set
F includes variables, such as $x fun and fun $x, but we are only
interested in the terms without variables when we are evaluating
Froglingo terms, as if we were only interested in the closed
lambda terms when we evaluated lambda terms.

Because of the restriction of bounded variables in a database,
we are able to implement Froglingo without dealing free variables
during reduction processes for any closed terms as inputs. It does
simplify not only our discussion in this paper, but also the imple-
mentation of Frogingo. Therefore, we are going to give the reduc-
tion rules and its semantics only on closed terms.

DEFINITION 25 (F-redex) Given a database D, a F-term t is an F-

redex if one of the following conditions is not true:
1. a constant,
2. a variable,
3. a derivable assignee under an environment m [x̅ := v̅̅],

here each v in v̅̅ is not a F-redex, and | x̅ | >= 0.

DEFINITION 26 (WHNF, weak head normal forms) A term is a
weak head normal form, denoted as WHNF, if it doesn’t include a
F-redex as a sub-term.

Clearly, a WHNF is a constant, a variable, a derivable assignee, or
a derivable assignee under an environment.

We used the notion “weak head normal form” to indicate that
Froglingo’s implementation strategy can be comparable to those
for conventional functional programming languages [25]. But we
will not discuss in detail on how they are comparable in imple-
mentations.

To simplify the discussion in this paper, we only give a reduc-
tion strategy that is similar to the leftmost and outermost reduc-
tion strategy in the lambda calculus, which guarantees that a
normal form can be reached if it does exist for a term.

DEFINITION 27 (one-step reduction rules, leftmost and outermost)
Given a D and a F-term t, we have the following one-step reduc-
tion rules, denoted as �:

1. A constant is reduced to itself, i.e., c ∈ C ⇒ c � c.

2. An identifier not in D is reduced to null, i.e.,

p ∈ P ∩ p ∉ D ⇒ p � null.
 Otherwise, p � p.

3. If t ≡ m n and m is not a WHNF, then t � (m’ ε) n, here m �

m’ ε by induction, ε will by empty when m’ is a closed term.

4. If t ≡ (m ε1) n, and m ε1 is a WHNF and n is not a WHNF, t �

(m ε1) (n’ ε2), here by induction, n � n’ ε2.

5. If t ≡ (m ε1) (n ε2), here m ε1 and n ε2 are WHNFs,

5.1. if m n is a assignee in D, then t � (m n). Note that ε1and

ε2 must be empty, by induction.
5.2. else if there is a variable $x such that m $x is an assignee in

 D, then t � (m $x) (ε1∪ [$x:= (n ε2)])

5.3. else t � null.
6. if t is reduced to t’ [x̅ := v̅̅], and t’ is an explicit assignee such

that: t’ := t’’, then t’ [x̅ := v̅̅] � (x̅ :� v̅̅) t’’.
7. A variable is reduced to itself.

EXAMPLE 28 (reductions) fac 1 � fac $x [$x := 1], by 27.5.2

� ($n :� 1) $n * (fac ($n – 1)) ≡ 1 * (fac (1 -1)), by 27.6
� 1 * (fac 0), by 1 – 1 = 0, a rule not included in Definition 27.
� 1 * (fac 0 []), by 27.5.1
� 1 * 1, by 27.6

DEFINITION 29 (reduction process and termination) Let m, n ∈ F

with a given database D. If there is a finite sequence l0, …, lq ∈ F,

where q ≥ 0, such that m ≡ l0,, l0 � l1, …, lq-1 � lq, lq ≡ n, then
1. m is effectively, i.e., in finite steps, reduced to n, written as m

→F n.

2. If m1 →F n and m2 →F n, then we say that m1 is equal to m2,
denoted as m1 == m2.
3. If n is a WHNF, then the evaluation process terminates, and we
say that m has a WHNF n.

Clearly, →F includes →EP. The notations � and ==, the relations
originally defined for the EP data model in Definition 9, are re-
used and extended for Froglingo.

EXAMPLE 30 (a non-termination reduction process) Let’s define
w $x := $x $x

in correspondence to the lambda expression λx. (x x). We show
that w w, doesn’t terminate:
w w � w $x [$x:=w], by 24.3.2.2

� ($x :� w) ($x $x) ≡ w w, by 24.4
…

Before we prove that a term ends up with a unique WHNF with
the reduction rules in Definition 27 if it does have one, we prove
that an assignee in a database is always unique and therefore a
WHNF is always unique too.

COROLLARY 28 1 (derivable assignee uniqueness) Given a data-

base D, a derivable assignee m is not reducible, i.e., m ∈ D, m

→F n ⇒ m ≡ n.
2 (derivable assignee under environment uniqueness) Given a
database D, a derivable assignee under environment m [x̅ := v̅̅],
where each v in v̅̅ is a WHNF, i.e., m [x̅ := v̅̅] is a WHNF, it is not
reducible.

PROOF 1 (derivable assignee uniqueness). 1. If m is an identifier,
then m is reduced to itself by 27.2.
4 If m ≡ a b, then a is a derivable assignee by Definition 4.1.

By induction, assume it is not reducible. We prove a b is not
reducible. First, we prove that b is not reducible,

a). If b is a variable, it is not reducible, by Definition 27.7
b).Otherwise, b is also an derivable assignee by Definition 4.2.
Therefore, b is not reducible by induction.
Since a b is a derivable assignee, it is not reducible by 27.5.1.

2 (derivable assignee under environment uniqueness) Since m
is a derivable assignee (with variable), it is unique by Definition
4.5, and it is not reducible by Corollary 28.1 above. Given an
environment [x̅ := v̅̅], it is unique by itself because each value v in
v̅̅ is a WHNF. Since there is not a rule in Definition 27 to reduce
m [x̅ := v̅̅] further, m [x̅ := v̅̅] is unique.

COROLLARY 28’ (WHNF uniqueness) Given a database D, if two
derivable assignees m an n are two distinguished WHNFs, i.e., m
!≡ n, then there are not rules in Definition 27 that reduce them to
be equal, i.e.,

m !→F n ∩ n !→F m

PROOF 1. A constant is not further reduced according to 27.1. If
two constants are distinguished, then there is no rules in 27 that
make them equal.
2. Given two distinguished derivable assignees, each derivable
assignee is not reducible by Corollary 28. They could be identical
only if two were identical in the given database D. It is not possi-
ble by Definition 4.5.
3. Since both constants and derivable assignees are not reducible,
one constant and one derivable assignee cannot be equal since
there is no rules in Definition 27 to make it happen.

COROLLARY 31 (reduction to unique WHNF) A closed F-term t
under a database D has at most one WHNF.

PROOF. We have proved in Corollary 28’ that each WHNF is
unique. Since the reduction order in Definition 27 is fixed, each
reduction would automatically result in a unique value. The re-
maining work is to prove that if a reduction process by the rules in
Definition 27 terminates with a WHNF if it terminates.
1. If t is a constant or an identifier, then the process terminates

with the constant as the WHNF by 27.1 and 27.2.

2. If t ≡ m n, m will be repeatedly reduced first by Definition 27.

If the process does terminate, i.e., m →F m’ ε1, here m’ ε1 is a
WHNF, then

2.1. if m’ ε1 is a constant, then the entire process terminates
with null (by Definition 4.1, i.e., a constant cannot be an
assignee, and by 27.5.3), i.e.,

m’ ∈ C , ε1 = φ ⇒ t →F null.
The process terminates with the WHNF null.

2.2. else we start to evaluate n. By induction, if the process

terminates, i.e., n →F n’ ε2, here n’ ε2 is a WHNF, then

2.2.1. if m’ n’ is in D, i.e. m’ n’ ∈ D, (by induction, ε1 and

ε2 must be empty), then t →F m’ n’, by 27.5.1. If the re-
sult m’ n’ is a derivable assignee, the process will ter-
minate with the derivable assignee as the WHNF.
Otherwise (m’ n’ is an explicit assignee) it will con-
tinue.

2.2.2. else if m’ $x is in D, then by 27.5.2, t � (m’ $x) ε1 ∪

[$x:= (n’ ε2)]. If (m’ $x) is a derivable assignee, the

process will terminate with the WHNF: (m’ $x) ε1 ∪

[$x:= (n’ ε2)]. Otherwise, i.e., (m’ $x) is an explicit as-
signee, the process will continue.

2.2.3. else by 27.5.3, t � null. The process terminates with the
WHNF null.

3. if t is reduced to t’ [x̅ := v̅̅], and t is an explicit assignee such
that: t’ := t’’, then by 27.6, t [x̅ := v̅̅] � (x̅ :� v̅̅) t’’. The proc-
ess will continue.

The reduction strategy defined by Definition 27 is restricted to the
leftmost and outermost order and ignored other possible reduction
orders. We only discuss this specific reduction order in this paper
by requesting that the reduction strategy in Section 6 and 7 for
lambda expressions is also restricted to the leftmost and outermost
order. An additional work is needed to show that Froglingo also
obeys a reduction behavior similar to the Church-Rosser reduc-
tion behavior of the lambda calculus.

A formal theory with equations as formulas is consistent if the
formal theory doesn’t prove every equation. In other words, given
the Froglingo with the syntax definition in Definitions 2, 4, 14,
and 15, and the equation formulas, ==, defined in Definition 29,
we will see that Froglingo is consistent if there is no reduction
rules to reduce one WHNF to another WHNF.

THEOREM 32 (consistency) Froglingo is consistent.

PROOF. Given a database D, let N be the complete set of WHNFs.
We need to show that at least two WHNFs are not reducible.
1. Assume N has at least two elements, then Corollary 28’ has

already proved that the two elements are not reducible.
2. To make sure that N has at least two elements, we first re-

quire that null is a mandatory constant because the rules in
Definition 27 used null. Then the consistency is satisfied if
we add an additional WHNF from either a constant in C or
from a non empty database D.

5. Semantics

In this section, we will show that a F-term under a database can
be mapped to a lambda expression, and two equal terms in
Froglingo will be equal in the lambda calculus as well after con-
verted to lambda expressions. This will result in the soundness if
Froglingo. We start from the syntax of the lambda calculus first.

Through the discussion, we shall see that the EP data model is
the system that makes database management easier. Many simple
expressions in the EP data model have to converted to very com-
plex lambda expressions with multiple fixed point combinators.

NOTATION 33 (lambda terms) Terms ˄, ranged over by t, are given
by the grammar

t ::= x | λx.t | (t t)
where x ranges over a set of variables V.

Mapping F-terms to lambda expressions will take multiple steps.

Given a F -term a, we use aλ for the corresponding λ-expression.

DEFINTION 34 (mapping variables) a variable x in F is also a vari-

able in ˄, i.e., xλ = x.

DEFINTION 35 (mapping constants) 1. Each constant c in C is

mapped to a closed term cλ that doesn’t have a head normal form

in ˄. By denoting Cλ for the entire set of such lambda terms, we

further require that each cλ for a c is distinguished in Cλ.

2. The special constant null is mapped to Ω ≡ (λx.(x x)) (λx.(x x).

Since each element in Cλ is unique and doesn’t have a normal
form, we often use Ωi to denote an element. A sample definition

of such lambda expression is Ωi ≡ (λx.(x x iλ)) (λx.(x x iλ)), here i

is a nature number, and iλ is a lambda expression modeling the
number. Also we use Ωnull for the F -term null.

We chose a term without head normal form for a constant to
counterpart the reduction rule specified in Definitions 8.1 and re-
iterated in 27.5.3. The choice of resulting in null from applying
null to an arbitrary term was to simplified our discussion. In real-
ity, many built-in operators such as those ordering relations in
Definitions 2.11 and 2.12 are constants and should have been
mapped to closed terms that have head normal forms.

DEFINTION 36 (mapping identifiers not defined in database) Given
a database D, each identifier p not defined in D is mapped to Ωnull.

NOTATION 38 (derivable assignee set) Given a database D,
1. We use DA for the complete set of the derivable assignees in D.
2. We use EA for the complete set of the explicit assignees in D.
3. The remaining F-terms, denoted as F-, that we haven’t counted

is: F – (DA ∪ EA ∪ Cλ).

4. Given a set X ∈ F, we use Xλ for the set of the lambda expres-
sions mapped from the elements in X. (We use |X| for the size of
the set, i.e., the number of elements in the set.)

Given a derivable assignee m in a database D, the plan to map m
is to find all the ni, here i is zero or a positive number, such that m
ni is in D. By induction, we assume the ni and m ni had already

being mapped to ni
λ and (m ni)

λ, then m can be written as a func-
tion consisting a set of argument and value pairs:

NOTATION 38X (idea of mapping F -term to λ-term).

m = {<n1, m n1)>, …, < nk, m nk>}. The idea of mapping the func-
tion m is the following:

m λ = λarg. if arg = n1
λ then (m n1)

λ
…

else if arg = nk
λ then (m nk)

λ,
else Ωnull.

Recall that a derivable assignee d in D is defined by Definition 27
as a unique WHNF, even if there is not any term t such that d t is
in database. It means that each identifier in derivable assignee
must have a unique lambda expression to make a sound mapping.
However the mapping will not work because two derivable as-
signees which are defined with the same set of argument and
value pairs would be calculated with the same lambda expression.
To resolve the issue, we add an extra pair that can make each d
unique among DA in D.

DEFINITION 38XX (numbering DA symbols) Given DA under a
database D, we find a set of lambda expressions, denoted as

(#DA)λ, such that each element d ∈ DA has an element, denoted

as Ωd ∈ (#DA)λ, that Ωd is unique and has no normal form.

Then we can add another pair < Ωd Ωd> to Notation 38X.

The biggest challenge in the mapping is on derivable assignees
that may include self-applications and circular references among
them when they are defined in a database. For example, a data-
base like: {A B := B; B A := A; and A A := M;}, in which the first
two form a bidirectional circular reference, and the third one is a
self-application. If that is the case, the size of the lambda expres-
sion in Notation 38X will grow infinite. To overcome this prob-
lem, we are going to use multiple fixed point combinators [5] and
[17]. In preparing the mapping by using multiple fixed point
combinators, we need to predefine a set of variables dedicated,
i.e., never being used for other purpose, for the derivable assign-
ees in DA.

DEFINITION 39 (dedicated variables for DA) Given DA under a
database D, we choose a set χ such that | χ | = |DA| and each vari-

able x ∈ χ is different from others appeared in D. Further we write

χ (di) for the variable in corresponding to di ∈ DA.

An assignee under an environment, i.e., M [x̅ := v̅̅], appears not a
F-term, but it is actually equivalent to a F-term. Therefore a term
with the form of M [x̅ := v̅̅] has a corresponding lambda expres-
sions. The following equations are taken as granted due to the
syntactical structure of an environment defined in Definition 19:

NOTATION 40X (mapping m [x̅ := v̅̅])

(m ε)λ = mλ ελ

[x̅ := v̅̅] λ = [x̅ := v̅̅λ]

Now we are ready to map DA, EA, and F-. We start with explicit
assignees first. For each explicit assignee, we want the occur-
rences of all the derivable assignees in the assigner to be replaced
with their variables from χ.

DEFINTION 40 (mapping explicit assignees) Let m y ̅ := V ∈ D,
here | y̅| >= 0. We have the following definitions:

1. (m)λ = λ y̅. Vλ
2. Let d̅ ≡ {d1, …, dj} be the complete set of derivable assignees
appeared in v, here j >= 0. We identify the corresponding vari-
ables x̅ ≡ {x1, …, xj} from χ. Then we substitute all the instances
of d̅ in v with x̅. Then we have:

m λ = V’’ [x̅ := d̅ λ]

Here V’’ ≡ λ y̅. (V’)λ, V ≡ (x̅ :� d̅) V’.

For example, Given fac $n := ($n * (fac ($n – 1)) in D, then facλ =

V’’ [d:=facλ], here V’’ ≡ λn. (n* (d(n-1))). Here V’’ will be used

in Definition 42, and V’’ [d:=facλ] will be used in Theorem 45.

NOTATION 40Y (Mapping F-) Given m n ∈ F- under a database D,
then define

(m n)λ = mλ nλ

NOTATION 41 (Curry’s multiple fixed point combinators) Given a
natural number n, we have the following fixed point combinators:

YCurry
n

j = λf1f2…fn.((λx1λx2…xn. fj (x1x1…xn)

 (x2x1…xn)
 …
 (xnx1…xn))

(λx1λx2…xn. f1 (x1x1…xn)
 (x2x1…xn)
 …
 (xnx1…xn))

(λx1λx2…xn. f2 (x1x1…xn)
 (x2x1…xn)
 …
 (xnx1…xn))
 …

 (λx1λx2…xn. fn (x1x1…xn)
 (x2x1…xn)
 …
 (xnx1…xn)))
for each nature number j, where j >= 1 and j <= n.

DEFINTION 42 For each dj ∈ DA under a database D, here 0 <= j

<= |DA|, we find all dj e1, …, dj en such that each dj ei ∈ D, here i
and n are natural numbers, and 0 <= i <= n.
1. We inductively assume that each pair ei and dj ei have already

been mapped to the lambda expressions: ei
λ and (dj ei)

λ.

2. For each ei
λ obtained above, we find the corresponding vari-

ables xei ∈ χ.
3. We further define a lambda expression for dj

 Gj = λx1 x2 … x|DA |.λarg. if arg ≡λ xe1
λ then (dj e1)

λ

 else if arg ≡λ xe2
λ then (dj e2)

λ

 …

 else if arg ≡λ xen
λ then (dj en)

λ

 else if arg ≡λ Ωd then Ωd

 else Ω

Here, x1, x2, …, x|DA | ∈ χ; xe1, xe2…, xen ∈ χ; Ω ≡ (λx.(xx))

(λx.(xx)). The symbol ≡λ is a lambda expression to compare
the syntactical body of a parameter of arg with Gk that is rep-

licated from an parameter of xek
λ, called a “self-replicator”,

here 0 <= k <= n. (we didn’t provide a definition for ≡λ, but
take the fact that it exists as granted). The clause of “if”,
“then”, and “else” are the standard lambda expressions for
the “if … then … else …” conditional statement.
(Note that we will have: dj = Gj d1 d2 … dj … d|DA |)

4. dj = YCurry
n

j G1 … Gj … G|DA |.

In the definition above, Gj was a modification from Notation 38X,
which makes every derivable assignee to be defined independent
of itself or others that it depends on.

EXAMPLE 43 (F-term in lambda expression) Given a database D =
{A B := B; B A := A; and A A := M}, we define the following func-
tions:

1. Mλ = ΩM.
2. We define G1 for A and G2 for B:

G1 = λx1 x2.λarg. if arg ≡ λ x2 then x2

 else if arg ≡ λ x1 then ΩM

 else if arg ≡λ ΩA then ΩA

 else Ω

G2 = λx1 x2.λ arg. if arg ≡ λ x1 then x1

 else if arg ≡λ ΩB then ΩB

 else Ω
d1 = YCurry

2
1 G1 G2

d2 = YCurry
2

2 G1 G2

YCurry
2

1 = λf1f2.((λx1λx2. f1 (x1x1xs)

 (x2x1x2))

 (λx1λx2. f1 (x1x1x2)
 (x2x1x2))

 (λx1λx2. f2 (x1x1x2)
 (x2x1x2)))

YCurry
2

2 = λf1f2.((λx1λx2. f2 (x1x1xs)

 (x2x1x2))

 (λx1λx2. f1 (x1x1x2)
 (x2x1x2))

 (λx1λx2. f2 (x1x1x2)
 (x2x1x2)))

3. Then we can call the functions. For example, d1 d1 ≡ YCurry
2

1
G1 G2 d1 →λ ΩM. During the reduction process, the “self-

replicator” was H1 H1 H2, here H1≡ λx1λx2. G1 (x1x1x2) (x2x1x2),

and H2 ≡ λx1λx2. G2 (x1x1x2) (x2x1x2). The replicated Gj was G1.

COROLLARY 44 (applicative structure preservation)

M, N ∈ F, (M N)λ == Mλ Nλ.

PROOF 1. If M N is an (explicit or derivable) assignee, then M ∈
DA, here DA is the complete set of the derivable assignees in a
database D, then Definition 42 maps all the derivable assignees in
DA, including M, to a set of lambda expressions, accordingly

including Mλ, such that Mλ Nλ →F (M N)λ. Therefore (M N)λ ==

Mλ Nλ.
2. When M is not an assignee, neither is M N. Then Definition

40Y says that (M N)λ == Mλ Nλ.

THEOREM 45 (soundness) ∀M, N ∈ F, ∃D,

M ==F N ⇒ Mλ ==λ Nλ.

PROOF Given a database D and an arbitrary closed F-term t, we
prove that if t’ is the result from a one-step reduction, according
to the reduction rules in Definition 27, then the lambda expres-

sions t’λ and tλ mapped from t to t’, according to the mapping
rules in Definitions 34, 35, 36, 40X, 40, 40Y, and 42, will be
equal. (See the body of the proof in the Appendix).

The symbol � and == were introduced in Definition 29 be-
tween two F-terms. During the proof, we also used them between

two λ-terms.

1. If t is a constant, i.e., t ∈ C, then t’ == t by Definition 27.1. By

Definition 35, t →F t
λ. Therefore: t == t ⇒ t’λ == tλ.

2. If t is an identifier not defined in D,

t →F null, by Definition 27.2.

(null)λ = Ωnull, by Definition 35

 tλ = Ωnull, By Definition 36,

 t →F null ⇒ tλ →λ (null)λ.

3. If t ≡ m n and m is not a WHNF, then

m n →F (m’ ε) n, by Definition 27.3.

m λ == (m’ ε) λ, by induction

(m n)λ == mλ nλ, by Corollary 44

((m’ ε) n)λ == (m’ ε)λ n λ, by Corollary 44.

m n →F (m’ ε) n ⇒ (m n) λ == ((m’ ε) n) λ.

4. If t ≡ m n, and m is a WHNF and n is not a WHNF, then

m n →F m (n’ ε), by Definition 27.4. The proof is done in a
similar way as we did for Step 3 above.

5. If t ≡ (m ε1) (n ε2), here m ε1 and n ε2 are WHNFs, then

5.1. if m n is a derivable assignee, then

(m n) →F (m n), by 27.5.1

(m n) λ ==λ (m n) λ
5.2. else if m $x is an assignee, then

(m ε1) (n ε2) → F (m $x) ε1 ∪ [$x:=(n ε2)], by 27.5.2.

We need to prove:

((m ε1) (n ε2))
 λ == ((m $x) ε1 ∪ [$x:=(n ε2)])

 λ

((m ε1) (n ε2))
 λ

= (m ε1)
λ (n ε2)

λ, by Corollary 44

= (mλ ε1
λ) (nλ ε2

λ), by Notation 40X

((m $x) ε1 ∪ [$x:=(n ε2)])
 λ

= (m $x) λ (ε1 ∪ [$x:=(n ε2)])
 λ, by Definition 40X

(m $x) λ = m λ $x λ, by Definition 42 (Multi fixed Point)

= m λ $x , by Definition 34

(ε1 ∪ [$x:=(n ε2)])
 λ

= ε1
λ

 ∪ [$x:=(n ε2)
λ] , by Notation 40X

(m λ $x) ε1
λ

 ∪ [$x:=(n ε2)
λ], by lambda beta reduction

= ((m λ) ε1
λ

 ∪ [$x:=(n ε2)
λ]) ($x ε1

λ
 ∪ [$x:=(n ε2)

λ]), by

beta reduction,

=(m λ ε1
λ) (n ε2)

λ, By lambda beta-reduction.

= (mλ ε1
λ) (nλ ε2

λ), by Notation 40X

((m ε1) (n ε2))
 λ == ((m $x) ε1 ∪ [$x:=(n ε2)])

 λ..

5.3. else (if there is no variable $x such that m $x is an assignee,

i.e., (m ε1) (n ε2) is not a WHNF), then

(m ε1) (n ε2) → F null, by 27.5.3.
We need to prove:

((m ε1) (n ε2))
λ

 == nullλ

((m ε1) (n ε2))
λ

=(mλ ε1
λ) (nλ ε2

λ), by Notation 40X

= (mλ nλ) (ε1
λ ∪ ε2

λ), by the lambda beta conversion.

Since m ε1 is a WHNF, m is a derivable assignee. Then

mλ nλ = Ω, by Definition 42.

((m ε1) (n ε2))
λ

= Ω (ε1
λ ∪ ε2

λ)
= Ω, by the lambda beta reduction

nullλ = Ω, by Definition 35.

((m ε1) (n ε2))
λ

 == nullλ
6. if t is reduced to t’ [x̅ := v̅̅], and t’ is an explicit assignee such

that: t’ := t’’, then
t’ [x̅ := v̅̅] � (x̅ :� v̅̅) t’’, by Definition 27.6.
We need to prove:

(t’ [x̅ := v̅̅]) λ == ((x̅ :� v̅̅) t’’) λ

(t’ [x̅ := v̅̅]) λ

= t’λ [x̅ := v̅̅] λ , by Notation 40X.1

((x̅ :� v̅̅) t’’) λ

= (x̅ :� v̅̅) λ t’’λ, by 40X.1

= t’’λ[x̅ := v̅̅] λ
Now we need to prove:

t’λ = t’’λ

Since (t’ := t’’) (rewritten as k z̅ := t’’) ∈ D, Definition 40.2
defines the mapping for the assigner given an assignee. Let d̅
be the complete set of all the derivable assignees in t’’, and y̅
be the corresponding variables from χ. From Definition 40.2,
we have,

t’ λ ≡ (k z ̅) λ = (V’’ [y̅ := d̅ λ]) z̅λ

Here V’’ ≡ λ z̅. (V’)λ, t’’ ≡ (x̅ :� d̅) V’. Then

t’ λ

= (V’’ [y̅ := d̅ λ]) z̅λ, by the formula above

= (V’’ [y̅ := d̅ λ]) z̅, by Definition 34

≡ (λ z̅. (V’)λ [y̅ := d̅ λ]) z̅, by the formula above

= (λ z̅. ((V’)λ [y̅ := d̅ λ])) z̅, by the lambda beta conversion,

because y̅ are free in λ z̅. (V’)λ

= (λ z̅. (((V’) [y̅ := d̅]) λ)) z̅, by Notation 40X

= (λ z̅.t’’λ) z̅, by the lambda beta reduction

= t’’λ

6. Computability

So far, we have considered constants as a part of the theory. Con-
stants, specially null, is a critical component of the EP data model.
Without null, we can still construct an EP database, such as the
one for circular directed graph in Example 5.2. But the reduction
process in Definition 8 would be stuck when a term was not de-
fined as an assignee in a database. This is exactly the reason that

we map null to a λ-term Ωnull that doesn’t have a normal form in
Section 6.

To have an exact correspondence with the lambda calculus, we
exclude constants from Froglingo. That is:

DEFINITION 14’ (F-terms without constants) Terms F, ranged over
by t, are given by the grammar

t ::= x | a | (t t)
where x ranges over a set of variables V, and a ranges over a set of
identifiers P.

Without constants, we will continue to use the reduction rules in
Definition 27 except that a reduction will not terminate if the
special constant null is encountered.

Excluding constants doesn’t mean that we will not use con-
stants like 3.14 or “a string” in examples. We view the constant
symbols as identifiers that take built-in function as default mean-
ings and will never by explicitly defined or having their meanings
altered via a database.

In an assignment of a database, a variable is always bounded,
i.e., if a variable is in the assigner, it must be in the assignee. an
assignment with variables is comparable to a closed abstraction in
the lambda calculus. Therefore we must convert all the abstrac-
tions with free variables to closed abstractions.

DEFINITION 47 (closed abstractions) 1. Given a lambda expression
t, i.e., t ∈ ˄, we define the following rules to convert t to another
term, denoted as t0, such that each abstraction in e is closed, i.e.,
∀e ∈ SUB(t0), e ∈ ˄0:
1. x0 = x, here x is a variable.
2. (a b)c == a 0 b 0.
3. For an abstraction λx̅.m, let y̅, here | y̅ | >= 0, is the complete list
of free variables in m, i.e., y̅ ∈ FV(m), define

(λx̅.m) 0 = (λy̅. λx̅. m0) y̅.

For example, (λx. (lz. y x) x) 0 = (λh. (λx. (λz. h z) x)) y.
From now on, we assume all the closed λ-terms, before being

mapped to a F -term, are converted to one in which each abstrac-
tion is closed.

DEFINITION 48 (mapping λ-terms) Given a database D, a λ-term t,
we define the following rules to convert t to a F -term during
which D is enhanced to be D’:
1. xf = x,
2. (a b) f = af bf
3. (λx̅.m)f = p, here | x̅|>0, p ∈ P, and p is obtained by the fol-

lowing process: If λx̅.m has been mapped to p’ ∈ D, then p ≡
p’, and D’ ≡ D. Otherwise, we find a p ∈ P, p ∉ D, such that
D’ = D ∪ (p x̅ := mf). Further remember (λx̅.m)f has been
mapped to p in D.

Since (x̅1 :� n̅) m is nothing by a lambda expression, the mapping
can be distributed into (x̅1 :� n̅) and m according to Definition
48.2. We record it as a notation:

NOTATION 49 (mapping distribution)
((x̅1 :� n̅) m)f ≡ (x̅1

f
 :� n̅f) mf

EXAMPLE 50 (sample mappings) (λz. z (λx. x x)) f = p,
here D = {p $z := $z q; q $x: = $x $x}.

We will show that when two λ-terms are convertible under the β-
reduction rule, their corresponding F-terms are convertible as well
in Froglingo. To do this, we need to extend the rules in Defini-
tion 27, where given an assignment, e.g., (m x̅ := n), applying a
derivable assignee, e.g., m y̅, here y̅ is a sub sequence of x ̅ and | y̅ |
< | x̅ |, to a too few arguments, e.g., n̅, here | n̅ | = | y̅ |, results in its
own derivable assignee with an environment as its WHNF, e.g.,
(m y̅) [y̅ := n̅]. Given the assignment g $x $y := ($x + $y), for ex-
ample, g 6 is converted to g $x [$x := 6] and no further reduction
is performed. To extent the reduction to the body of the assigner,
Definition 27.6 is extended as a new rule:

DEFINITION 51 (intermediate reduction result) Given a database
D, if t, a F-term, is reduced to t’ [x̅ := v̅̅], and t’ z̅ , here | z̅ | >0, is

an explicit assignee, i.e., (t’ z̅ := t’’) ∈ D, then we do the follow-
ings:

1. If there is p∈ P, p ∈ D, such that (p z ̅ := (x̅ :� v̅̅) t’’) ∈ D,
then p is returned as the WHNF. Otherwise,

2. Enhance D with (p z ̅ := (x̅ :� v̅̅) t’’), here p, an identifier,
was not in D before. Then return p.

For a F-term g 6 with (g $x $y := ($x + $y)) in a database D, for
example, we will temporarily add a new assignment p $y := (6 +
$y) to D.

By the way, the rule above is not necessary in an implementa-
tion of Froglingo. It is defined solely for the purpose of relating
Froglingo with the lambda calculus.

COROLLARY 52 (β-reduction and equivalence) For a closed term
(λx̅.m) n̅ , here x̅ ≡ x̅1 x̅2, | x̅1 |=| n̅ |, and an empty database D = φ,

((λx̅.m)n̅)f = (λx2.((x̅1 :� n̅) m))f.

PROOF ((λx̅.m)n̅)f
= (λx̅.m)f n̅ f , by Definition 48.2.
= t n̅ f, here t ∈ P, t ∉ D, and

D is added with t x̅ := mf, by Definition 48.3.
= t [x̅1:= n̅ f], by Definition 27.5.2

Case 1: | x̅2 | = 0
t [x̅1:= n̅ f]
= (x̅1:� n̅ f) mf , by Definition 27.6.
(λx2.((x̅1 :� n̅) m))f
= ((x̅1 :� n̅) m)f , since | x̅2 | = 0
= (x̅1:� n̅ f) mf, by Definition 48.2.
((λx̅.m)n̅)f = (λx2.((x̅1 :� n̅) m))f is true.

Case 2: | x̅2 | > 0
t [x̅1:= n̅ f]
= p, here (p x̅2:= (x̅1:� n̅ f) mf) ∈ D, by Definition 51.
(λx2.((x̅1 :� n̅) m))f
= p, by Definition 48.3.
((λx̅.m)n̅)f = (λx2.((x̅1 :� n̅) m))f is true.

Most languages in practice don’t have a concept comparable to η-
reduction of the lambda calculus, i.e., λx.Mx � M, here x ∉
FV(M). This is especially a case in Froglingo. For example, one
may create p $x := q $x in a database first, and then add p 3 := 6
later. Then most likely p and q are not equal. Actually, two arbi-
trary identifiers (or generally two derivable assignees in a data-
base), are two distinguished WHNFs, and intentionally make them
not convertible.

To ensure Froglingo’s full correspondence with the lambda
calculus in computability, we need a special attention to avoid η-
redex before a lambda expression is converted to a F-term, as if a
programmer needed a special attention to avoid a doubled effort
of writing two procedures for the exactly same function. To this
end, we add another requirement to automatically remove η-redex
for our λ-term to F-term mapping process:

DEFINITION 53 (η-redex elimination) Given a lambda expression
t, i.e., t ∈ ˄, we define the following rules to convert t to another
term t’, denoting the conversion process as

t �η-f t’ , or
tη- = t’,

such that t’ doesn’t contain a η-redex as a sub term:
1. if t ≡ λx.Mx, here x ∉ FV(M), then tη- = Mη-
2. if t ≡ x, x ∈ V, tη- = t
3. if t ≡ m n, m, n ∈ F, tη- = mη- nη-
4. t ≡ λx.M, M ∈ F, tη- ≡ λx.Mη-

We understand that a λ-term that doesn’t contain a η-redex may
be reduced to a term containing a η-redex. For example,
λx.((λyz.z)xM)x doesn’t contain a η-redex. But it can be converted
to λx.Mx , a η-redex. Therefore the definition 53 needs to applied
whenever a lambda expression is to be converted to a F-term.

Again the definition above is not a part of Froglingo imple-
mentation. We defined it here to analyze Froglingo’s computabil-
ity and will be referenced in Corollary 57.3. In practice, we rely
on programmers to write one function only once.

The α–reduction rule in the lambda calculus, i.e., λx. M � ly.
M[x:=y], has never been discussed. We simply assume that each
variable is unique in the context where it is used.

Now let’s show that the concepts of normal forms and head
normal forms in the lambda calculus have correspondence in
Froglingo and therefore we prove that Froglingo is Turing-
complete while the lambda calculus is Turing-complete. The re-
sult should not be any surprise. But by doing so, we have a better
understanding on Froglingo by relating it with the lambda calcu-
lus.

DEFINITION 54 (redex) Given a database D, a closed term t ∈ F is
an redex if
1. If t is an identifier not defined in D to represent an abstraction,
then it is a redex, i.e.,

t ≡ p, here p ∈ P, ∀ x̅, v ∈ F, | x ̅ |> 0, (p x̅ := v) ∉ D.
2. If t is an application, then it is a redex,

t ≡ p m̅, here p ∈ P, m̅ ∈ F, | m̅ | > 0

DEFINITION 55 Given a database D,

1. (normal form, NF) a term t ∈ F is a normal form if it
doesn’t contain a redex as a sub term.

2. (head normal form, HNF) a term t ≡ a m̅ ∈ F , t is a head
normal form if a is not a redex.

Here we map some standard lambda expressions to F-term as
examples.

EXAMPLE 56 Given a database D =
{ w $x := $x $x;
 w’ $y $x := y(xx);
 Ω f := w w;
 FIX f $f := (w’ f) (w’ f);
 A B := B;
 B A := A;

}, where w, w’, A, B, Ω f, FIX f ∈ P, $x, $y ∈ V.
Then w, A, $x, w’ are in normal forms. The terms w $x, A B, and
Ω f are not in normal forms.

COROLLARY 57 Given a term t, t ∈ ˄, and a database D,
1. (redex correspondence) t is a redex if and only if tf is a redex.
2. (HNF correspondence 1) t is a HNF if and only if tf is a HNF.
3. (HNF correspondence 2) t has a HNF if and only if tf has a

HNF.
4. (NF correspondence 1) t is a NF if and only if tf is a NF.
5. (NF correspondence 2) t has a NF if and only if tf has a NF.

PROOF 1 (redex correspondence)

a) If t is a redex, i.e., t ≡ (λx.M) N. then

 tf ≡ ((λx.M) N)f
 = (p Nf), here (p $x := M) ∈ D
 Then tf is a redex in Froglingo.
b) Let t be a F-term, and it is a redex in Froglingo,
 Case 1: t ≡ p, here p ∈ P, ∀ x̅, v ∈ F, | x ̅ |> 0, (p x ̅ := v) ∉ D,

When p is in D, pλ = Ωp, by Definition 42.
When p is not in D, pλ = Ωnull, by Definition 36.
Ωp and Ωnull are not redex.

Case 2: t ≡ p m̅, here p ∈ P, m ̅ ∈ F, | m ̅ | > 0

(p m̅)
 λ

 = p
 λ

 m̅ λ, by Corollary 44

p
 λ

 ≡ λx.M, for some M ∈ F, by Definition.

We have proved that t
 λ

 is a redex.

PROOF 2 (HNF correspondence 1) If a lambda term t is in
HNF, then it doesn’t contain a redex. According to Corollary

57.1, tf will not contain a redex either. If a F-term t is in HNF, tλ

will not contain a redex according to Corollary 57.1. Proved.
PROOF 3 (HNF correspondence 2). If a lambda term t has a

HNF t’, then (t’)f is the HNF for tf by 57.2. We know that t→λ t’
is done by β-reduction and η-reduction. For each reduction step m
�λ n, here t →λ m,
Case 1: m �λ n ≡ m �β n. By Corollary 52, we have
mf �f n

f
Case 2: m �λ n ≡ m �η n. By Definition 53, we have
mf �η−f n

f.
This has proved that if a λ-term t has a HNF t’, then tf can be ef-
fectively reduced to (t’)f as the HNF.

Reversely, if t, t ∈ F, has a HNF t’, i.e., t == t’, we prove that
tλ has a HNF (t’)λ. When t’ is a HNF, so is (t’)λ in Froglingo by
Corollary 47.2. Now we need to prove that tλ == (t’)λ. That is true
by Theorem 45.

PROOF 4 (NF correspondence 1). Similar to Proof 2
PROOF 5 (NF correspondence 2). Similar to Proof 3

Froglingo is Turing-complete since the lambda calculus is Turing-
complete, and we proved in this paper that Froglingo, with Defini-
tion 53, is equivalent to the lambda calculus.

7. Related Work

Integrating databases with programming languages has been a
longstanding and hard issue. Many database programming lan-
guages have been proposed between the late 1970s and the early
1990s. The work on Machiavelli [24] was a typical example that
used functional programming language over relations. Driven by
the concept of the semantic web [16], many descriptive languages
geared toward the management of the web-related data have been
currently proposed. The examples are OWL (Web Ontology Lan-
guage), a language taking ontology as the underneath data struc-
ture, RuleML (Rule Marked Language), a family of Web rule
language using XML as the underneath data structure ([7] and
[23]), the Linked Data, a language to publish and to connect data
available on the web by taking RDF as the underneath data struc-
ture ([6], [21], and [41]), and XQuery, a language taking XML as
the underneath data structure [8]. Obviously each approach has its
unique features in terms of methodologies and the scopes of their
applications. All the approaches are based on the traditional data
models, i.e., the relational data model, the hierarchical data
model, or data structures, such as graph-oriented data structures.

The work in searching for a better data model had been started
as soon as we realized the limitations of the relational and the
hierarchical data models in the early 1970s. The most active work
in this area have focused on graph-oriented data structures, such
as CODASYL [42], ER (Entity-Relational) [12], DAPLEX[28],
and semi-structured data [10]. The graph-based approaches at-
tempt to be more universal, in the sense of expressive power, and
at the same time to have set-oriented operations similar to those in
the traditional data models.

8. Summary

Application software started with a monolith where a program-
ming language was the only component in the 1960s. To achieve
a better productivity and to adapt to a rapid change of business
requirements, a typical database application today consists of
multiple components including database management system,
programming language, web server, data exchange server, and
access control server. With the EP data model that is semantically
equivalent to a class of total recursive function, a monolithic ar-
chitecture becomes available again for database applications. The
new monolith is not a physical combination of traditional multiple
components, but a logical consolidation of functions out of the
traditional multiple components.

In this paper, we discussed the syntax, reductions, semantics,
and computability of Froglingo. By going through the areas com-

mon to all languages, we gave Froglingo a precise definition, that
identifies the features common to other languages, and the fea-
tures that make Froglingo a system integrating databases with
programming languages.

Acknowledgments

The author thanks Harold Boley for sharing his thoughts related
to the paper and Mike Hicks for his encouragement and advice in
developing this paper. The author specially thanks Olivier Danvy
who spent extensive time in sharing his knowledge in program-
ming languages and the lambda calculus. Without his help, many
parts of the paper would not be complete.

References

[1] S. Abiteboul, R. Hull, and V. Vianu. “Foundations of Databases”.
Addison-Wesley Publishing Company, 1995.

[2] F. Afrati, S. Cosmadakis, and M. Yannakakis. “On Datalog vs.
Polynomial Time”. In Proc. ACM Symp.on Principles of Database
Systems, Page 13-25, 1991.

[3] A. V. Aho and J. D. Ullman. “Universality of Data Retrieval Lan-
guages”. Conference Record of the Sixth Annual ACM Symposium
on Principles of Programming Languages, San Antonio, Taxes,
January, 1979, page 110 – 120.

[4] A. Ambainis and J. Smotrovs. "Enumerable Classes of Total Recur-
sive Functions: Complexity of Inductive Inference". Lecture Notes in
Computer Science: Vol. 872, Page 10 - 25, Proceedings of the 4th
International Workshop on Analogical and Inductive Inference: Al-
gorithmic Learning Theory. 1994

[5] H. P. Barendregt. “The Lambda Calculus - its Syntax and Seman-
tics”. North-Holland, 1984.

[6] C. Bizer, T. Heath, T. Berners-Lee. “Linked Data – the story so
far”. Journal on Semantic Web and Information Systems, 2009.

[7] H. Boley, S. Tabet, G. Wagner. “Design Rationale of RuleML: A
Markup Language for Semantic Web Rules”. Proc. SWWS’01, Stan-
ford, July/August 2001.

[8] P. Boncz, T. Grust, M.V. Keulen, S. Manegold, J. Rittinger, J. Teub-
ner. “MonetDB/XQuery: A Fast XQuery Processor Powered by a
Relational Engine”, SIGMOD 2006, June 27-29, 2006, Chicago, Il-
linois, USA.

[9] P. Buneman. “Functional Data Models – Position Paper”, Workshop
of Functional data model 1997.

[10] P. Buneman, M Fernandez, D. Suciu. “UnQL, A Query Language
and Algebra for Semistgructured Data Base on Structural Recur-
sion”, VLDB Journal: Very Large Database, Volume 9, Number 1,
page 76 – 110, 2000.

[11] L. Cardelli, P. Wegner. “On Understanding Types, Data Abstrac-
tion, and Polymorphism”. Computing Surveys, Vol 17 n. 4, page
471-522, December 1985.

[12] P. Chen. “The Entity-Relationship Management Model – Toward a
Unified View of Data”. ACM Transactions on Database Systems.
Vol. 1, No. 1, March 1976, Pg 9 – 36.

[13] J. C. Cleaveland. “An Introduction to Data Types”. Addison-Wesley
Publishing Company, 1986.

[14] A. J. T. Davie. “An Introduction to Functional Programming Sys-
tems Using Haskell”. Cambridge University Press, 1992.

[15] R. Elmasri, and S. B. Navathe. “Fundamentals of Database Sys-
tems, Second Editions”. The Benjamin/Cummings Publishing Com-
pany, Inc., 1994.

[16] L. Feigenbaum, I. Herman, T. Hongsermeier, E. Neumann, S.
Stephens. “The Semantic Web in Action”. Scientific American,
297(6), pp. 90-97, (December 2007)

[17] M. Goldberg. “The Lambda Calculus Outline of Lectures”. Mary

31, 2011, available at:
http://little-lisper.org/website/tutorials.html

[18] M. Gyssens, J. Paredaens, J. V. Bussche, and D. V. Gucht. “A
Graph-Oriented Object Database Model”. IEEE Transactions on
Knowledge and Data Engineering. Vol. 6, No. 4. August 1994, page
572 - 586.

[19] M. Hammer, D. McLeod. “Database Description with SDM: A
Semantic Database Model”. ACM Transactions on Database Sys-
tems. Vol. 6, No. 3, September 1981, page 351 – 386.

[20] K. J. Hammond. “CHEF: A model of case-based planning.” AAAI
Proceedings of the 5th National Conference on Artificial Intelligence,
page 267-271. Morgan Kaufmann, 1986.

[21] B. Heitmann and C. Hayes. “Enabling Case-Based Reasoning on
the Web of Data”. Workshop Proceedings of the Eighteenth Interna-
tional Conference on Case-Based Reasoning (ICCBR 2010), pp. 133
– 140

[22] D. Leake. “Case-Based Reasoning: Experience, Lessons, and Fu-
ture Directions”. Menlo Park: AAAI Press/MIT Press, 1996.

[23] J. K. Lee, M. M. Sohn. “The eXtensible Rule Markup Language”.
Communication of the ACM, Volume 46, Issue 5, pp. 59-64, May
2003

[24] A. Ohori, P. Buneman, V. Breazu-Tannen. “Database Programming
in Machiavelli – a polymorphic language with static type inference”.
In ACM SIGMOD, 1989, pp. 46 – 57.

[25] S. Payton-Jones, D. Lester. “Implementation Functional Language
Tutorial”, March 23, 2000. Available at:
http://research.microsoft.com/en-us/um/people/simonpj/Papers/pj-
lester-book

[26] A. M. Pitts. “Nominal System T”. POPL’10, January 17-23, 2010,
Madrid, Spain.

[27] P. Revesz. “Introduction to Constraint Databases”. 2002 Springer-
Verlag New York, Inc.

[28] D. W. Shipman. “The Functional Data Model and the Data Lan-
guage DAPLEX”. ACM Transactions on Database Systems, Vol. 6,
No. 1, March 1981, page 140 – 173.

[29] D. Steedman. “X.500 - The Directory Standard and its Applica-
tion”. Technology Appraisals, 1993.

[30] D. Turner. “Total Functional Programming”. Journal of Universal
Computer Science, vol. 10, no. 7 (2004), page 751-768.

[31] K. H. Xu. J. Zhang. S. Gao. “Froglingo, a Programming Language
empowered by a Total-Recursive-Equivalent Data Model”. To ap-

pear in Journal of Digital Information Management, 2011.
[32] K. H. Xu, J. Zhang, S. Gao. “Approximating Knowledge of Cooking

in Higher-order Functions, a Case Study of Froglingo”. Workshop
Proceedings of the Eighteenth International Conference on Case-
Based Reasoning (ICCBR 2010), page 219 – 228.

[33] K. H. Xu, J. Zhang, S. Gao. “An Assessment on the Easiness of
Computer Languages”. The Journal of Information Technology Re-
view, May, 2010, page 67 - 71.

[34] K. H. Xu, J. Zhang, S. Gao. “Higher-order Functions and their
Ordering Relations”. The Fifth International Conference on Digital
Information Management, 2010.

[35] K. H. Xu, J. Zhang, S. Gao, R. R. McKeown. “Let a Data Model be
a Class of Total Recursive Functions”. The International Confer-
ence on Theoretical and Mathematical Foundations of Computer
Science (TMFCS-10), 2010, page 15 – 22.

[36] K. H. Xu, J. Zhang, S. Gao. “Froglingo, A Monolithic Alternative to
DBMS, Programming Language, Web Server, and File System”.
The Fifth International Conference on Evaluation of Novel Ap-
proaches to Software Engineering, 2010.

[37] K. H. Xu, J. Zhang, S. Gao. “Assessing Easiness with Froglingo”.
The Second International Conference on the Application of Digital
Information and Web Technologies, 2009, page 847 - 849.

[38] K. H. Xu, J. Zhang. “A User’s Guide to Froglingo, An Alternative to
DBMS, Programming Language, Web Server, and File System”.
Available at the website: http://www.froglingo.com.

[39] K. H. Xu, B. Bhargava. “A Functional Approach for Advanced
Database Applications”. Third International Conference on Informa-
tion Integration and Web-based Applications & Services (IIWAS
2001), September 2001, Linz, Austria.

[40] K. H. Xu and B. Bhargava, “An Introduction to Enterprise-
Participant Data Model”, Seventh International Workshop on Data-
base and Expert Systems Applications, September, 1996, Zurich,
Switzerland, page 410 – 417.

[41] “Resource Description Framework (RDF): Concepts and Abstract
Syntax”. W3C Working Draft 08 November 2002, available at:
http://www.w3.org/TR/2002/WD-rdf-concepts-20021108.

[42] Report of the CODASYL Data Base Task Group, ACM, April 1971.

