



Abstract — A word, a prepositional phrase, and a sentence can
have different meanings in different contexts. Machine learning based
Natural Language Processing (NLP) technologies build contexts for
disambiguation using datasets from different disciplines such as
medicine vs. finance. This approach , however, struggles to eliminate
ambiguity at the degree human beings can, as we possess more
granular knowledge of the context for a given circumstance. In other
words, this approach is inductive (or transductive), i.e., predictive and
the predictions based on training data are not guaranteed to be valid.
As a result, no NLP system yet developed is able to interact with
humans as if it was itself a person.

Before the development of machine learning (statistics-based)
approaches, NLP was studied via deductive (symbolic) approaches.
However, the tools available at the time were not capable of uniformly
representing the subjects of natural language communication. For this
reason, deductive approaches during the 1950s through 1980s failed to
produce a promising solution for NLP.

In this paper, we introduce a fundamentally deductive system for
NLP. It has been implemented with a set of preliminary features using
Froglingo, a unified programming language and database management
system. It pre-defines a set of representations which approximates
things, i.e., entities and actions, in the real world. It collects
abstractions embedded in things and in linguistic structures to support
general reasoning. It tolerates illegitimate natural language expressions
because it references things represented in a database. It interacts with
clients to clarify ambiguous sentences because of its deductive
approach to parsing. It generates natural language expressions that
allow friendly human-machine interactions. It also generates code in
natural languages, allowing its database to expand within and across
disciplines.

Keywords— Linguistic structure, semantic representation,
abstractions, parsing, natural language understanding, natural
language & code generation, lambda calculus, (weak) head normal
form, reduction, similarity for disambiguation, part of speech, word
sense, coreference, discourse, homograph, fixed phrases, idioms.

I. INTRODUCTION

ATURAL language processing (NLP) has reached our daily
lives in areas such as information searching, natural

language translation, and human-machine interactions.
Advances in this field have been driven by machine learning
(and deep learning). Machine learning algorithms use training
datasets to make predictions or decisions without an explicit
programming of linguistic structure and context. However, this

limits NLP performance, as machine learning algorithms lack
the contextual knowledge that a human would have.
Specifically, the machine learning approach is inductive or
tranductive, i.e., decisions based on training datasets do not
always reflect client needs that are conveyed by natural
language expressions. In fact, no machine learning system has
been designed to precisely represent (approximate) real-world
entities and actions. While one branch of NLP machine learning
research promotes pure neural language models without any
linguistic structure (and context) [7], the other aims to simulate
a better "understanding" of natural languages via embedding
linguistic structures [11], [12], [17], [19]. However, these
linguistic structures are syntactical forms and do not necessarily
represent things in the real world. Further, this branch continues
to take neural language models (machine leaning) as its core
basis. Because machine learning is a non-deductive approach,
it faces stiff challenges to advance NLP to a new level [17],
[18], [19].

Another direction toward NLP, called symbolic (deductive)
approaches, involves explicitly programming linguistic
structure and context (things in the real world). This proved
overwhelming during the time period from the 1950s to the
early 1990s [16]. In addition to limited computing power in
CPU speed and memory space, limited programming language
tools and methodologies stalled the development of a robust
NLP system. The essential challenge was how to represent all
kinds of things uniformly in a computer, i.e., via a programming
language, which was the first step in developing a NLP system
[13]. One option, called “scruffy” in the field of artificial
intelligence, was to use “procedural” programming languages
for “fine-tunning” programs. This approach however could not
be scaled up, i.e., it was too scruffy to be extended. The other
option, called “neat”, was to use mathematically sound
methods, i.e., “declarative” or “logic” programming languages
like Prolog. It was hoped that this choice, with a single formal
paradigm, would be general and extendable. Although a few
symbolic NLP systems, including the first one ELIZA in 1966
[20], had been developed, none of them demonstrated a
promising solution for a general NLP application. When there
were not having a clear direction in declarative approaches,
more effective algorithms from statistical and machine learning
approaches toward NLP were developed during the early 1990s
([4], [10]). These supplanted earlier, deduction-based
approaches toward NLP.

Kevin H. Xu

kevin@froglingo.com

A Deductive System based on Froglingo for
Natural Language Processing

N

Froglingo is a system that unifies programming language and
database management [24], [25]. It has a sub language, called
the Enterprise-Participant (EP) data model which doesn’t need
to have variables which is essential in programming languages.
Like traditional database management systems, the EP data
model manages business data with finite information. However,
it is more expressive than the traditional database management
systems because it also manages bounded functions with
infinite information (a proper subset of the partial recursive
functions). Mathematically, it is as expressive as Turing
machines given infinite time and space. Equivalently, we say
that the EP data model itself can be a sole tool to develop
software applications without a programming language,
although in a very inefficient way [21], [22]. For practical
efficiency in software development, we add variables on the top
of the EP database. The combination of these two is called the
Froglingo system, which allows uniformly databasing of both
business data and business logic, i.e., the semantics represented
by programs and databases. Since database systems (like
relational databases) are more productive than programming
languages in managing information, as we have observed
through practices, Froglingo is more productive than both
programming languages and relational database systems. We
believe that Froglingo’s uniformly higher productivity over
business data and logic combines the “single formal paradigm”
of the neat approaches with the “fine-tunning” of the scruffy
approaches.

In other words, the EP data model is interpreted by an
extended lambda calculus, where a database is expressed by a
finite set of lambda terms (possibly with assignments), simply
abbreviated as ‘terms’ in this paper, which have unique weak
head normal forms and can be effectively reduced to their weak
head normal forms [21]. A database approximates a finite set of
terms having head normal forms. When a database collects
more data, it more closely represents the approximated head
normal forms. The union of all such databases together is
mathematically the union of all lambda terms with head normal
forms, i.e., semantically equivalent to Turing machines.

With the limitations of inductive approaches and with the
more productive Froglingo system becoming available, we
revisit the feasibility of a deductive approach to NLP. This time,
we use terms in Froglingo to uniformly represent a finite set of
entities and actions. Because of the high expressiveness of
terms, all kinds of syntactical forms and semantic meanings in
natural languages, such as homograph, word sense, coreference,
and idiom are naturally fit into the expressions in terms. Since
a term has a unique (weak head) normal form, we calculate the
unique meaning of a sentence by reducing the term expressing
the sentence. Because of the deductive nature of the Froglingo,
the NLP system can detect ambiguities. Because of the high
productivity in Froglingo, the amount of software engineering
work, which was one of the major concerns to the machine
learning approaches, can be significantly reduced.

Entities and actions are discussed in Section II and III
respectively. During the discussion, we show by examples the
intended English phrases and sentences that will be mapped to
corresponding entity and action representations in the database.

When a thing is uniquely distinguished by itself in the world,
it may contain other things semantically. In Section IV, we give
a representation of the abstractions embedded within things.

Natural languages use invariant linguistic structure to convey
the semantics of things. Therefore, we say that human beings
utilize abstractions within linguistic structures to understand
more about things without knowing much about them. Multiple
sentences or phrases can be equalized no matter what things are
conveyed. In Section V, we represent such equivalent
abstractions in the NLP system.

In addition to the syntactic expressions introduced in these
sections to represent things, there are other syntactic
expressions that facilitate and enrich the communications about
things using natural languages. These include prepositional
phrases (p-phrases), which may not necessarily be part of the
representations discussed in sections II to V, and conjunctions.
We discuss how the NLP system represents these syntactical
forms in Section VI.

With all possible syntactical forms considered, we describe
the parser of the NLP system in Section VII, which breaks client
input streams into pieces for the representations discussed
above. In this section, we also show that the parser is deductive,
and therefore the NLP system is deductive. In Section VIII, we
define a state of parsing at which the NLP system claims that it
“understands” an input stream.

Communications between people are always “friendly”, a
concept introduced from research in human-machine
interactions. People are able to convey a single topic in various
ways via different words, phrases, and sentences with different
verb moods, auxiliary verbs, and context. People may have
completely different responses to a request or an inquiry
depending on their personality and their psychological state at
a given time. In Section IX, we use extensive examples to
demonstrate that the NLP system has been implemented with a
few initial features to mimic people’s certain behaviors in
communication. Code generation is part of natural language
generation. To show the difference between the NLP system
and the contemporary programming languages, however, we
discuss this topic separately in Section X.

II. ENTITIES

A thing, i.e., an entity or an action in the world, cannot be
completely represented in a computer. It can, however, be
approximated. In this section we discuss the representation of
entities; the representation of actions will be covered in the next
section. The process of representing an entity starts with a
single identifier, a term, in Froglingo to be created in a database.
For example, we add the entities joe, walmart, pnc to a database
via the built-in operator create:

create joe;
create walmart;
create pnc;

Noun phrases are intended to be mapped to these terms. A
few potential examples include Joe, the old who sites on a

bench; walmart, the store at the corner; the pnc bank; and the
bank I have an account with. These phrases can be parsed and
identified from client input stream by the parser.

Note that as part of the current design, all text entered by
clients will be converted to lower case in the NLP system. This
allows the system to use identifiers with capital letters as built-
in tokens for the purpose of internal system processes. For
example, Inherit and Belong (to be discussed below) are two
such tokens, which will be distinguished from inherit and
belong, converted from client input in the same database.

To provide abstractions, i.e., semantic containment
relationships among entities, we introduce types in a database.
Similar to a class in object-oriented programming languages, a
type is a profile that define a set of common attributes and
actions (to be discussed in the next section) that its instances, as
entities, share. Here we give a few sample types that will be
discussed through the paper. Types are introduced by the built-
in operator schema (a new operator not discussed in the earlier
papers regarding Froglingo):

schema thing;
schema entity Inherit thing;
schema organization Inherit entity;
schema bank Inherit organization;
schema store Inherit organization;
schema action Inherit thing;
schema person Inherit organization;
schema male Inherit person;
schema adult Inherit person;
schema commodity Inherit entity;
schema shirt Inherit commodity;

The built-in token Inherit indicates that the type at the left
inherits the properties of the type at the right. (Note that unlike
with classes in object-oriented programming languages, the
inheritance here is looser, i.e., we allow inherited types to add
independently and over-write attributes and actions.)

Now, we can bind entities to types upon a need from use
cases. For example, we can bind pnc and walmart to bank and
store respectively using the built-in token Belong:

create pnc Belong bank;
create walmart Belong store;
create joe Belong male;
create joe belong adult;

We also allow a type to have multiple inheritances and an
entity to have multiple belongings, as we have seen with male,
adult, and joe.

We can define additional attributes for previously defined
types. For example:

schema person weight = weight;
schema bank account organization balance = currency;

1 The expressions below are entered via the built-in operator create:
Qw $x:[$x isa integer] lbs;
Qw $x:[$x isa integer] kgs;
Qw $x: [$x isa integer] hours;
Qw $x:[$x isa integer] lbs $y:[$y isa integer] ounces;
weight (Qw $x lbs) = $x; /* in lb*/

schema store inventory commodity number = integer;
schema store inventory commodity price = currency;

In the definitions above, we introduced additional types
weight, number, and integer, where integer and number are
built-in types in Froglingo with the property of integer Inherit
number. The type weight is defined explicitly. Here are the
terms to add it along with a few other types, which will facilitate
our discussion throughout the paper:

schema weight Inherit number;
schema currency Inherit number;
schema attime Inherit number;
schema intime Inherited number;

The type weight is for the weight of a physical object. For
example, the NLP system supports the English phrases 80 lbs
and 40 kgs. The type currency is for money in financial
transactions, for example 80 lbs and 50 dollars. The type attime
is for a point of time, e.g., 4:00 pm, on Sunday, on 01/21/2021.
The type intime is for a period of time, for example 3 days, 52
seconds, 23 years. In the examples, we see that 80 lbs could
refer to either weight or currency. Given a sentence and its
context, the NLP system parser determines if 80 lbs is for
weight or currency.

To fully support the numeric types discussed here, along with
other potential numeric types in the future, the NLP parser was
implemented to support expressions having a token Ow which
allows various numeric types to be defined upon use case needs.
A few sample expressions with Ow are given in the footnote1.

With types introduced, we are now ready to add properties
for entities by following their types’ profiles. Here are a few
examples:

create joe weight = 180;
create joe inventory shirt number = 4;
create pnc account joe balance = 90000;
create pnc account walmart balance = 1000000;
create walmart inventory shirt number = 4000;
create walmart inventory shirt price = 100;

With the sample properties above for joe, pnc, and walmart,
the system will use its parser to accept English phrases like
Joe’s weight, my account balance in PNC, and shirt’s price at
Walmart. Note that the representation of an entity property,
such as joe inventory, is also called an entity in this paper.

We have shown abstractions established in the NLP system
among types, entities, and entity properties. For example, joe is
the abstraction of the collection of all Joe’s properties, such as
joe weight and joe inventory shirt number. We also have shown
that different English phrases may reference a single entity, e.g.,
pnc, the pnc bank, and the bank that I have an account with.

weight (Qw $x kgs) = ($x * 2.2); /* in lbs*/
currency (Qw $x lbs) = ($x * 1.31); /* in dollars */
currency (Qw $x dollars) = $x;
intime (Qw $x hours) = ($x * 3600); /* secs*/
intime (Qw $x hours $y:[$y isa integer] minutes) = ($x * 60 + $y);

Fixed phrases represent entities themselves, such as Mount
Everest and New York City. Therefore, we can have new york
city Belong location when location is defined as a schema. We
can make two phrases equivalent via an equation: create new
york city = nyc.

We count mathematic functions as entities as well. Here is an
example which will be further used later:

create multiplication $n1: [$n1 isa number]

 $n2: [$n2 isa number]
= ($n * $2);

Starting from the next section, we will no longer precede
expressions to be added into a database with the operators
create or schema.

III. ACTIONS

Things also include actions (or events) that are taken by entities,
which have impacts on other entities. The entities discussed in
the earlier section can be inventoried in database before they are
categorized with types. The actions to be introduced here,
however, have to be categorized into types (here called
templates) before they can be expressed in the NLP system. A
template is a profile mostly for simple English sentences, i.e., a
minimum structure the author of the template believes is
sufficient to represent a set of actions. Here are a few sample
templates in a database:

person (Vw cry);
person (Vw provide) $p: [$p isa person] (Prew with) thing;
person (Vw talk) (Prew with) $p: [$p isa person];
organization (Vw acquire) $o: [$o isa organization];
thing (Vw surprise) person;

In a template, the verb is always in its original form, positive,
and active. It is always preceded with a special token Vw for the
convenience of parsing. Similarly, a preposition is always in its
original form and preceded with a special token Prew. If
necessary, articles, pronouns, adjectives, and adverbs can be
part of templates as well. They are preceded with Thtw, Prow,
Ajw, and Avw respectively. The positions of subjects, objects,
and prepositional objects are in general filled with types. They
can sometimes be filled with noun phrases, noun clauses,
infinitive phrases, or gerund phrases for entities or actions,
which will be further discussed later in this section.

Types and variables like $p: [$p isa person] are placeholders
for noun phrases, action nouns, noun clauses, infinitive phrases,
or gerund phrases that represent things. In a parallel to global
variables in programming languages, types are globally
recognized variables in a database. A template is normally
started with a type. We can use either a type or a variable in the
place of an object in a template. A type is simpler to present and
read when it is at the position of an object. A variable is needed
at the position of an object when the object is placed with the
same type that has been in the place of the subject, such as the

2 See the papers [12, 14] for more information about Froglingo built-in

operators {+ and isa that appeared in the paper.

type person at the position of the subject in the template: person
(Vw provided) $p: [$p isa person] (Prew with) thing, where the
variable $p is used for another set of individuals as type person.
A variable is also needed when we need to narrow the scope of
the entities functioning as the object, which cannot be done by
a whole type, such as $p: [$p isa person and person weight >
180].

With templates, the parser tries to break down a sentence and
match the sentence to one of the templates. Here are a few
sample sentences targeted by the templates above:

She didn’t cry;
He gave her a bouquet of flowers;
Mary is talking with the person behind the door;
This company has been acquired;
Her appearance surprised me;

When we use a sentence to communicate a concept, we try to
articulate it as clearly and precisely as we can. Similarly, we use
templates to represent groups of sentences as closely as
linguistic structure allows. For example, we can make the
following templates for the commonly used word take:

person (Vw take) $s1: [$s1 isa commodity];
person (Vw take) $s2: [$s2 isa idea] (Prew (in spite of)) thing;
person (Vw (take $some: [$some isa wear] off));
person (Vw (take off)) days;
airplane (Vw (take off));
business (Vw (take off));
person (Vw take) vacation (Prew in) location;

This exercise may be not exhaustive. We can always add
templates or modify existing ones when a new use case arises.

Sometimes, we may find certain entities have very unique
actions that are not categorized with a type. We can directly
build templates for these specific entities. For example, running
is not an action everyone takes daily. Therefore, we may have
a template person (Vw run) for the type person, and additionally
add another one specific for joe:

joe (Vw run) (Avw everday);

A template can be assigned with a value. For example 2:

bank (Vw transfer) currency

(Prew from) $frm: [$frm {+ bank account]
(Prew to) $tow: [$tow {+ bank account]

 = (update $frm balance = ($frm balance - currency)),
(update $tow balance = ($tow balance + currency))),
Botape (bank “transfer” currency “from” $frm “to” $tow
 “;”);

The following sample sentences are intended to be mapped

to the template above by the parser:

PNC transferred 100 dollars from Joe’s bank account in PNC
to the PNC bank account of Walmart;

Similarly, we can construct templates for sentences that

describe entity properties or states instead of actions. Here are
a few examples:

number (Arew be) $n: [$n isa number] = (number == $n);
entity (Arew be) $e: [$e isa entity] = (entity == $e);

With the sample database constructed in Section II and for
the expressions: 2 is 2; 2 is 3; and Joe is the person whose bank
account balance at PNC is 10000 dollars, the NLP system will
have responses like: yes, no, and yes respectively.

When the auxiliary verb have is the main verb of a sentence,
it shows the object is a property of the subject. Here is a sample
template having have:

entity (Hasw have) $e: [$e isa entity] = there_is $x where
 ((($x (= entity) and ($x {=- $e)) or
 (($x (= entity) and ($x == $e)));3

With this template and the database constructed in section II,

the system will accept the following as sentences: Joe has a
weight, Joe has an account, Joe has 90,000 dollars; PNC has
Joe; PNC has 90,000 dollars.

There are more expressions using have. For example, I have
a boss who is grumpy, and I have a park where I take a walk
every day. These would have to be added with new templates
like: entity (Hasw have) boss, entity (Hasw have) area, where
boss and area would have been defined as types.

When the auxiliary verb do is the main verb of a sentence, it
functions as the abstraction of the actions that may not be
explicitly mentioned in the sentence but can be derived from
context. For example, when a person asks: did you have dinner
yet?, another person may answer: Yes, I did. The sentence what
can I do for you? would bring the following contexts together
although all pieces are not be explicitly mentioned together in a
single sentence: all the actions I can take (which are represented
in sentences in the NLP system as we will discuss in the later
sections) and the action you need me to take (which is carried
by the sentence you will provide in an answer). With that said,
the semantics of some sentences, like those with do as the main
verbs, cannot be explicitly expressed because the sentences
don’t provide a reference to their contexts. Instead, we allow a
template to have an assignment with a built-in operator Context
to be the assigner. For do, we may have a template:

person (Dow do) End = Context Do;

Do may be one of many other tokens the operator Context takes
to perform special tasks for sentences with Dow do as the main
verb. These special tasks, along with Context, can be coded as
part of the implementation and maintenance of the NLP system.

3 The expression at the right is read: 1) if there is a term $x such that $e is
the outer most sub term of $x and entity is a subterm of $x, then entity has $e.
If there is a term $x such that $x can be reduced to $e, then entity has $e.

They also can be expressed in the database by the authors of
template using Froglingo (which hasn’t been implemented yet
as part of the NLP system).

Similarly, we use Context to build templates for the pronoun
it when it is used to express a time:

(Prew it) (Arew be) intime End = Context It_be;
(Prew it) (Arew be) attime End = Context It_be;

When a client enters: I bought a shirt from Walmart. It has
been 3 days, the NLP system will be able to correlate the two
sentences together. (Note that the information about the verb
tense and the time value are available to Context when it is
processing.)

In the three templates provided above, we used the token
End. Its inclusion in templates is usually optional. However, we
need it if one template is a leftmost subterm of the other. For
example, we need at least another template in addition to person
(Dow do):

person (Dow do) action;

where action is the type for action nouns, which has been
introduced in Section II and will be discussed further. For
example, I am doing my homework is a sentence that will be
matched with the template. When the template person (Dow do)
action is defined as a term, a leftmost subterm such as person
(Dow do) cannot have an assignment in Froglingo. The token
End helps assign a value to person (Dow do).

There are some verbs such as like, desire, want, plan, and
promise which take persons as subjects and infinitive or gerund
phrases as immediate objectives. For example, Joe likes to
purchase shirts. These sentences are distinctive in that their
secondary verbs express the degree of the subjects’ desire in
performing their actions. The sentence above, for example, can
be understood to imply an action (Joe purchases a shirt) which
is intended by Joe and a degree to which Joe has made up his
mind to perform that action. To represent the degree of peoples’
desires in taking actions, we group the two verbs together to
express peoples’ thinking, desiring, promising, etc. We will
collect these kinds of structures in templates such as:

person (Vw (would like)) (Prew to) Infinitive;
person (Vw like) (Prew to) Infinitive;
person (Vw want) (Prew to) Infinitive;
person (Vw plan) (Prew to) Infinitive;
person (Vw promise) (Prew to) Infinitive;
person (Vw confirm) (Prew to) Infinitive;
organization (Vw keep) Gerund;

where the special token Infinitive or Gerund indicates that the
following sentence structure is an infinitive or gerund phrase.
Combining two verbs into a single template simplifies semantic
processing after parsing.

In a database, we can accumulate as many templates as we
need. We assume that we will model only a finite number of
types. There is a finite number of verbs and verb phrases. Each
sentence contains a finite number of words. These determine
that we need a finite set of templates to model all sentences that
can potentially be used in our daily lives.

In this section, we discussed templates with assignments that
reflect the impacts of actions conveyed by matched sentences.
In the coming sections, we introduce special built-in operators
Botran, Botalk, Botape, and Bothink that use assignments to
mani4pulate English sentences. This rule is not about action
impacts, but helps natural language generation.

When a client enters a sentence in past tense, the NLP will
record all the break-down information about the sentence
including its matched template. For the purposes of this paper,
however, we will use sentences exactly as entered by clients.
The sentence below is an example which will be further
discussed in later sections:

joe purchased a shirt from walmart;

IV. ABSTRACTIONS I

When multiple sentences can be summarized in brief with
one sentence, we call the briefing sentence an abstraction,
saying it abstracts (in brief) the actions expressed by multiple
sentences. In the section above, we gave an example involving
money transfer in a bank using the word (Vw transfer), which
triggers two operations using the built-in operator update. The
template containing Vw transfer is an abstraction. An
abstraction can be a component of another abstraction, i.e.,
calling another abstraction. Here is an example of an abstraction
calling the abstraction containing the verb Vw transfer:

organization (Vw donate) currency (Prew to)

$o: [$o isa organization]
=
Botran (organization “transfer” currency
“from pnc account” organization “balance to pnc account”
$o “balance.”),
Botape (“Thank you” $o “for your work! Sincerely,”
organization);

Given a client input such as

I am Joe. I would like to donate 1,000 dollars to the American
Red Cross Homeless Shelter,

the NLP system will proceed to make a transaction transferring
1,000 dollars to the shelter organization, which also has an
account with pnc.

In the template above, the token Botran, an abbreviation for
“bot transfer”, is a built-in operator which re-parses the string
generated from its parameter (i.e., the term within the
parenthesis following Botran) within which the variables are
substituted with passing values. In the given sample client
input, for example, the resulting string would be Joe transfer
1000 dollars from pnc account Joe balance to pnc account

american red cross homeless shelter balance. When this string
is parsed, the template having the verb Vw transfer will be
matched, and eventually be executed, which further triggers the
execution of the built-in operations of update. The operator
Botran itself doesn’t perform tasks for the client but acts as a
messenger to invoke another template.

Similar to Botran, the token Botape, an abbreviation meant
for “bot tape”, will re-parse the string from the following term
with its variables substituted. Instead of involing another
template, it simply returns a message to clients. In addition to
responding to clients, the operator Botape tapes (records) this
message as a record for future reference, which will be
discussed further in Section IX. In the example where Joe
donates 1,000 dollars, the output from Botape would be Thank
you the American Red Cross Homeless Shelter for your work!
Sincerely, Joe.

When a template is an abstraction and invokes another
template, we say that abstraction is transitive. Such abstractions
help to relate sentences. For example, if Joe forgot that he
donated 1,000 dollars, he might ask: Why did my bank account
balance at pnc became less? By tracing the structure within the
template for donation and by tracing transaction history, the
NLP system will be able to respond with: because you donated
1,000 dollars to the American Red Cross Homeless Shelter.

So far we have discussed abstractions that are driven from a
given task, i.e., templates, to introduce subtasks, i.e., a sequence
of values (called assigners in [21], [25]) at the right hand sides
of the template assignments. Subtasks are constrained and
shaped by given tasks. For example, a donation must imply a
money transfer. There are other kinds of abstractions where
subtasks don’t have any constraints, or where we are not aware
of any constraints. In the example Joe took a vacation in
Chicago, we are unaware of any constraints, as Joe might have
done anything he liked on his vacation. For such abstractions,
we don’t have template assignments available to connect
related actions in a database. However, we can record such
abstractions. Given subtasks such as: During the vacation, Joe
visited Willis Tower and visited one of his friends, the NLP
system would record the subtasks as assigners of the given
action:

joe took a vacation in chicago =

joe visited willis towner,
joe visited one of his friends.

From this example, we can observe that abstractions can be

built along with actions when the corresponding templates lack
assignments. With the record above for an abstraction, the
system would be able to answer questions like: What did Joe do
during his vacation? Did he visit Willis Towner?

In the record above, the verbs are in past tense to indicate that
the actions were not made by the NLP system. When this record
is referenced in the future, the NLP system treats it as gossip,
i.e., it could be true but is not validated. When actions are made
by the NLP system, the actions are recorded in present tense.
For the example where Joe made a donation, the actions (the
abstraction) would be recorded as:

joe donate 1000 dollars to american red cross homeless shelter

=

pnc transfer 1000 dollars from pnc account joe to pnc
account american red cross homeless shelter,
Thank you the american red cross homeless shelter for your
work! Sincerely, Joe.

In the NLP system, sentences in present tense indicate that the
corresponding actions are verified facts, as the system itself
made the actions.

V. ABSTRACTIONS II

In the previous section, we constructed templates that support
abstractions among actions. In this section, we continue to
construct templates for the abstractions embedded in linguistic
structure. First, action nouns are often used to brief sentences.
For example, the following two sentences are related together
by the verb paint and the noun innovation:

Joe painted his house.
His family is very happy with the innovation.

To support these abstractions, we inventory abstractions
embedded among action nouns. Continuing the abstraction
constructions using Inherit, which has been discussed in section
II, we can add more examples for action nouns:

move Inherit action;
travel Inherit move;
trip Inherit move;
travel Inherit trip;
improvement Inherit action;
innovation Inherit improvement;
repair Inherit innovation;
conversation Inherit action;
talk Inherit conversation;
trade Inherit action;
purchase Inherit trade;
buy Inherit trade;

Continuing from the discussion of Belong in Section II, we
can construct abstractions between verbs and action nouns.
Here are a few examples:

Vw travel Belong travel;
Vw purchase Belong purchase;
Vw buy Belong buy;
Vw talk Belong talk;
Vw repair Belong innovation;

With the constructions above, the system will be able to

relate the following sentences in pairs:

Joe repaired his car. The innovation saved him 2,000 dollars.
Mary has been talking with Joe for 3 hours. The conversation
is still going on.

4 These types and templates are simplified for demonstrative purposes and

may not be accurate in modeling the real world.

Since many verbs, such as Vw go, Vw take, Vw paint, have

different meanings in different contexts, certain abstractions
cannot be built at a phrase level for these verbs and nouns.
However, we can build abstractions at the sentence level. We
begin doing so by adding more sample types and templates4, as
demonstrated in Sections II & III, for various contexts:

location Inherit entity;
person (Vw travel) (Prew to) location;
person (Vw go) (Prew to)) location =

Botran (person “travel to” location);
chicago Belong location;

Now, the system is able to relate the pair: I went to Chicago.
I enjoyed the trip.

To relate the earlier sentence pair containing the words paint
and innovation, we add the following template (provided that a
profile like house Inherit entity has been constructed):

person (Vw paint) house Inherit innovation;

The last kind of abstractions we will construct in this section

is equivalencies between two templates. By doing so, we can
define semantics (via assignment) only once for all equivalent
sentences.

Many synonymous verbs can be difficult to equate. But
equating sentences with synonymous verb phrases is easier
because we have subjects, objects, and prepositional phrases to
constrain the semantics of the sentences. Here are a few sample
assignments that equate pairs of templates using Botran:

person (Vw go) (Prew to) location =
 Botran (person “travel to” location “;”);
person (Vw (walk away from)) $p: [$p isa person] =

Botran (person “leave” $p “;”);
person (Arew be) weight =
 Botran (person “weighs” weight “;”);
person (Vw (travel through)) area =

Botran (person “travel” area “;”);

There are many verb phrases which are not semantically
equal but which are closely related. We can add additional
information using prepositional phrases to equate them. Here
are a few sample assignments with additional prepositional
phrases:

person (Vw drive) home

=
Botran (person “come home by car;”);

organization (Vw get) commodity (Prew by) (Vngw purchase)
=
Botran (organization “purchase” commodity “;”);

VI. PREPOSITIONAL PHRASES AND CONJUNCTIONS

We have already introduced templates to process simple
clauses. These templates provide the minimal structure which
the author believes necessary to capture the actions the targeted
sentences are intended to convey. As modifiers, prepositional
phrases (p-phrases) can appear anywhere within sentences, but
not necessarily within the templates we construct. This is the
case for all p-phrases that modify nouns (or noun phrases). In
addition, certain p-phrases, such as those for time and space,
can be almost universally applied to verbs in any clauses. Take,
for example, the phrase I walked in a park under the sun at 2:00
pm Saturday. Adding such p-phrases to all templates would be
a clumsy and inefficient way to introduce and maintain the
templates. To resolve this issue, we introduce additional
structures, called pp-relations in this paper, to capture the
relationships between p-phrases and noun phrases or verb
phrases.

Given a pp-relation, there are three components: preposition
(such as Prew before), the type of noun phrase that can follow
the preposition, and the type of a noun or verb phrase that the
p-phrase can modify. Here is a sample pp-relation:

Prew at attime action;

It says that a p-phrase for the type attime, like at 3:00 pm,
can modify any action. Examples might include the party starts
at 3:00 pm; Which party are you attending? It is the one at 3:00
pm. With this pp-relation, the parser will proceed with the
consideration that at attime is the time action takes place (with
either past, present, or future tense).

Prew for organization action;

This pp-relation says that a p-phrase like for her son can
modify an action, such as she does this for her son. With this
pp-relation, the parser will proceed with the consideration that
the purpose of action is for organization.

Prew at organization entity = select $x where
 ((($x {+ organization) and (entity {- entity)));

This pp-relation says that a p-phrase like at PNC can modify
another entity, such as Joe’s account. With this pp-relation
having an assignment, the parser will validate and derive the
resulting entity of the modified entity such as Joe’s account at
pnc. When Joe’s account is considered as either Joe account or
account Joe, as the way the NLP currently was designed, pnc
account joe is determined as the resulting entity based on the
select operation at the right side of the assignment and the
provided the database described in Section II, which means that
the parser substitutes the originally noun phrase with the
resulting entity.

Collecting pp-relations is sometimes more tedious and

5 The representation of verbs and their various tenses generalizes

homograph. For example, the word saw can function as a noun such as a saw,
a verb in present tense Vw saw, and a verb in past tense Vedw saw for see.

complicated than we have demonstrated here. For example, we
need to deal with entities modified by multiple p-phrases (as we
have done but not presented in this paper). We will eventually
need to differentiate all usages, in various contexts, for a few
commonly used prepositions such as for, of, and with. However,
as long as we continue doing this alongside the modeling of new
things, we will eventually exhaust all possible pp-relations.

Before ending this section, we will briefly describe how
conjunctions are processed in the NLP system. Conjunctions
are important because they join other words and phrases
together, allowing the relationships among multiple actions to
be expressed explicitly. Without conjunctions, we could only
make simple sentences and the relationships among multiple
actions would be difficult to convey. Although parsing certain
conjunctions, such as and and or, is tedious, their roles in
English are invariant. Since the number of conjunctions is
small, we hard-code the logic of parsing and processing
conjunction words for now. Note that the actions connected by
conjunctions are represented with the relationships determined
by the conjunctions, which will be further utilized in natural
language processing.

VII. PARSING

Given a Floglingo database defined with expressions
representing entities, templates, and actions, the parser receives
and parses a stream of words. Before the process starts, the
database is collected with all words. In the form originally
entered by clients, a word is considered as a noun (a word may
not function as a noun, but we give it a chance to be a noun for
the time being). When a word can be considered as other
syntactical functions, we add a special token in the front of the
word. (for verb, we add Vw, such as Vw take; for adjective, we
add Ajw, such as Ajw good; for adverb, we add Avw, such as
Avw well; for preposition, we add Prew, such as Prew in; for
pronoun, we add Prow, such as Prow it; and for conjunction,
we add Cjw, such as Cjw and.)

We also collect all idioms and fixed phrases and add their
variant forms for their possible syntactical functions. For
example, we have new york city, take advantage of, Vw (take
advantage of), responsible for, Ajw (responsible for), in spite
of; Prew (in spite of).

To differentiate the different forms of a verb for its different
tenses, we used special tokens Vedw, Venw, and Vngw for the
past tense, the perfect tense, and the present progressive tense.
Further we use the special token Etym to link them back to the
verb original form itself. Here is an example 5:

Vedw took Etym = Vw take;
Venw taken Etym = Vw take;
Vngw taking Etym = Vw take;

Many words may be preceded with multiple special tokens

as they can be used for multiple syntactical functions, such as

Venw known and Ajw known. For a few commonly used words,
such as do, have, what, is, would, we use only one special token
in the front of each regardless its various syntactical functions
(here we will not give the details).

Given a stream of words from clients, the parser remembers
what have been parsed, which is partially matched with a most
left sub term of a template, e.g., the stream Joe takes an
unforgettable vacation matches the left most sub term person
(Vw take) vacation of the template person (Vw take) vacation
(Prew in) location.

 The parser takes the next word from the stream and figures
out what a role of the word potentially plays in the template. An
essential step of the parser is to identify a phrase from a client
input stream that functions as a noun phrase (without a p-phrase
or a noun clause as its modifier). Given that the parser has
considered a stream segment as the first part of a potential noun-
phrase, which is represented by a type or an entity, say E, in the
database, the parser will determine if the coming word, say W,
can continue to contribute into the noun phrase. If W is a super
type of E, or an instance of E, e.g., bank is a super type of pnc,
or pnc is an instance of bank. If yes, the parser determines that
W contributes into the phrase and chooses the instance as the
resulting representation of the noun phrase, e.g., pnc. If E and
W both are within a third term representing an entity, e.g., pnc
and joe are both in pnc account joe, the parser determines that
W contributes into the noun phrase and chooses the 3rd term
(e.g., pnc account joe) to represent the resulting noun phrase for
the time being. If E and W cannot be connected based on the
database by the algorithm above, the parser determines that the
W cannot contribute to the noun phrase. The parser continuing
its parsing process by taking the noun phrase as it is and taking
one of W’s variant forms, such as Prew in when W is in, as the
next ‘word’ right after the noun phrase. If one variant form of
W is found unfit, another variant will be tried next.

This algorithm provides a flexibility to accommodate all
potential phrases that make practical sense, even not in a good
grammar structure. For example, we will allow pnc bank and
bank pnc as valid phrases for pnc, and joe pnc account, pnc
account joe as valid phrases for pnc account joe which is an
entity in the sample database in Section II.

With the algorithm for identifying noun phrases, the other
parts of speeches are relatively easier in parsing because all
other syntactic forms other than nouns have their prefixed
tokens.

If a sentence is written in a good grammar structure, which is
modeled in templates and the database inventories sufficient
knowledges that the sentence is concerned with, the parser will
deterministically break down the sentence and identify a
desired template. One exception is that some sentences may not
be able to be broken down even they are in good grammar
structures. These ambiguities happen when a p-phrase in a
sentence follows an object after the verb and we cannot
determine if the p-phrase modifies the object or the verb. Here
is the well-known example [1], [6], [14]:

He saw the girl with a binocular;

A parser is able to detect the structures like the one above
that potentially cause ambiguities. With a database that
inventories entities and templates, the parser in this NLP system
will further know what the entities exactly are in the positions
of the objects and the prepositional objects. By referencing
templates, pp-relations, and the entities in database, the parser
will be able further diminish some ambiguities if not all.

Nevertheless, ambiguities exist in natural languages,
accidently or intentionally. If a sentence exists an ambiguity,
the parser will detect it during the parsing process and will
report an error or raise a question to clients for a clarification in
English during a conversation.

Many sentences don’t closely follow legitimate grammar
rules but they make practical sense and are frequently used in
our daily life. The NLP system accommodate these kinds of
sentences by explicitly building templates for them. For
example, the sentence she is 180 lbs, instead of she weights 180
lbs, is often used for celebrities. We can build a template for it:

Person (Arew be) weight = Botran (person “weighs” weight

“;”);

Replacing pronouns with the entities or actions that the
pronouns are referring to is part of the parser’s job. It is done
closely along with the process of breaking down sentences into
pieces. We have given an example of understanding the most
difficult pronoun Prew it in Section III. We don’t discuss
further here regarding the rest of the pronouns.

VIII. UNDERSTANDING

When the parser matches an entire template, we say that the
NLP system “understood” the parsed input stream, e.g., the
parser found the template (Vw take) vacation (Prew in) location
for the sentence I took a vacation in Chicago.

When the parser consumed all the words in an input stream
and didn’t reach the end of a template, the parser may be able
to determine a template as the final state of parsing depending
on specific circumstances. First, if the parsed portion of the
template has become unique, i.e., there is no other templates in
the database that share the parsed portion of the given template,
then the parser takes the whole template as the final state. For
example, given the template organization (Vw buy) commodity
(Prew from) store, if there is no another templates in the
database that has the left most sub term organization (Vw buy)
commodity, and the input stream is I bought a shirt, then the
parser will consider the entire template is for the client input
stream even the input stream didn’t have information about the
missing portion (Prew from) store. Different from
programming languages where a function or procedure cannot
be executed until all of its arguments are passed with values, a
template here will be potentially walked through multiple times
when the NLP system starts to evaluate it. Any missing
information may be derived from the context, obtained from
clients by a real-time interaction, or simply ignored as it may
not be needed.

Secondly, even if the parsed portion is a shared left most
subterm of multiple templates, but if the parser searched those

sentences that were recently processed in history and identified
a template with the same left most subterm, the parser will take
the history template as its understanding to the input stream. For
example, when the parser had responded the client with a
question: do you confirm to pay 100 dollars? (which will be
further discussed in the coming section), and when the client
responded: I confirm, where I confirm didn’t exhaust any one
of the templates in the database, then the parser will consider
that it understood the client’s intention: I confirm to pay 100
dollars.

Given that a parsed template has an assignment, the NLP
system utilizes the reduction system of Froglingo to reduce the
input sentence and the reduction process will always end with a
unique state. It means that the system will manipulate the
database (with searching and/or updating) and eventually
respond the client in a way that will be discussed in the coming
section.

When the parser reaches the end of a template and noted that
it has no assignment, the NLP system considers that it
understood the input stream as it is, i.e., the input stream is in
normal form. At the same time, it tries to correlate the input
sentence with the parsed sentences in the history, and further
respond the client in the way we will further discuss in the
coming section.

When the parser cannot find a distinguishing template, i.e,
there are multiple templates share a left most sub terms for a
given client input stream, the parser consider it as an ambiguity.
It would have to respond by generating a question based on the
multiple templates with the shared left most sub term. For
example, if the client entered a stream: I took;, the parser will
be able to identify at least two templates that share the same left
most sub term person (Vw take) which matches the input
stream. Such templates include: person (Vw take) $s1: [$s1 isa
commodity]; and person (Vw take) $s2: [$s2 isa idea] (Prew
(in spite of)) thing. In this case, the parser will generate a
question like: What did you take, a commodity or an idea?

IX. NATURAL LANGUAGE GENERATION

As soon as the NLP system “understands” a sentence, it is
ready to process the parsed sentence before generating a
response. Given a set of entities in our real life, people have
various interests from different angles. Even for a single topic,
the questions can be expressed in many ways. Given an
understanding to a sentence, different people may respond
differently. The NLP system was designed to mimic
(approximate) the friendly interactions people communicate in
natural languages. In Section IV (Abstraction I), we have
introduced the built-in operators Botran and Botape. There are
two more builtin operators Bothink, an abbreviation of “bot
think”, and Botalk, an abbreviation of “bot talk” that will be
discussed in this section. They are the key components to utilize
the linguistic structures embedded within templates for natural
language generation.

In this section, we use a short demo that has been
implemented to demonstrate how templates are constructed to
support conversations in English. In the demo, the NLP system
acts as a sales person for a store. It makes transactions on

product purchasing and returning. It answers general questions
about products and returning policies. Consequently, the NLP
system is a code generator that takes client input streams in
English that drive the NLP to collect new entities and new
types.

A. Templates for product sales services

Based on the entities built in Section II regarding joe, pnc,
and walmart, we construct templates that allow the system and
clients to interact to make sales transactions. Here is the top
level template to accept requests or inquiries:

organization (Vw purchase) commodity (Prew from) store =

p0 (Bothink ("is" commodity "available in" store "?"))
organization commodity store;

This template is intended for client requests of purchasing
products, such as:

I would like to purchase a shirt from Walmart;

It is also intended for client general inquiries about sales,
such as:

Can I buy a shirt?

In this subsection, we focus on the templates for transactions.
We will come back to talk about general inquiries in the next
subsection by using the templates for product return policies.

The template above has an assignment that calls a function
named p0. Before we give the definition for p0, we discuss the
built-in operator Bothink, an abbreviation for “bot think”. Like
the operators Botran and Botape discussed in Section IV,
Bothink takes the following term ("is" commodity "available in"
store "?"), substitute the variables commodity and store with
passing values, such as shirt and walmart, to re-generate a
string, e.g., is shirt available in walmart?. The string is parsed
by the parser to match with the following template:

commodity (Arew be) (Ajw available) (Prew in) store =

(store inventory commodity number > 0);

Instead of Botran’s calling another template, Bothink makes
reduction itself to get a true or false answer back and passes it
on to the function p0, which is defined as:

p0 true organization commodity store =

p1 (Botalk ("does" organization "confirm to pay" store (store
inventory commodity price) "?")) organization commodity
store;

p0 false organization commodity store =
(("Sorry, the product " + commodity) + "is out of stock.");

If Bothink returns true, p0 will call p1 for a further reduction.

Otherwise, p0 will return a message back to the client, such as
Sorry, the product shirt is out of stock. This return message was
generated without using Botape to indicate that no any

transactions have occurred yet (we will see later that botape is
used to signal a success of a transaction when the root level
template is called).

Similar to Bothink, Botape, and Botran, Botalk takes the term
after it ("does" organization "confirm to pay" store (store
inventory commodity price) "?") and regenerates a string like
does joe confirm to pay walmart 100 dollars? by substituting
variables with passing values and the value from the reduction
of store inventory commodity price , e.g., walmart inventory
shirt price = 100, where dollars was added because 100 was
pre-defined as a currency dollars. Instead of trying to find an
answer for the question, Botalk stops the proceeding and asks
this question to the client. It waits until the client responded
again such as:

I confirm to pay 100 dollars;

Note that the wordings from clients don’t have to exactly

follow the wordings in a question, as long as the parser
“understood” the response, e.g., by matching the response with
a substring of the question the NLP system had asked earlier.
(By “understanding”, we also meant any other means that work
in our daily life will work here. For example, a client response
may be: Yes, I confirm.) Botalk and the three other operators
enable a friendly interactions between the NLP system and
humans in English.

As soon as Botalk got an answer, the reduction process is
resumed and eventually Botalk passes client’s answer, true or
false in this case as a statement is considered as an assertion, to
the function p1, which is defined as:

p1 true $o:[$o isa organization] $c: [$c isa commodity] $s =

(Botran ($o "pay" $s ($s inventory $c price) "dollar;")),
(update $s inventory $c number=

($s inventory $c number-1)),
Botape ($o "receive" $c "from" $s "at" timestamp "EST;");

where, Botran will eventually identify and call the following
template:

organization (Vw pay) $s: [$s isa organization] currency =

Botran (“pnc transfers” currency “from” (pnc account
organization) “to” (pnc account $s));

With two Botran calls above, the client will receive the

following confirmation:

pnc transfers 100 dollars from pnc account joe to pnc account

walmart at 2022/03/09 20:23:13 EST. Joe receives a shirt
from walmart at 2022/03/09 20:23:13 EST.

The NLP system is implemented to use present tense to

represents actions that are deemed as a fact and past tense to
represents gossips, i.e., actions that are not considered authentic
yet.

The same set of templates are also used to support general
inquiries from clients. For example, when a client asks Can I

buy a shirt?, the NLP system will be able to respond like: you
would have to confirm to pay 100 dollars if the NLP system
notes that the walmart inventory has 1 or more than one shirt.
We will talk more about it in the coming section.

B. Templates for customer support services

Things are inter-related. When the sales data from the above
subsection is established, it can be referenced for other actions.
In this section, we give templates for a “walmart customer
support services” that have access to the sales data from the
“walmart product sales services” as discussed earlier.

Through the discussion, we also extensively demonstrate the
flexibilities the NLP system offers to clients when the clients
make inquiries with limited information available to the NLP
system.

Here is the top-level template to receive requests for product
returns:

organization (Vw return) commodity =

r0 (Bothink ("did" organization "buy a" commodity "from
walmart?")) organization commodity;

To simplify our discussion here, we reduce the number of

variables by removing the profile of (Prew from) store for p-
phrases such as from walmart from the template. We simply
assume that all clients reach out to the NLP for returning
walmart products. The template is completely defined with the
following additional definitions:

r0 true $o: [$o isa organization] $c: [$c isa commodity] =

r1 (Bothink ("how many days has it been?")) $o $c;
r0 false $o: [$o isa organization] $c: [$c isa commodity] =

(("I was unable to find out a record showing that you bought"
+ $c) + "in our inventory;");

r1 $m:[$m isa number] $o: [$o isa organization] $c: [$c isa
commodity] =

Bothink ("if" $m "is within 30 days," $o "gives walmart" $c
"and walmart pays" $o "what" $o "paid; if" $m "is more than
30 days and" $m "is within 365 days, walmart repairs" $c
"for free; if" $m "is more than 365 days, walmart doesn't
offer a service for" $c ";");

number (Arew be) (Prew within) $n: [$n isa number] =
(number <= $n);

number (Arew be) (Prew (more than)) $n: [$n isa number] =
(number > $n);

organization (Vw give) $p: [$p isa organization] $c: [$c isa
commodity] =
(update organization inventory $c number = (organization
inventory $c number -1)),

 (update $p inventory $c number = ($p inventory $c number
+ 1)),
botape (organization "gives" $p $c ";");

organization (Vw repair) commodity =
 Botape (organization “repair” commodity);
organization (Vw offer) service (Prew for) commodity =

botape (organization "offer service for" commodity ";");

With the definitions (note that the last two templates were
simplified for this demonstration only), we describe how the
NLP system reacts differently to three expressions that are
matched with the tope level template:
1. A short inquiry with minimum information available (even

without know the client’s identity):

Can I return a shirt?

This expression provides all information that the NLP system

needs to parse and identify the template. At this moment, the
NLP system only knows the value shirt for the variable
(argument) commodity and who made this inquiry is unknown
(the variable organization doesn’t have a value). In stead of
trying to ask a question to get an answer from the client, the
NLP system goes ahead to walkthrough 6 the assigner (the
function r0 and its parameters). Since organization appears in
the term ("did" organization "buy a" commodity "from
walmart?"), which means that Bothink will not get an answer
from this term, and since the expression is a general inquiry,
Bothink doesn’t stop the proceeding but tells the function r0 that
it has no answer (except for the type it supposed to return).
When r0 isn’t able to get a true or false value from Bothink and
when r0 knows that the process is for a general inquiry, it moves
forward by trying out both true and false values. This strategy
will allow the NLP system to further investigate to see what will
happen by making an assumption that Bothink had returned a
specific value. This process will continue recursively until it
finds all tokens Botape reachable from the root template of the
walkthrough. Once it finishes the walkthrough, it starts to
prepare a response message by regenerating natural languages
from the assumptions and the Botape clauses that had been
walked through. Here is the generated message for the question
Can I return a shirt? when I is unknown:

You must have bought the shirt from walmart. We will see how
many days it has been. If the number is within 30 days, you gives
walmart the shirt and walmart pays you what you had paid. If
the number is more than 30 days and the number is within 365
days, walmart repairs the shirt for free. if the number is more
than 365 days, walmart doesn't offer a service for the shirt.

The message was polished to meet the altitude and tendency
of the client based on the verb itself, the verb mood, and
potentially model auxiliary verbs in a sentence. To respond
differently to client requests and inquiries, we collect patterns
of sentence structures with certain verbs, verb moods as well as
auxiliary verbs that indicate clients’ desire rated with a degree.
Here is a sample collection in the order of increasing desires
[5]:

person think of doing thing.
may person do thing?
could person do thing?

6 In a programming language, we execute a function (procedure) by
providing values for all the arguments of the function. In a parallel, here we
allow a template to be executed (reduced) without values for some arguments.

can person do thing?
person plan to do thing.
person promise to do thing.
person (would) like to do thing.
please do thing for person.

2. An inquiry with a little more information (still without

knowing the client’s identify):

I bought a shirt from Walmart. It has been 3 days. Can I
return it?

With the two past tense sentences, the NLP system records

the sentences and tries to correlate them with previously parsed
sentences. Assume that there is no any sentence in history that
is related to the first sentence, i.e., I was not mentioned earlier,
the NLP system records this sentence (marking the beginning
of a new conversation). When it parses the second sentence, it
will match it with the template Prew it (Arew be) intime. This
leads the system to calculate the time period 3 days earlier than
today (as discussed in Section III) and take the calculated date
as the occurring date for the action represented by the first
sentence. As a result, the NLP will combine the two sentence
and have the following record in the system: I bought a shirt
from Walmart at 2023/03/09 20:23:13 EST.

When the NLP system parses the third sentence (the question
from the client), it will try to determine which template the
sentence - can I return it? - will be matched with. Along with
this decision, the NLP needs to figure out if it is the pronoun for
shirt – a commodity or the action of I bought a shirt in the
history.

If the database has the only template organization (Vw
return) commodity that can be potentially matched with the
question, the NLP system would simply make the match
because shirt, a commodity, is the only choice for the pronoun
it.

The question is: Is it possible to have another template down
the road that matches client’s question as well? If such a second
template existed, it would look like: organization (Vw return)
action, because it in the question can also be the pronoun for
the action of I bought a shirt in the history.

Checking an English dictionary, we noted that an object in a
sentence taking Vw return as the main verb is normally an
entity. An action can be such an object for Vw return, but it is
about giving or performing in return to a previous action, for
example, return his call and return a compliment. So the action
of a person’s purchasing a commodity will not act as an object
of a template with Vw return as the main verb. Therefore, the
template organization (Vw return) action can be re-defined
with a narrower scope than action at the position of the object,
such as the resulting template may looks like: organization (Vw
return) $a: [$a isa call or $a isa compliment]. Such a
redefinition would require a greater effort, but make the NLP
system smarter as it reduces the degree of ambiguity.

In the field of static program analysis, we walkthrough program source code
outside of program execution. In a parallel, here we walkthrough templates for
partial execution (reduction).

Nevertheless, the NLP system goes back to clients for a
clarification by raising a question whenever it meets an
ambiguity. For example, the question would be for the example
discussed above:

Would you like to return the shirt or your purchase?

With the parsing process accomplished, the NLP system will

walkthrough the same assigner that had been walked through in
our previous use case. This time, however, the NLP system
knows more about the inquiry: the purchase occurred 3 days
ago. Knowing that this walkthrough is for a general inquiry
which will not have any modification to the database, the NLP
system will generate the following message:

You would give walmart the shirt. walmart would pay you what
you had paid.

3. A request for transaction without adequate information

from client:

Hi, I bought a shirt from Walmart. I like to return it.

Since the client this time wants to make a transaction to

modify the database, the NLP system will need to obtain all
necessary information to complete the transaction. Since I is
still unknow and it is requested in the clause (Bothink ("did"
organization "buy a" commodity "from walmart?")), the NLP
system will generate the following message based on the
template organization (Vw return) commodity:

May I know who likes to return a shirt?

As soon as the client identified himself, say I am Joe for the
sample database discussed in this paper, the NLP system will
continue to walkthrough the rest of the assigner, as it has done
for the two earlier use cases. Since it has all information it needs
this time, it will make a final transaction depending on how
many days the product has been purchased. For a product that
had been purchased for 3 days, the return message will be:

You give walmart the shirt. walmart pay you 100 dollar.

X. CODE GENERATOR

From the earlier subsections, we saw that client’s text
message in English can drive the NLP to produce outputs in
English, which is enabled by templates created by their authors.
Rather than directly asking the question of if client’s text
message can drive the NLP to produce Froglingo code or
another programming language code, we ask this question: can
English itself be a programming language which takes English
sentences 1) as its executables and 2) as a tool to generate
source code? We answer these two questions in this section.

We have already seen that the NLP system takes English
sentences and produce outcomes in English. So English
sentences are executables. Can English sentences as

executables be as expressive as Turing machine? We give a
template for the factorial function to show that English
sentences can be executables equivalent to Turing machine
(which itself is not a surprise as a natural language is a super
language of any programming languages. But this result claims
that we have a tool now, the NLP system, that uses natural
language to drive machines as effective as programming
languages):

fac (Vw take) $n:[$n isa number] (Prew to)
 (Vw produce) $m:[$m isa number]
=

bothink ("if" $n "is 0," $m "is 1 or" $m is "the multiplication
of" $n "with what fac takes" ($n -1) "to produce;");

Here is a conversation supported by the definition above

which has been implemented as part of the NLP system:

Client: What does fac takes 4 to produce?
System: fac takes 4 to produce 24.
Client: Does fac takes 4 to produce 24?
System: Yes, fac takes 4 to produce 24?
Client: Does fac takes 4 to produce 25?
System: No, fac takes 4 to produce 24.

The second question: Can we build some templates such that

clients can intentionally create new types and new entities by
giving commands in English that eventually drive templates to
carry out the execution of the commands? The answer is yes.
We can simply add the following templates into the database:

newterm Inherit entity;
newterm (Arew be) (Thtw a) type =

schema newterm Inherit type;
newterm (Arew be) (Thtw an) instance (Prew of) type =
 create newterm Belong type;

We can also enhance the NLP system such that its lexer and
parser will accept new words or phrases from clients that are
not in the database. It will first categorize them as type newterm.
When the second or third template is called, the NLP system
will change newterm to be type or an instance of type respective.
Here are a few examples that trigger the creation of new types
and entities:

virus is an entity;
covid is an instance of virus;
mathematical function is an entity;
fac2 is an instance of mathematical function which takes an

integer to produce another integer;

These will introduce the following into database:

virus Inherit entity;
covid Belong virus;
mathematical function Inherit entity;
fac2 Belong (mathematical function);

With the new types and instances (entities) created above via

English, similarly, we can introduce additional templates that
allow clients to add properties for the types and instances.

To complete the definition of fac2, we can add additional
sentences right after the first sentence regarding fac2:

If the former is 0, the second is 1. Otherwise, the second is the
multiplication of the first with what fac takes the first integer
minus 1 to produce;

Since fac2 is defined as a mathematical function and if the
type mathematical function has been enhanced with rules to
define an instance, the NLP would know how to construct a
template with assignment that would be identical almost to the
definition of fac that we discussed earlier.

The last question: Can the NLP system allows other
expressions other than “is a type” and “is an instance” to create
new types and entities, such as covid and fac2 respectively? If
any equivalent expressions exist, the NLP system should allow
various forms of equivalent expressions for the sake of the
completeness of the NLP system as a code generator. We
believe this completeness will become evident when the NLP
system is accumulated with enough things and linguistic
structures. On the other hand, the NLP system can always be
constructed with equivalent templates (using Botran) to allow
clients to express their requests in any newly discovered
equivalent expressions, as the underneath entities are
unchanged.

XI. RELATED WORK

Given a finite set of things (entities and actions) as potential
topics of natural language communications, there is a
potentially infinite number of expressions (e.g., sentences) in
natural languages regarding these things. Machine learning
approaches don’t intend to represent these things directly.
Instead they learn from a finite number of sentences from the
past and make predictions about (the future of) these things.
This approach cannot guarantee that the predictions are true.
Linguistic structure has been recently emphasized as part of the
machine learning approach to reduce false conclusions [11],
[12], [19]. However, rather than representing things, linguistic
structure merely represents the syntactical form of expressions
in natural languages. Instead of inventorying sentences, the
NLP system inventories the representation of things in terms
and templates. This approach avoids the complexity of a
statistical approach, which has to consider a potentially infinite
number of samples in disciplines such as biology where the
functions (things) to be computed are unknown. The NLP
system can avoid such complexity because the EP data model
uniformly databases all kinds of things conveyable in natural
languages. It uses finite (memory) space to expose infinite
properties of certain (bounded) partially computable functions.

Although machine learning based approaches don’t
guarantee correctness, they addressed certain NLP issues and
have been widely used in our daily lives. Does a deductive
approach work at all as a NLP solution for long-awaited

applications such as natural language and code generations?
The answer to this question is the most critically dependent on
the quality of the parser: Does the parser precisely and correctly
parse a sentence that is uniquely meaningful to the author and
the readers of the sentence? The answer is yes, because we can
simply add a new template or modify an existing template to
cover the sentence if there is not an existing one. Can two
sentences that are meant differently be reduced to a single
value? It is impossible as long as we don’t construct the two
templates that cover the two sentences respectively with
assignments such that the two sentences be reduced to the same
value. (In other words, the parsing structure and the semantic
meaning of a sentence are fully controlled by the authors who
construct the templates in a database.) As soon as a sentence is
precisely and correctly parsed, i.e., the NLP system
“understood” the sentence, the NLP system simply starts to
reduce the sentence, during which nature languages or code are
generated.

To generate natural languages, machine learning based
approaches do not necessarily “understand” sentences but
generate outputs from learning. The result may not be
necessarily accurate, but it doesn’t need software engineering
to represent things (i.e., knowledges) referenced in the
sentences. On the other hand, the Froglingo-based NLP system
will be able to accurately generate results. However, it needs an
effort of databasing knowledges to truly generate natural
languages. Although this effort is a software engineering, the
effort of doing so using Froglingo, the most productive tool, is
significantly reduced from the programming effort of using the
contemporary software development tools, such as BigData and
the combination of a programming language and a database
management system. In addition, the Froglingo based NLP
system doesn’t require to database all knowledges before
processing a sentence. For example, we may simply have a
template: person (Vw take) walk without an assignment. It
would keep the covered sentence joe takes a walk everyday as
the weak head normal form itself without being further reduced.
When the NLP system has limited knowledges, it will be able
to answer limited questions. For example, the system will be
able to respond: joe takes a walk everyday when asked: how
often does joe take a walk?; the system would respond: I don’t
know when asked: how much calories does joe burn by taking
a walk every day?.

Rather than predictions in machine learning based NLP
approaches, the deductive NLP system gives precise
conclusions that are derived from its database. Therefore, it can
act as a specialist to perform tasks that don’t tolerate errors. For
example, it can fill the role of a customer support ‘agent’ to
answer client questions and to perform transactions; a ‘tutor’ in
a classroom; a ‘counselor’ for personal, social, or psychological
issues; and an ‘advisor’ providing reliable information before
decisions are made.

Code generation is another topic in NLP. Generating natural
languages using neural language models, e.g., masked language
modeling (i.e., predicting next words or masked words in the
middle of sentences [11]) is the most challenging, because the
targeted natural languages are irregular in syntactical forms and
the neural language modeling doesn’t have any context as
reference (except for experience learned from the past).
Generating formal languages (such as SQL and even the more

complex Python [15], [26]) using neural language modeling
should be relatively easier, because the targeted languages are
simpler than natural languages. With enough information about
words and linguistic structures in a database, the Froglingo-
based NLP system takes input in natural languages to generate
natural languages. As a ‘natural’ programming language, it
takes input in natural languages to generate Froglingo
expressions that drive to accumulate more entities and actions
from various disciplines in the world. The NLP system works
as a natural language and code generator because the generation
process is driven by templates (for action profiles), terms (for
entities), and sentences (for actions) in a database.

A neural language model that produces natural languages or
linguistic structures (e.g., treebanks) normally doesn’t detect
ambiguity. The neural language models that work as code
generators, e.g., semantic parsers [2], [9], [26], can detect and
eliminate ambiguities by interactions, because targeted formal
languages like SQL are simpler than natural languages. The
Froglingo-based NLP system which generate both natural
languages and Froglingo expressions, is also able to detect and
eliminate ambiguities by interaction, because of the formal
language Froglingo, as well as the templates and the context in
its database.

When applying a machine learning based NLP system to a
discipline, it has to be customized by newly identifying
effective training data, which is expensive and only large
corporates can afford it. The Froglingo-based NLP system has
a common infrastructure embedding the abstractions within
linguistic structures. Once it is built, it would become accessible
to smaller organizations and individuals. Because this NLP
system is a “native” programming language, it would allow
everybody even without coding knowledges to database in
natural languages for their personal needs (entities and actions).
This will bring automation to each corner of our society to serve
human beings.

XII. CONCLUSION

Databasing is an essential strategy in the NLP system, which
collect information about (and accommodates exceptions from)
things in the world and linguistic structures. Within Froglingo,
terms and assignments serve as words and phrases representing
real-world entities and properties. We use templates (terms in a
special format) and their assignment to model clauses and
simple sentences which represent real-world actions. We also
accumulate abstractions (relationships) embedded in entities
and actions of the world as well as in linguistic structures. The
NLP system supports natural language and code generation by
embedding linguistic structures into template assignments. The
development of the NLP system is an accumulation process. As
more things are accumulated, the NLP system will become
increasingly robust. As more abstractions are accumulated the
NLP system will become smarter and friendlier in interacting
with others in natural languages.

This paper focuses on the symbolic approach using
Froglingo, where the things in the world are uniformly
represented in a database along with linguistic structure. It is an
independent approach to NLP in parallel to neural language
models. It also can be part of the neural language models to

ground natural languages using linguistic structure and
contextual knowledges [3].

REFERENCES

[1] F. Benelhadj, “Prepositional Phrases across Disciplines and
Research Genres: A Syntactic and Semantic Approach”, A thesis
submitted in fulfilment of the requirements for the degree of
Doctor of Philosophy, University of Sfax Faculty of Letters and
Humanities Department of English, 2015.

[2] J. Berant, A. Chou, R. Frostig, P. Liang, “Semantic Parsing on
Freebase from Question-Answer Pairs”, Proceedings of the 2013
Conference on Empirical Methods in Natural Language
Processing, pages 1533–1544, Seattle, Washington, USA, 18-21
October 2013.

[3] Y. Bisk, A. Holtzman, J. Thomason, J. Andreas, Y. Bengio, J.
Chai, M. Lapata, A. Lazarido, J. May, Al. Nisnevish, N. Pinto, J.
Turian, “Experience Grounds Language”, Proceedings of the
2020 Conference on Empirical Methods in Natural Language
Processing, pages 8718–8735.

[4] E. Black, R. Garside, G. Leech, “Statistically-Driven Computer
Grammars of English: The IBM/Lancaster Approach”,
Computational Linguistics, P. 498, Volume 20, Number 3, 1993.

[5] A. S. Cowena, D. Keltner, “Self-report captures 27 distinct
categories of emotion bridged by continuous gradients”, E7900–
E7909, PNAS,
www.pnas.org/cgi/doi/10.1073/pnas.1702247114, September 5,
2017.

[6] M. H. Hamdan, I. H. Khan, “An Analysis of Prepositional-Phrase
Attachment Disambiguation”, International Journal of
Computational Linguistics Research Volume 9 Number 2 June
2018.

[7] W. Han, H. T. Ng, “Diversity-Driven Combination for
Grammatical Error Correction”, 2021 IEEE 33rd International
Conference on Tools with Artificial Intelligence (ICTAI),
November 2021.

[8] M. A. Hedderich, L. Lange, H. Adel, J. Strötgen, D. Klakow, “A
Survey on Recent Approaches for Natural Language Processing
in Low-Resource Scenarios”, Proceedings of the 2021
Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies,
pages 2545–2568. June 6–11, 2021. ©2021 Association for
Computational Linguistic.

[9] F. Li and HV Jagadish, “Constructing an interactive natural
language interface for relational database”, Proceedings of the
VLDB Endowment, 2014, 8(1):73–84.

[10] D. M. Magerman, “Statistical Decision-Tree Models for Parsing”,
ACL’95: Proceedings of the 33rd annual meeting on Association
for Computational Linguistics, June 1995, Page 276 – 283.

[11] C. D. Manning, K. Clark, J. Hewitt, U. Khandelwal, O. Levey.
“Emergent linguistic structure in artificial neural networks trained
by self-supervision, 30046-30054, PNAS, December 1, 2020,
Vol. 117 No. 48.

[12] M. C. de Marneffe, C. D. Manning, J. Nivre, D. Zeman,
“Universal Dependencies”, Computational Linguistics (CL), 25
February 2021.

[13] M. Minsky, “"Logical vs. Analogical or Symbolic vs.
Connectionist or Neat vs. Scruffy", in Artificial Intelligence at
MIT., Expanding Frontiers, Patrick H. Winston (Ed.), Vol 1, MIT
Press, 1990. Reprinted in AI Magazine, 1991.

[14] K. Nadh, “Prepositional phrase attachment ambiguity resolution
using word sense hierarchies”, Undergraduate thesis project,
Middlesex University, London, U.K, February - April 2008.

[15] L. Perez, L. Ottens, S. Viswanathan, “Automatic Code
Generation using Pre-Trained Language Models”,

cs230.stanford.edu/projects_spring_2020/reports/3890766
2.pdf, arXiv:2102.10535v1 [cs.CL] 21 Feb 2021.

[16] J. R. Pierce, J. B. Carroll, E. P. Hamp, D. G, Hays, C, F, Hockett,
A. G. Oettinger, A. Perlis, “Language and Machines, Computers
in Translation and Linguistics”, A Report by the Automatic
Language Processing Advisory Committee, Division of
Behavioral Science, National Academy of Sciences, National
Research Council, National Academy of Science, National
Research Councile, Publication 1416, 1966.

[17] S. Ruder, “The 4 Biggest Open Problems in NLP”,
https://ruder.io/4-biggest-open-problems-in-nlp/.

[18] A. See, “Neural Generation of Open-Ended Text and Dialogue”,
A Dissertation Submitted to the Department of Computer Science
and the Committee on Graduate Studies of Stanford University in
Partial Fulfillment of the Requirements for the Degree of Doctor
of Philsophy, August 2021.

[19] A. See, “Deep Learning, Structure and Innate Priors, A
Discussion between Yann LeCun and Christopher Manning”,
https://www.abigailsee.com/2018/02/21/deep-learning-structure-
and-innate-priors.html, February 21, 2018.

[20] J. Weizenbaum, “Computational Linguistics, ELIZA – A
Computer Program for the Study ofNatural Language
Communication Between Man and Machine”, Communications
of the ACM, Volume. 9, Number. 1, January 1966.

[21] K. Xu, “A Class of Bounded Functions, a Database Language and
an Extended Lambda Calculus”, Journal of Theoretical Computer
Science, Vol. 691, August 2017, Page 81 - 106.

[22] K. Xu, “The Enterprise-Participant Data Model, an Untyped
Recursive Language Semantically Approximating the Lambda
Calculus”, 2014 Computability in Europe Conference (CiE
2014), Budapest, Hungary, June 2014.

[23] K. Xu, J. Zhang, S. Gao, “Froglingo, a Programming Language
empowered by a Total-Recursive-Equivalent Data Model”,
Journal of Digital Information Management (JDIM), Volume 9,
Number 4, August 2011, Page 135 - 146.

[24] K. Xu, J. Zhang, S. Gao, “Approximating Knowledge of Cooking
in Higher-order Functions, a Case Study of Froglingo”,
Workshop Proceedings of the Eighteenth International
Conference on Case-Based Reasoning (ICCBR 2010), pp. 219 –
228.

[25] K. Xu, “User’s Guide to Froglingo, An Alternative to DBMS,
Programming Language, Web Server, and File System”,
http://www.froglingo.com/FrogUserGuide20.pdf, Release 2.0,
March 14th, 2013.

[26] Z. Yao, Y. Su, H. Sun, W. Yih, “Model-based Interactive
Semantic Parsing: A Unified Framework and A Text-to-SQL
Case Study”, EMNLP-2019.

