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Abstract — A word, a prepositional phrase, and a sentence can 
have different meanings in different contexts. Machine learning based 
Natural Language Processing (NLP) technologies build contexts for 
disambiguation using datasets from different disciplines such as 
medicine vs. finance. This approach , however, struggles to eliminate 
ambiguity at the degree human beings can, as we possess more 
granular knowledge of the context for a given circumstance. In other 
words, this approach is inductive (or transductive), i.e., predictive and 
the predictions based on training data are not guaranteed to be valid. 
As a result, no NLP system yet developed is able to interact with 
humans as if it was itself a person. 

Before the development of machine learning (statistics-based) 
approaches, NLP was studied via deductive (symbolic) approaches. 
However, the tools available at the time were not capable of uniformly 
representing the subjects of natural language communication. For this 
reason, deductive approaches during the 1950s through 1980s failed to 
produce a promising solution for NLP. 

In this paper, we introduce a fundamentally deductive system for 
NLP. It has been implemented with a set of preliminary features using 
Froglingo, a unified programming language and database management 
system. It pre-defines a set of representations which approximates 
things, i.e., entities and actions, in the real world. It collects 
abstractions embedded in things and in linguistic structures to support 
general reasoning. It tolerates illegitimate natural language expressions 
because it references things represented in a database. It interacts with 
clients to clarify ambiguous sentences because of its deductive 
approach to parsing. It generates natural language expressions that 
allow friendly human-machine interactions. It also generates code in 
natural languages, allowing its database to expand within and across 
disciplines. 
 

Keywords— Linguistic structure, semantic representation, 
abstractions, parsing, natural language understanding, natural 
language & code generation, lambda calculus, (weak) head normal 
form, reduction, similarity for disambiguation, part of speech, word 
sense, coreference, discourse, homograph, fixed phrases, idioms.  
 

I. INTRODUCTION 

ATURAL language processing (NLP) has reached our daily 
lives in areas such as information searching, natural 

language translation, and human-machine interactions. 
Advances in this field have been driven by machine learning 
(and deep learning). Machine learning algorithms use training 
datasets to make predictions or decisions without an explicit 
programming of linguistic structure and context. However, this 

 
 

limits NLP performance, as machine learning algorithms lack  
the contextual knowledge that a human would have. 
Specifically, the machine learning approach is inductive or 
tranductive, i.e., decisions based on training datasets do not 
always reflect client needs that are conveyed by natural 
language expressions. In fact, no machine learning system has 
been designed to precisely represent (approximate) real-world 
entities and actions. While one branch of NLP machine learning 
research promotes pure neural language models without any 
linguistic structure (and context) [7],  the other aims to simulate 
a better "understanding" of natural languages via embedding 
linguistic structures [11], [12], [17], [19]. However, these 
linguistic structures are syntactical forms and do not necessarily 
represent things in the real world. Further, this branch continues 
to take neural language models (machine leaning) as its core 
basis. Because machine learning is a non-deductive approach, 
it faces stiff challenges to advance NLP to a new level [17], 
[18], [19]. 

Another direction toward NLP, called symbolic (deductive) 
approaches, involves explicitly programming linguistic 
structure and context (things in the real world). This proved 
overwhelming during the time period from the 1950s to the 
early 1990s [16]. In addition to limited computing power in 
CPU speed and memory space, limited programming language 
tools and methodologies stalled the development of a robust 
NLP system. The essential challenge was how to represent all 
kinds of things uniformly in a computer, i.e., via a programming 
language, which was the first step in developing a NLP system 
[13]. One option, called “scruffy” in the field of artificial 
intelligence, was to use “procedural” programming languages 
for “fine-tunning” programs. This approach however could not 
be scaled up, i.e., it was too scruffy to be extended. The other 
option, called “neat”, was to use mathematically sound 
methods, i.e., “declarative” or “logic” programming languages 
like Prolog. It was hoped that this choice, with a single formal 
paradigm, would be general and extendable. Although a few 
symbolic NLP systems, including the first one ELIZA in 1966 
[20], had been developed, none of them demonstrated a 
promising solution for a general NLP application. When there 
were not having a clear direction in declarative approaches, 
more effective algorithms from statistical and machine learning 
approaches toward NLP were developed during the early 1990s 
([4], [10]). These supplanted earlier, deduction-based 
approaches toward NLP. 
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Froglingo is a system that unifies programming language and 
database management [24], [25]. It has a sub language, called 
the Enterprise-Participant (EP) data model which doesn’t need 
to have variables which is essential in programming languages. 
Like traditional database management systems, the EP data 
model manages business data with finite information. However, 
it is more expressive than the traditional database management 
systems because it also manages bounded functions with 
infinite information (a proper subset of the partial recursive 
functions). Mathematically, it is as expressive as Turing 
machines given infinite time and space. Equivalently, we say 
that the EP data model itself can be a sole tool to develop 
software applications without a programming language, 
although in a very inefficient way [21], [22]. For practical 
efficiency in software development, we add variables on the top 
of the EP database. The combination of these two is called the 
Froglingo system, which allows uniformly databasing of both 
business data and business logic, i.e., the semantics represented 
by programs and databases. Since database systems (like 
relational databases) are more productive than programming 
languages in managing information, as we have observed 
through practices, Froglingo is more productive than both 
programming languages and relational database systems. We 
believe that Froglingo’s uniformly higher productivity over 
business data and logic combines the “single formal paradigm” 
of the neat approaches with the “fine-tunning” of the scruffy 
approaches. 

In other words, the EP data model is interpreted by an 
extended lambda calculus, where a database is expressed by a 
finite set of lambda terms (possibly with assignments), simply 
abbreviated as ‘terms’ in this paper, which have unique weak 
head normal forms and can be effectively reduced to their weak 
head normal forms [21]. A database approximates a finite set of 
terms having head normal forms. When a database collects 
more data, it more closely represents the approximated head 
normal forms. The union of all such databases together is 
mathematically the union of all lambda terms with head normal 
forms, i.e., semantically equivalent to Turing machines. 

With the limitations of inductive approaches and with the 
more productive Froglingo system becoming available, we 
revisit the feasibility of a deductive approach to NLP. This time, 
we use terms in Froglingo to uniformly represent a finite set of 
entities and actions. Because of the high expressiveness of 
terms, all kinds of syntactical forms and semantic meanings in 
natural languages, such as homograph, word sense, coreference, 
and idiom are naturally fit into the expressions in terms. Since 
a term has a unique (weak head) normal form, we calculate the 
unique meaning of a sentence by reducing the term expressing 
the sentence. Because of the deductive nature of the Froglingo, 
the NLP system can detect ambiguities. Because of the high 
productivity in Froglingo, the amount of software engineering 
work, which was one of the major concerns to the machine 
learning approaches, can be significantly reduced. 

Entities and actions are discussed in Section II and III 
respectively. During the discussion, we show by examples the 
intended English phrases and sentences that will be mapped to 
corresponding entity and action representations in the database.  

When a thing is uniquely distinguished by itself in the world, 
it may contain other things semantically. In Section IV, we give 
a representation of the abstractions embedded within things.  

Natural languages use invariant linguistic structure to convey 
the semantics of things. Therefore, we say that human beings 
utilize abstractions within linguistic structures to understand 
more about things without knowing much about them. Multiple 
sentences or phrases can be equalized no matter what things are 
conveyed. In Section V, we represent such equivalent 
abstractions in the NLP system. 

In addition to the syntactic expressions introduced in these 
sections to represent things, there are other syntactic 
expressions that facilitate and enrich the communications about 
things using natural languages. These include prepositional 
phrases (p-phrases), which may not necessarily be part of the 
representations discussed in sections II to V, and conjunctions. 
We discuss how the NLP system represents these syntactical 
forms in Section VI. 

With all possible syntactical forms considered, we describe 
the parser of the NLP system in Section VII, which breaks client 
input streams into pieces for the representations discussed 
above. In this section, we also show that the parser is deductive, 
and therefore the NLP system is deductive. In Section VIII, we 
define a state of parsing at which the NLP system claims that it 
“understands” an input stream. 

Communications between people are always “friendly”, a 
concept introduced from research in human-machine 
interactions. People are able to convey a single topic in various 
ways via different words, phrases, and sentences with different 
verb moods, auxiliary verbs, and context. People may have 
completely different responses to a request or an inquiry 
depending on their personality and their psychological state at 
a given time. In Section IX, we use extensive examples to 
demonstrate that the NLP system has been implemented with a 
few initial features to mimic people’s certain behaviors in 
communication. Code generation is part of natural language 
generation. To show the difference between the NLP system 
and the contemporary programming languages, however, we 
discuss this topic separately in Section X.  

 

II. ENTITIES 

A thing, i.e., an entity or an action in the world, cannot be 
completely represented in a computer. It can, however, be 
approximated. In this section we discuss the representation of 
entities; the representation of actions will be covered in the next 
section. The process of representing an entity starts with a 
single identifier, a term, in Froglingo to be created in a database. 
For example, we add the entities joe, walmart, pnc to a database 
via the built-in operator create: 

 
create joe; 
create walmart; 
create pnc; 
 

Noun phrases are intended to be mapped to these terms. A 
few potential examples include Joe, the old who sites on a 



 

 
 

bench; walmart, the store at the corner; the pnc bank; and the 
bank I have an account with. These phrases can be parsed and 
identified from client input stream by the parser.   

Note that as part of the current design, all text entered by 
clients will be converted to lower case in the NLP system. This 
allows the system to use identifiers with capital letters as built-
in tokens for the purpose of internal system processes. For 
example, Inherit and Belong (to be discussed below) are two 
such tokens, which will be distinguished from inherit and 
belong, converted from client input in the same database. 

To provide abstractions, i.e., semantic containment 
relationships among entities, we introduce types in a database. 
Similar to a class in object-oriented programming languages, a 
type is a profile that define a set of common attributes and 
actions (to be discussed in the next section) that its instances, as 
entities, share. Here we give a few sample types that will be 
discussed through the paper. Types are introduced by the built-
in operator schema (a new operator not discussed in the earlier 
papers regarding Froglingo): 

 
schema thing; 
schema entity Inherit thing; 
schema organization Inherit entity; 
schema bank Inherit organization; 
schema store Inherit organization; 
schema action Inherit thing; 
schema person Inherit organization; 
schema male Inherit person; 
schema adult Inherit person; 
schema commodity Inherit entity; 
schema shirt Inherit commodity; 
 

The built-in token Inherit indicates that the type at the left 
inherits the properties of the type at the right. (Note that unlike 
with classes in object-oriented programming languages, the 
inheritance here is looser, i.e., we allow inherited types to add 
independently and over-write attributes and actions.) 

Now, we can bind entities to types upon a need from use 
cases. For example, we can bind pnc and walmart to bank and 
store respectively using the built-in token Belong: 

 
create pnc Belong bank; 
create walmart Belong store; 
create joe Belong male; 
create joe belong adult; 
 

We also allow a type to have multiple inheritances and an 
entity to have multiple belongings, as we have seen with male, 
adult, and joe.  

We can define additional attributes for previously defined 
types. For example: 
 
schema person weight = weight; 
schema bank account organization balance = currency; 

 
1 The expressions below are entered via the built-in operator create: 
Qw $x:[$x isa integer] lbs; 
Qw $x:[$x isa integer] kgs; 
Qw $x: [$x isa integer] hours; 
Qw $x:[$x isa integer] lbs $y:[$y isa integer] ounces; 
weight (Qw $x lbs) = $x; /* in lb*/ 

schema store inventory commodity number = integer; 
schema store inventory commodity price = currency; 
 

In the definitions above, we introduced additional types 
weight, number, and integer, where integer and number are 
built-in types in Froglingo with the property of integer Inherit 
number. The type weight is defined explicitly. Here are the 
terms to add it along with a few other types, which will facilitate 
our discussion throughout the paper:  
 
schema weight Inherit number;  
schema currency Inherit number;  
schema attime Inherit number; 
schema intime Inherited number; 
 

The type weight is for the weight of a physical object. For 
example, the NLP system supports the English phrases 80 lbs 
and 40 kgs. The type currency is for money in financial 
transactions, for example 80 lbs and 50 dollars. The type attime 
is for a point of time, e.g., 4:00 pm, on Sunday, on 01/21/2021. 
The type intime is for a period of time, for example 3 days, 52 
seconds, 23 years. In the examples, we see that 80 lbs could 
refer to either weight or currency. Given a sentence and its 
context, the NLP system parser determines if 80 lbs is for 
weight or currency. 

To fully support the numeric types discussed here, along with 
other potential numeric types in the future, the NLP parser was 
implemented to support expressions having a token Ow which 
allows various numeric types to be defined upon use case needs. 
A few sample expressions with Ow are given in the footnote1. 

With types introduced, we are now ready to add properties 
for entities by following their types’ profiles. Here are a few 
examples: 

 
 
create joe weight = 180; 
create joe inventory shirt number = 4; 
create pnc account joe balance = 90000; 
create pnc account walmart balance = 1000000; 
create walmart inventory shirt number = 4000; 
create walmart inventory shirt price = 100; 
 

With the sample properties above for joe, pnc, and walmart, 
the system will use its parser to accept English phrases like 
Joe’s weight, my account balance in PNC, and shirt’s price at 
Walmart. Note that the representation of an entity property, 
such as joe inventory, is also called an entity in this paper.   

We have shown abstractions established in the NLP system 
among types, entities, and entity properties. For example, joe is 
the abstraction of the collection of all Joe’s properties, such as 
joe weight and joe inventory shirt number. We also have shown 
that different English phrases may reference a single entity, e.g., 
pnc, the pnc bank, and the bank that I have an account with. 

weight (Qw $x kgs) = ($x * 2.2); /* in lbs*/ 
currency (Qw $x lbs) = ($x * 1.31); /* in dollars */ 
currency (Qw $x dollars) = $x; 
intime (Qw $x hours) = ($x * 3600); /* secs*/ 
intime (Qw $x hours $y:[$y isa integer] minutes) = ($x * 60 + $y); 



 

 
 

Fixed phrases represent entities themselves, such as Mount 
Everest and New York City. Therefore, we can have new york 
city Belong location when location is defined as a schema. We 
can make two phrases equivalent via an equation: create new 
york city = nyc. 

We count mathematic functions as entities as well. Here is an 
example which will be further used later: 
 
create multiplication $n1: [$n1 isa number]  

      $n2: [$n2 isa number] 
= ($n * $2); 

 
Starting from the next section, we will no longer precede 
expressions to be added into a database with the operators 
create or schema. 
 

III. ACTIONS 

Things also include actions (or events) that are taken by entities, 
which have impacts on other entities. The entities discussed in 
the earlier section can be inventoried in database before they are 
categorized with types. The actions to be introduced here, 
however, have to be categorized into types (here called 
templates) before they can be expressed in the NLP system. A 
template is a profile mostly for simple English sentences, i.e., a 
minimum structure the author of the template believes is 
sufficient to represent a set of actions. Here are a few sample 
templates in a database: 
 
person (Vw cry); 
person (Vw provide) $p: [$p isa person] (Prew with)  thing; 
person (Vw talk) (Prew with) $p: [$p isa person]; 
organization (Vw acquire) $o: [$o isa organization]; 
thing (Vw surprise) person; 
 

In a template, the verb is always in its original form, positive, 
and active. It is always preceded with a special token Vw for the 
convenience of parsing. Similarly, a preposition is always in its 
original form and preceded with a special token Prew. If 
necessary, articles, pronouns, adjectives, and adverbs can be 
part of templates as well. They are preceded with Thtw, Prow, 
Ajw, and Avw respectively. The positions of subjects, objects, 
and prepositional objects are in general filled with types. They 
can sometimes be filled with noun phrases, noun clauses, 
infinitive phrases, or gerund phrases for entities or actions, 
which will be further discussed later in this section.  

Types and variables like $p: [$p isa person] are placeholders 
for noun phrases, action nouns, noun clauses, infinitive phrases, 
or gerund phrases that represent things. In a parallel to global 
variables in programming languages, types are globally 
recognized variables in a database.  A template is normally 
started with a type. We can use either a type or a variable in the 
place of an object in a template. A type is simpler to present and 
read when it is at the position of an object. A variable is needed 
at the position of an object when the object is placed with the 
same type that has been in the place of the subject, such as the 

 
2  See the papers [12, 14] for more information about Froglingo built-in 

operators {+ and isa that appeared in the paper.  

type person at the position of the subject in the template: person 
(Vw provided) $p: [$p isa person] (Prew with) thing, where the 
variable $p is used for another set of individuals as type person. 
A variable is also needed when we need to narrow the scope of 
the entities functioning as the object, which cannot be done by 
a whole type, such as $p: [$p isa person and person weight > 
180]. 

With templates, the parser tries to break down a sentence and 
match the sentence to one of the templates. Here are a few 
sample sentences targeted by the templates above: 

 
She didn’t cry;  
He gave her a bouquet of flowers; 
Mary is talking with the person behind the door;  
This company has been acquired; 
Her appearance surprised me; 
 

When we use a sentence to communicate a concept, we try to 
articulate it as clearly and precisely as we can. Similarly, we use 
templates to represent groups of sentences as closely as 
linguistic structure allows. For example, we can make the 
following templates for the commonly used word take: 
 
person (Vw take) $s1: [$s1 isa commodity]; 
person (Vw take) $s2: [$s2 isa idea] (Prew (in spite of)) thing; 
person (Vw (take $some: [$some isa wear] off)); 
person (Vw (take off)) days; 
airplane (Vw (take off)); 
business (Vw (take off)); 
person (Vw take) vacation (Prew in) location; 
 

This exercise may be not exhaustive. We can always add 
templates or modify existing ones when a new use case arises.  

Sometimes, we may find certain entities have very unique 
actions that are not categorized with a type. We can directly 
build templates for these specific entities. For example, running 
is not an action everyone takes daily. Therefore, we may have 
a template person (Vw run) for the type person, and additionally 
add another one specific for joe: 
 
joe (Vw run) (Avw everday); 
 

A template can be assigned with a value. For example 2: 
 
bank (Vw transfer) currency  

(Prew from) $frm: [$frm {+ bank account]  
(Prew to) $tow: [$tow {+ bank account]  

 = (update $frm balance = ($frm balance - currency)), 
(update $tow balance = ($tow balance + currency))), 
Botape (bank “transfer” currency “from” $frm “to” $tow 
 “;”); 

 
The following sample sentences are intended to be  mapped 

to the template above by the parser: 
 



 

 
 

PNC transferred 100 dollars from Joe’s bank account in PNC 
to the PNC bank account of Walmart; 

 
Similarly, we can construct templates for sentences that 

describe entity properties or states instead of actions. Here are 
a few examples: 
 
number (Arew be) $n: [$n isa number] = (number == $n); 
entity (Arew be) $e: [$e isa entity] = (entity == $e); 
 

With the sample database constructed in Section II and for 
the expressions: 2 is 2; 2 is 3; and Joe is the person whose bank 
account balance at PNC is 10000 dollars, the NLP system will 
have responses like: yes, no, and yes respectively. 

When the auxiliary verb have is the main verb of a sentence, 
it shows the object is a property of the subject. Here is a sample 
template having have: 
 
entity (Hasw have) $e: [$e isa entity] = there_is $x where 
     ((($x (= entity) and ($x {=- $e)) or  
  (($x (= entity) and ($x == $e)));3 

 
With this template and the database constructed in section II, 

the system will accept the following as sentences: Joe has a 
weight, Joe has an account, Joe has 90,000 dollars; PNC has 
Joe; PNC has 90,000 dollars.  

There are more expressions using have. For example, I have 
a boss who is grumpy, and I have a park where I take a walk 
every day.  These would have to be added with new templates 
like: entity (Hasw have) boss, entity (Hasw have) area, where 
boss and area would have been defined as types. 

When the auxiliary verb do is the main verb of a sentence, it 
functions as the abstraction of the actions that may not be 
explicitly mentioned in the sentence but can be derived from 
context. For example, when a person asks: did you have dinner 
yet?,  another person may answer: Yes, I did. The sentence what 
can I do for you? would bring the following contexts together 
although all pieces are not be explicitly mentioned together in a 
single sentence: all the actions I can take (which are represented 
in sentences in the NLP system as we will discuss in the later 
sections) and the action you need me to take (which is carried 
by the sentence you will provide in an answer). With that said, 
the semantics of some sentences, like those with do as the main 
verbs, cannot be explicitly expressed because the sentences 
don’t provide a reference to their contexts. Instead, we allow a 
template to have an assignment with a built-in operator Context 
to be the assigner. For do, we may have a template: 
 
person (Dow do) End = Context Do; 
 
Do may be one of many other tokens the operator Context takes 
to perform special tasks for sentences with Dow do as the main 
verb. These special tasks, along with Context, can be coded as 
part of the implementation and maintenance of the NLP system. 
 

3 The expression at the right is read: 1) if there is a term $x such that $e is 
the outer most sub term of $x and entity is a subterm of $x, then entity has $e. 
If there is a term $x such that $x can be reduced to $e, then entity has $e. 

They also can be expressed in the database by the authors of 
template using Froglingo (which hasn’t been implemented yet 
as part of the NLP system).  

Similarly, we use Context to build templates for the pronoun 
it when it is used to express a time: 

 
(Prew it) (Arew be) intime End = Context It_be; 
(Prew it) (Arew be) attime End = Context It_be; 
 

When a client enters: I bought a shirt from Walmart. It has 
been 3 days, the NLP system will be able to correlate the two 
sentences together. (Note that the information about the verb 
tense and the time value are available to Context when it is 
processing.) 

In the three templates provided above, we used the token 
End. Its inclusion in templates is usually optional. However, we 
need it if one template is a leftmost subterm of the other. For 
example, we need at least another template in addition to person 
(Dow do): 
 
person (Dow do) action; 
 
where action is the type for action nouns, which has been 
introduced in Section II and will be discussed further. For 
example, I am doing my homework is a sentence that will be 
matched with the template. When the template person (Dow do) 
action is defined as a term, a leftmost subterm such as person 
(Dow do) cannot have an assignment in Froglingo. The token 
End helps assign a value to person (Dow do). 

There are some verbs such as like, desire, want, plan, and 
promise which take persons as subjects and infinitive or gerund 
phrases as immediate objectives. For example, Joe likes to 
purchase shirts. These sentences are distinctive in that their 
secondary verbs express the degree of the subjects’ desire in 
performing their actions. The sentence above, for example, can 
be understood to imply an action (Joe purchases a shirt) which 
is intended by Joe and a degree to which Joe has made up his 
mind to perform that action. To represent the degree of peoples’ 
desires in taking actions, we group the two verbs together to 
express peoples’ thinking, desiring, promising, etc. We will 
collect these kinds of structures in templates such as: 
 
person (Vw (would like)) (Prew to) Infinitive; 
person (Vw like) (Prew to) Infinitive; 
person (Vw want) (Prew to) Infinitive; 
person (Vw plan) (Prew to) Infinitive; 
person (Vw promise) (Prew to) Infinitive; 
person (Vw confirm) (Prew to) Infinitive; 
organization (Vw keep) Gerund; 
 
where the special token Infinitive or Gerund indicates that the 
following sentence structure is an infinitive or gerund phrase. 
Combining two verbs into a single template simplifies semantic 
processing after parsing. 



 

 
 

In a database, we can accumulate as many templates as we 
need. We assume that we will model only a finite number of 
types. There is a finite number of verbs and verb phrases. Each 
sentence contains a finite number of words. These determine 
that we need a finite set of templates to model all sentences that 
can potentially be used in our daily lives. 

In this section, we discussed templates with assignments that 
reflect the impacts of actions conveyed by matched sentences. 
In the coming sections, we introduce special built-in operators 
Botran, Botalk, Botape, and Bothink that use assignments to 
mani4pulate English sentences. This rule is not about action 
impacts, but helps natural language generation. 

When a client enters a sentence in past tense, the NLP will 
record all the break-down information about the sentence 
including its matched template. For the purposes of this paper, 
however, we will use sentences exactly as entered by clients. 
The sentence below is an example which will be further 
discussed in later sections: 

 
joe purchased a shirt from walmart; 
 

IV. ABSTRACTIONS I 

When multiple sentences can be summarized in brief with 
one sentence, we call the briefing sentence an abstraction, 
saying it abstracts (in brief) the actions expressed by multiple 
sentences. In the section above, we gave an example involving 
money transfer in a bank using the word (Vw transfer), which 
triggers two operations using the built-in operator update. The 
template containing Vw transfer is an abstraction. An 
abstraction can be a component of another abstraction, i.e., 
calling another abstraction. Here is an example of an abstraction 
calling the abstraction containing the verb Vw transfer:  
 
organization (Vw donate) currency (Prew to)  

$o: [$o isa organization]  
=  
Botran (organization “transfer” currency  
“from pnc account” organization “balance to pnc account” 
$o “balance.”), 
Botape (“Thank you” $o “for your work! Sincerely,” 
organization); 

 
Given a client input such as  

 
I am Joe. I would like to donate 1,000 dollars to the American 
Red Cross Homeless Shelter, 
 
the NLP system will proceed to make a transaction transferring 
1,000 dollars to the shelter organization, which also has an 
account with pnc.  

In the template above, the token Botran, an abbreviation for 
“bot transfer”, is a built-in operator which re-parses the string 
generated from its parameter (i.e., the term within the 
parenthesis following Botran) within which the variables are 
substituted with passing values. In the given sample client 
input, for example, the resulting string would be Joe transfer 
1000 dollars from pnc account Joe balance to pnc account 

american red cross homeless shelter balance. When this string 
is parsed, the template having the verb Vw transfer will be 
matched, and eventually be executed, which further triggers the 
execution of the built-in operations of update. The operator 
Botran itself doesn’t perform tasks for the client but acts as a 
messenger to invoke another template. 

Similar to Botran, the token Botape, an abbreviation meant 
for “bot tape”, will re-parse the string from the following term 
with its variables substituted. Instead of involing another 
template, it simply returns a message to clients. In addition to 
responding to clients, the operator Botape tapes (records) this 
message as a record for future reference, which will be 
discussed further in Section IX. In the example where Joe 
donates 1,000 dollars, the output from Botape would be Thank 
you the American Red Cross Homeless Shelter for your work! 
Sincerely, Joe. 

When a template is an abstraction and invokes another 
template, we say that abstraction is transitive. Such abstractions 
help to relate sentences. For example, if Joe forgot that he 
donated 1,000 dollars, he might ask: Why did my bank account 
balance at pnc became less? By tracing the structure within the 
template for donation and by tracing transaction history, the 
NLP system will be able to respond with: because you donated 
1,000 dollars to the American Red Cross Homeless Shelter. 

So far we have discussed abstractions that are driven from a 
given task, i.e., templates, to introduce subtasks, i.e., a sequence 
of values (called assigners in [21], [25]) at the right hand sides 
of the template assignments. Subtasks are constrained and 
shaped by given tasks. For example, a donation must imply a 
money transfer. There are other kinds of abstractions where 
subtasks don’t have any constraints, or where we are not aware 
of any constraints. In the example Joe took a vacation in 
Chicago, we are unaware of any constraints, as Joe might have 
done anything he liked on his vacation. For such abstractions, 
we don’t have template assignments available to connect 
related actions in a database. However, we can record such 
abstractions. Given subtasks such as: During the vacation, Joe 
visited Willis Tower and visited one of his friends, the NLP 
system would record the subtasks as assigners of the given 
action:  
 
joe took a vacation in chicago =  

joe visited willis towner,  
joe visited one of his friends.  

 
From this example, we can observe that abstractions can be 

built along with actions when the corresponding templates lack  
assignments. With the record above for an abstraction, the 
system would be able to answer questions like: What did Joe do 
during his vacation? Did he visit Willis Towner? 

In the record above, the verbs are in past tense to indicate that 
the actions were not made by the NLP system. When this record 
is referenced in the future, the NLP system treats it as gossip, 
i.e., it could be true but is not validated. When actions are made 
by the NLP system, the actions are recorded in present tense. 
For the example where Joe made a donation, the actions (the 
abstraction) would be recorded as: 

 
joe donate 1000 dollars to american red cross homeless shelter 

= 



 

 
 

pnc transfer 1000 dollars from pnc account joe to pnc 
account american red cross homeless shelter,  
Thank you the american red cross homeless shelter for your 
work! Sincerely, Joe. 

 
In the NLP system, sentences in present tense indicate that the 
corresponding actions are verified facts, as the system itself 
made the actions. 

V. ABSTRACTIONS II 

In the previous section, we constructed templates that support 
abstractions among actions. In this section, we continue to 
construct templates for the abstractions embedded in linguistic 
structure. First, action nouns are often used to brief sentences. 
For example, the following two sentences are related together 
by the verb paint and the noun innovation: 
 
Joe painted his house.  
His family is very happy with the innovation. 
 

To support these abstractions, we inventory abstractions 
embedded among action nouns. Continuing the abstraction 
constructions using Inherit, which has been discussed in section 
II, we can add more examples for action nouns: 
 
move Inherit action; 
travel Inherit move; 
trip Inherit move; 
travel Inherit trip; 
improvement Inherit action; 
innovation Inherit improvement; 
repair Inherit innovation; 
conversation Inherit action; 
talk Inherit conversation; 
trade Inherit action; 
purchase Inherit trade; 
buy Inherit trade; 
 

Continuing from the discussion of Belong in Section II, we 
can construct abstractions between verbs and action nouns. 
Here are a few examples: 
 
Vw travel Belong travel; 
Vw purchase Belong purchase; 
Vw buy Belong buy; 
Vw talk Belong talk; 
Vw repair Belong innovation; 

 
With the constructions above, the system will be able to 

relate the following sentences in pairs: 
 
Joe repaired his car. The innovation saved him 2,000 dollars.  
Mary has been talking with Joe for 3 hours. The conversation 
is still going on. 

 
4 These types and templates are simplified for demonstrative purposes and 

may not be accurate in modeling the real world. 

 
Since many verbs, such as Vw go, Vw take, Vw paint, have 

different meanings in different contexts, certain abstractions 
cannot be built at a phrase level for these verbs and nouns. 
However, we can build abstractions at the sentence level. We 
begin doing so by adding more sample types and templates4, as 
demonstrated in Sections II & III, for various contexts:  
 
location Inherit entity; 
person (Vw travel)  (Prew to) location; 
person (Vw go) (Prew to)) location =  

Botran (person “travel to” location); 
chicago Belong location; 
 

Now, the system is able to relate the pair: I went to Chicago. 
I enjoyed the trip. 

To relate the earlier sentence pair containing the words paint 
and innovation, we add the following template (provided that a 
profile like house Inherit entity has been constructed): 
 
person (Vw paint) house Inherit innovation; 

 
The last kind of abstractions we will construct in this section 

is equivalencies between two templates. By doing so, we can 
define semantics (via assignment) only once for all equivalent 
sentences. 

Many synonymous verbs can be difficult to equate. But 
equating sentences with synonymous verb phrases is easier 
because we have subjects, objects, and prepositional phrases to 
constrain the semantics of the sentences. Here are a few sample 
assignments that equate pairs of templates using Botran: 
 
person (Vw go) (Prew to) location = 
 Botran (person “travel to” location “;”); 
person (Vw (walk away from)) $p: [$p isa person] = 

Botran (person “leave” $p “;”); 
person (Arew be) weight =  
 Botran (person “weighs” weight “;”); 
person (Vw (travel through)) area =  

Botran (person “travel” area “;”); 
 

There are many verb phrases which are not semantically 
equal but which are closely related. We can add additional 
information using prepositional phrases to equate them. Here 
are a few sample assignments with additional prepositional 
phrases: 
 
person (Vw drive) home  

=  
Botran (person “come home by car;”); 

organization (Vw get) commodity (Prew by) (Vngw purchase)  
= 
Botran (organization “purchase” commodity “;”); 
 



 

 
 

VI. PREPOSITIONAL PHRASES AND CONJUNCTIONS 

We have already introduced templates to process simple 
clauses. These templates provide the minimal structure which 
the author believes necessary to capture the actions the targeted 
sentences are intended to convey. As modifiers, prepositional 
phrases (p-phrases) can appear anywhere within sentences, but 
not necessarily within the templates we construct. This is the 
case for all p-phrases that modify nouns (or noun phrases). In 
addition, certain p-phrases, such as those for time and space, 
can be almost universally applied to verbs in any clauses. Take, 
for example, the phrase I walked in a park under the sun at 2:00 
pm Saturday. Adding such p-phrases to all templates would be 
a clumsy and inefficient way to introduce and maintain the 
templates. To resolve this issue, we introduce additional 
structures, called pp-relations in this paper, to capture the 
relationships between p-phrases and noun phrases or verb 
phrases.  

Given a pp-relation, there are three components: preposition 
(such as Prew before), the type of noun phrase that can follow 
the preposition, and the type of a noun or verb phrase that the 
p-phrase can modify. Here is a sample pp-relation: 
 
Prew at attime action; 
 

It says that a p-phrase for the type attime, like at 3:00 pm, 
can modify any action. Examples might include the party starts 
at 3:00 pm; Which party are you attending? It is the one at 3:00 
pm. With this pp-relation, the parser will proceed with the 
consideration that at attime is the time action takes place (with 
either past, present, or future tense).  
 
Prew for organization action; 
 

This pp-relation says that a p-phrase like for her son can 
modify an action, such as she does this for her son. With this 
pp-relation, the parser will proceed with the consideration that 
the purpose of action is for organization. 
 
Prew at organization entity = select $x where 
     ((($x {+ organization) and (entity {- entity))); 
 

This pp-relation says that a p-phrase like at PNC can modify 
another entity, such as Joe’s account. With this pp-relation 
having an assignment, the parser will validate and derive the 
resulting entity of the modified entity such as Joe’s account at 
pnc. When Joe’s account is considered as either Joe account or 
account Joe, as the way the NLP currently was designed, pnc 
account joe is determined as the resulting entity based on the 
select operation at the right side of the assignment and the 
provided the database described in Section II, which means that 
the parser substitutes the originally noun phrase with the 
resulting entity. 

Collecting pp-relations is sometimes more tedious and 

 
5  The representation of verbs and their various tenses generalizes 

homograph. For example, the word saw can function as a noun such as a saw, 
a verb in present tense Vw saw, and a verb in past tense Vedw saw for see.  

complicated than we have demonstrated here. For example, we 
need to deal with entities modified by multiple p-phrases (as we 
have done but not presented in this paper). We will eventually 
need to differentiate all usages, in various contexts, for a few 
commonly used prepositions such as for, of, and with. However, 
as long as we continue doing this alongside the modeling of new 
things, we will eventually exhaust all possible pp-relations. 

Before ending this section, we will briefly describe how 
conjunctions are processed in the NLP system. Conjunctions 
are important because they join other words and phrases 
together, allowing the relationships among multiple actions to 
be expressed explicitly. Without conjunctions, we could only 
make simple sentences and the relationships among multiple 
actions would be difficult to convey. Although parsing certain 
conjunctions, such as and and or, is tedious, their roles in 
English are invariant. Since the number of conjunctions is 
small, we hard-code the logic of parsing and processing 
conjunction words for now. Note that the actions connected by 
conjunctions are represented with the relationships determined 
by the conjunctions, which will be further utilized in natural 
language processing. 

 

VII. PARSING 

Given a Floglingo database defined with expressions 
representing entities, templates, and actions, the parser receives 
and parses a stream of words. Before the process starts, the 
database is collected with all words. In the form originally 
entered by clients, a word is considered as a noun (a word may 
not function as a noun, but we give it a chance to be a noun for 
the time being). When a word can be considered as other 
syntactical functions, we add a special token in the front of the 
word. (for verb, we add Vw, such as Vw take; for adjective, we 
add Ajw, such as Ajw good; for adverb, we add Avw, such as 
Avw well; for preposition, we add Prew, such as Prew in; for 
pronoun, we add Prow, such as Prow it; and for conjunction, 
we add Cjw, such as Cjw and.) 

We also collect all idioms and fixed phrases and add their 
variant forms for their possible syntactical functions. For 
example, we have new york city, take advantage of, Vw (take 
advantage of), responsible for, Ajw (responsible for), in spite 
of; Prew (in spite of). 

To differentiate the different forms of a verb for its different 
tenses, we used special tokens Vedw, Venw, and Vngw for the 
past tense, the perfect tense, and the present progressive tense. 
Further we use the special token Etym to link them back to the 
verb original form itself. Here is an example 5: 
 
Vedw took Etym = Vw take; 
Venw taken Etym = Vw take; 
Vngw taking Etym = Vw take; 

 
Many words may be preceded with multiple special tokens 

as they can be used for multiple syntactical functions, such as 



 

 
 

Venw known and Ajw known. For a few commonly used words, 
such as do, have, what, is, would, we use only one special token 
in the front of each regardless its various syntactical functions 
(here we will not give the details). 

Given a stream of words from clients, the parser remembers 
what have been parsed, which is partially matched with a most 
left sub term of a template, e.g., the stream Joe takes an 
unforgettable vacation matches the left most sub term person 
(Vw take) vacation of the template person (Vw take) vacation 
(Prew in) location. 

 The parser takes the next word from the stream and figures 
out what a role of the word potentially plays in the template. An 
essential step of the parser is to identify a phrase from a client 
input stream that functions as a noun phrase (without a p-phrase 
or a noun clause as its modifier). Given that the parser has 
considered a stream segment as the first part of a potential noun-
phrase, which is represented by a type or an entity, say E, in the 
database, the parser will determine if the coming word, say W, 
can continue to contribute into the noun phrase. If W is a super 
type of E, or an instance of E, e.g., bank is a super type of pnc, 
or pnc is an instance of bank. If yes, the parser determines that 
W contributes into the phrase and chooses the instance as the 
resulting representation of the noun phrase, e.g., pnc. If E and 
W both are within a third term representing an entity, e.g., pnc 
and joe are both in pnc account joe, the parser determines that 
W contributes into the noun phrase and chooses the 3rd term 
(e.g., pnc account joe) to represent the resulting noun phrase for 
the time being. If E and W cannot be connected based on the 
database by the algorithm above, the parser determines that the 
W cannot contribute to the noun phrase. The parser continuing 
its parsing process by taking the noun phrase as it is and taking 
one of W’s variant forms, such as Prew in when W is in, as the 
next ‘word’ right after the noun phrase. If one variant form of 
W is found unfit, another variant will be tried next.  

This algorithm provides a flexibility to accommodate all 
potential phrases that make practical sense, even not in a good 
grammar structure. For example, we will allow pnc bank and 
bank pnc as valid phrases for pnc, and joe pnc account, pnc 
account joe as valid phrases for pnc account joe which is an 
entity in the sample database in Section II. 

With the algorithm for identifying noun phrases, the other 
parts of speeches are relatively easier in parsing because all 
other syntactic forms other than nouns have their prefixed 
tokens.  

If a sentence is written in a good grammar structure, which is 
modeled in templates and the database inventories sufficient 
knowledges that the sentence is concerned with, the parser will 
deterministically break down the sentence and identify a 
desired template. One exception is that some sentences may not 
be able to be broken down even they are in good grammar 
structures. These ambiguities happen when a p-phrase in a 
sentence follows an object after the verb and we cannot 
determine if the p-phrase modifies the object or the verb. Here 
is the well-known example [1], [6], [14]: 
 
He saw the girl with a binocular; 
 

A parser is able to detect the structures like the one above 
that potentially cause ambiguities. With a database that 
inventories entities and templates, the parser in this NLP system 
will further know what the entities exactly are in the positions 
of the objects and the prepositional objects. By referencing 
templates, pp-relations, and the entities in database, the parser 
will be able further diminish some ambiguities if not all. 

Nevertheless, ambiguities exist in natural languages, 
accidently or intentionally. If a sentence exists an ambiguity, 
the parser will detect it during the parsing process and will 
report an error or raise a question to clients for a clarification in 
English during a conversation. 

Many sentences don’t closely follow legitimate grammar 
rules but they make practical sense and are frequently used in 
our daily life. The NLP system accommodate these kinds of 
sentences by explicitly building templates for them. For 
example, the sentence she is 180 lbs, instead of she weights 180 
lbs, is often used for celebrities. We can build a template for it: 

 
Person (Arew be) weight = Botran (person “weighs” weight 

“;”); 
 

Replacing pronouns with the entities or actions that the 
pronouns are referring to is part of the parser’s job. It is done 
closely along with the process of breaking down sentences into 
pieces. We have given an example of understanding the most 
difficult pronoun Prew it in Section III. We don’t discuss 
further here regarding the rest of the pronouns. 

 

VIII. UNDERSTANDING  

When the parser matches an entire template, we say that the 
NLP system “understood” the parsed input stream, e.g., the 
parser found the template (Vw take) vacation (Prew in) location 
for the sentence I took a vacation in Chicago.  

When the parser consumed all the words in an input stream 
and didn’t reach the end of a template, the parser may be able 
to determine a template as the final state of parsing depending 
on specific circumstances. First, if the parsed portion of the 
template has become unique, i.e., there is no other templates in 
the database that share the parsed portion of the given template, 
then the parser takes the whole template as the final state. For 
example, given the template organization (Vw buy) commodity 
(Prew from) store, if there is no another templates in the 
database that has the left most sub term organization (Vw buy) 
commodity, and the input stream is I bought a shirt, then the 
parser will consider the entire template is for the client input 
stream even the input stream didn’t have information about the 
missing portion (Prew from) store. Different from 
programming languages where a function or procedure cannot 
be executed until all of its arguments are passed with values, a 
template here will be potentially walked through multiple times 
when the NLP system starts to evaluate it. Any missing 
information may be derived from the context, obtained from 
clients by a real-time interaction, or simply ignored as it may 
not be needed. 

Secondly, even if the parsed portion is a shared left most 
subterm of multiple templates, but if the parser searched those 



 

 
 

sentences that were recently processed in history and identified 
a template with the same left most subterm, the parser will take 
the history template as its understanding to the input stream. For 
example, when the parser had responded the client with a 
question: do you confirm to pay 100 dollars? (which will be 
further discussed in the coming section), and when the client 
responded: I confirm, where I confirm didn’t exhaust any one 
of the templates in the database, then the parser will consider 
that it understood the client’s intention: I confirm to pay 100 
dollars. 

Given that a parsed template has an assignment, the NLP 
system utilizes the reduction system of Froglingo to reduce the 
input sentence and the reduction process will always end with a 
unique state. It means that the system will manipulate the 
database (with searching and/or updating) and eventually 
respond the client in a way that will be discussed in the coming 
section. 

When the parser reaches the end of a template and noted that 
it has no assignment, the NLP system considers that it 
understood the input stream as it is, i.e., the input stream is in 
normal form. At the same time, it tries to correlate the input 
sentence with the parsed sentences in the history, and further 
respond the client in the way we will further discuss in the 
coming section. 

When the parser cannot find a distinguishing template, i.e, 
there are multiple templates share a left most sub terms for a 
given client input stream, the parser consider it as an ambiguity. 
It would have to respond by generating a question based on the 
multiple templates with the shared left most sub term. For 
example, if the client entered a stream: I took;, the parser will 
be able to identify at least two templates that share the same left 
most sub term person (Vw take) which matches the input 
stream. Such templates include: person (Vw take) $s1: [$s1 isa 
commodity]; and person (Vw take) $s2: [$s2 isa idea] (Prew 
(in spite of)) thing. In this case, the parser will generate a 
question like: What did you take, a commodity or an idea? 

 

IX. NATURAL LANGUAGE GENERATION 

As soon as the NLP system “understands” a sentence, it is 
ready to process the parsed sentence before generating a 
response. Given a set of entities in our real life, people have 
various interests from different angles. Even for a single topic, 
the questions can be expressed in many ways. Given an 
understanding to a sentence, different people may respond 
differently. The NLP system was designed to mimic 
(approximate) the friendly interactions people communicate in 
natural languages. In Section IV (Abstraction I), we have 
introduced the built-in operators Botran and Botape. There are 
two more builtin operators Bothink, an abbreviation of “bot 
think”, and Botalk, an abbreviation of “bot talk” that will be 
discussed in this section. They are the key components to utilize 
the linguistic structures embedded within templates for natural 
language generation.  

In this section, we use a short demo that has been 
implemented to demonstrate how templates are constructed to 
support conversations in English. In the demo, the NLP system 
acts as a sales person for a store. It makes transactions on 

product purchasing and returning. It answers general questions 
about products and returning policies. Consequently, the NLP 
system is a code generator that takes client input streams in 
English that drive the NLP to collect new entities and new 
types.  

A. Templates for product sales services 

Based on the entities built in Section II regarding joe, pnc, 
and walmart, we construct templates that allow the system and 
clients to interact to make sales transactions. Here is the top 
level template to accept requests or inquiries: 
 
organization (Vw purchase) commodity (Prew from) store  = 

p0 (Bothink ("is" commodity "available in" store "?")) 
organization commodity store; 

 
This template is intended for client requests of purchasing 
products, such as: 
 
I would like to purchase a shirt from Walmart;  
 

It is also intended for client general inquiries about sales, 
such as: 
 
Can I buy a shirt? 
 

In this subsection, we focus on the templates for transactions. 
We will come back to talk about general inquiries in the next 
subsection by using the templates for product return policies. 

The template above has an assignment that calls a function 
named p0. Before we give the definition for p0, we discuss the 
built-in operator Bothink, an abbreviation for “bot think”. Like 
the operators Botran and Botape discussed in Section IV, 
Bothink takes the following term ("is" commodity "available in" 
store "?"), substitute the variables commodity and store with 
passing values, such as shirt and walmart, to re-generate a 
string, e.g., is shirt available in walmart?. The string is parsed 
by the parser to match with the following template:  

 
commodity (Arew be) (Ajw available) (Prew in) store =  

(store inventory commodity number > 0); 
 

Instead of Botran’s calling another template, Bothink makes 
reduction itself to get a true or false answer back and passes it 
on to the function p0, which is defined as: 
 
p0 true organization commodity store =  

p1 (Botalk ("does" organization "confirm to pay" store (store 
inventory commodity price) "?")) organization commodity 
store; 

p0 false organization commodity store =  
(("Sorry, the product " + commodity) + "is out of stock."); 

 
If Bothink returns true, p0 will call p1 for a further reduction.  

Otherwise, p0 will return a message back to the client, such as 
Sorry, the product shirt is out of stock. This return message was 
generated without using Botape to indicate that no any 



 

 
 

transactions have occurred yet (we will see later that botape is 
used to signal a success of a transaction when the root level 
template is called).  

Similar to Bothink, Botape, and Botran, Botalk takes the term 
after it ("does" organization "confirm to pay" store (store 
inventory commodity price) "?") and regenerates a string like 
does joe confirm to pay walmart 100 dollars? by substituting 
variables with passing values and the value from the reduction 
of store inventory commodity price , e.g., walmart inventory 
shirt price = 100, where dollars was added because 100 was 
pre-defined as a currency dollars. Instead of trying to find an 
answer for the question, Botalk stops the proceeding and asks 
this question to the client. It waits until the client responded 
again such as: 
 
I confirm to pay 100 dollars; 

 
Note that the wordings from clients don’t have to exactly 

follow the wordings in a question, as long as the parser 
“understood” the response, e.g., by matching the response with 
a substring of the question the NLP system had asked earlier. 
(By “understanding”, we also meant any other means that work 
in our daily life will work here. For example, a client response 
may be: Yes, I confirm.) Botalk and the three other operators 
enable a friendly interactions between the NLP system and 
humans in English.  

As soon as Botalk got an answer, the reduction process is 
resumed and eventually Botalk passes client’s answer, true or 
false in this case as a statement is considered as an assertion, to 
the function p1, which is defined as: 

 
p1 true $o:[$o isa organization] $c: [$c isa commodity] $s = 

(Botran ($o "pay" $s ($s inventory $c price) "dollar;")), 
(update $s inventory $c number= 

($s inventory $c number-1)), 
Botape ($o "receive" $c "from" $s "at" timestamp "EST;"); 

 
where, Botran will eventually identify and call the following 
template: 
 
organization (Vw pay) $s: [$s isa organization] currency =  

Botran (“pnc transfers” currency “from” (pnc account 
organization) “to” (pnc account $s)); 
 
With two Botran calls above, the client will receive the 

following confirmation: 
 
pnc transfers 100 dollars from pnc account joe to pnc account 

walmart at 2022/03/09 20:23:13 EST. Joe receives a shirt 
from walmart at 2022/03/09 20:23:13 EST. 

 
The NLP system is implemented to use present tense to 

represents actions that are deemed as a fact and past tense to 
represents gossips, i.e., actions that are not considered authentic 
yet. 

The same set of templates are also used to support general 
inquiries from clients. For example, when a client asks Can I 

buy a shirt?, the NLP system will be able to respond like: you 
would have to confirm to pay 100 dollars if the NLP system 
notes that the walmart inventory has 1 or more than one shirt. 
We will talk more about it in the coming section. 

B. Templates for customer support services 

Things are inter-related. When the sales data from the above 
subsection is established, it can be referenced for other actions. 
In this section, we give templates for a “walmart customer 
support services” that have access to the sales data from the 
“walmart product sales services” as discussed earlier.  

Through the discussion, we also extensively demonstrate the 
flexibilities the NLP system offers to clients when the clients 
make inquiries with limited information available to the NLP 
system.  

Here is the top-level template to receive requests for product 
returns: 
 
organization (Vw return) commodity =  

r0 (Bothink ("did" organization "buy a" commodity "from 
walmart?")) organization commodity; 
 
To simplify our discussion here, we reduce the number of 

variables by removing the profile of (Prew from) store for p-
phrases such as from walmart from the template. We simply 
assume that all clients reach out to the NLP for returning 
walmart products. The template is completely defined with the 
following additional definitions:  
 
r0 true $o: [$o isa organization] $c: [$c isa commodity] =  

r1 (Bothink ("how many days has it been?")) $o $c; 
r0 false $o: [$o isa organization] $c: [$c isa commodity] = 

(("I was unable to find out a record showing that you bought" 
+ $c) + "in our inventory;"); 

r1 $m:[$m isa number] $o: [$o isa organization] $c: [$c isa 
commodity] =  

Bothink ("if" $m "is within 30 days," $o "gives walmart" $c 
"and walmart pays" $o "what" $o "paid; if" $m "is more than 
30 days and" $m "is within 365 days, walmart repairs" $c 
"for free; if" $m "is more than 365 days, walmart doesn't 
offer a service for" $c ";"); 

number (Arew be) (Prew within) $n: [$n isa number] = 
(number <= $n); 

number (Arew be) (Prew (more than)) $n: [$n isa number] = 
(number > $n); 

organization (Vw give) $p: [$p isa organization] $c: [$c isa 
commodity] =   
(update organization inventory $c number = (organization 
inventory $c number -1)), 

    (update $p inventory $c number = ($p inventory $c number 
+ 1)), 
botape (organization "gives" $p $c ";"); 

organization (Vw repair) commodity = 
 Botape (organization “repair” commodity); 
organization (Vw offer) service (Prew for) commodity  =  

botape (organization "offer service for" commodity ";"); 
 



 

 
 

With the definitions (note that the last two templates were 
simplified for this demonstration only), we describe how the 
NLP system reacts differently to three expressions that are 
matched with the tope level template: 
1. A short inquiry with minimum information available (even 

without know the client’s identity): 
 
Can I return a shirt? 

 
This expression provides all information that the NLP system 

needs to parse and identify the template. At this moment, the 
NLP system only knows the value shirt for the variable 
(argument) commodity and who made this inquiry is unknown 
(the variable organization doesn’t have a value). In stead of 
trying to ask a question to get an answer from the client, the 
NLP system goes ahead to walkthrough 6  the assigner (the 
function r0 and its parameters). Since organization appears in 
the term ("did" organization "buy a" commodity "from 
walmart?"), which means that Bothink will not get an answer 
from this term, and since the expression is a general inquiry, 
Bothink doesn’t stop the proceeding but tells the function r0 that 
it has no answer (except for the type it supposed to return). 
When r0 isn’t able to get a true or false value from Bothink and 
when r0 knows that the process is for a general inquiry, it moves 
forward by trying out both true and false values. This strategy 
will allow the NLP system to further investigate to see what will 
happen by making an assumption that Bothink had returned a 
specific value. This process will continue recursively until it 
finds all tokens Botape reachable from the root template of the 
walkthrough. Once it finishes the walkthrough, it starts to 
prepare a response message by regenerating natural languages 
from the assumptions and the Botape clauses that had been 
walked through. Here is the generated message for the question 
Can I return a shirt? when I is unknown: 
 
You must have bought the shirt from walmart. We will see how 
many days it has been. If the number is within 30 days, you gives 
walmart the shirt and walmart pays you what you had paid. If 
the number is more than 30 days and the number is within 365 
days, walmart repairs the shirt for free. if the number is more 
than 365 days, walmart doesn't offer a service for the shirt. 
 

The message was polished to meet the altitude and tendency 
of the client based on the verb itself, the verb mood, and 
potentially model auxiliary verbs in a sentence. To respond 
differently to client requests and inquiries, we collect patterns 
of sentence structures with certain verbs, verb moods as well as 
auxiliary verbs that indicate clients’ desire rated with a degree. 
Here is a sample collection in the order of increasing desires 
[5]:  
 
person think of doing thing. 
may person do thing? 
could person do thing? 
 

6  In a programming language, we execute a function (procedure) by 
providing values for all the arguments of the function. In a parallel, here we 
allow a template to be executed (reduced) without values for some arguments. 

can person do thing? 
person plan to do thing. 
person promise to do thing. 
person (would) like to do thing. 
please do thing for person. 
 
2. An inquiry with a little more information (still without 

knowing the client’s identify): 
 
I bought a shirt from Walmart. It has been 3 days. Can I 
return it? 

 
With the two past tense sentences, the NLP system records 

the sentences and tries to correlate them with previously parsed 
sentences. Assume that there is no any sentence in history that 
is related to the first sentence, i.e., I was not mentioned earlier, 
the NLP system records this sentence (marking the beginning 
of a new conversation). When it parses the second sentence, it 
will match it with the template Prew it (Arew be) intime. This 
leads the system to calculate the time period 3 days earlier than 
today (as discussed in Section III) and take the calculated date 
as the occurring date for the action represented by the first 
sentence. As a result, the NLP will combine the two sentence 
and have the following record in the system: I bought a shirt 
from Walmart at 2023/03/09 20:23:13 EST.  

When the NLP system parses the third sentence (the question 
from the client), it will try to determine which template the 
sentence - can I return it? - will be matched with. Along with 
this decision, the NLP needs to figure out if it is the pronoun for 
shirt – a commodity or the action of I bought a shirt in the 
history. 

If the database has the only template organization (Vw 
return) commodity that can be potentially matched with the 
question, the NLP system would simply make the match 
because shirt, a commodity, is the only choice for the pronoun 
it.  

The question is: Is it possible to have another template down 
the road that matches client’s question as well? If such a second 
template existed, it would look like: organization (Vw return) 
action, because it in the question can also be the pronoun for 
the action of I bought a shirt in the history.  

Checking an English dictionary, we noted that an object in a 
sentence taking Vw return as the main verb is normally an 
entity. An action can be such an object for Vw return, but it is 
about giving or performing in return to a previous action, for 
example, return his call and return a compliment. So the action 
of a person’s purchasing a commodity will not act as an object 
of a template with Vw return as the main verb. Therefore, the 
template organization (Vw return) action can be re-defined 
with a narrower scope than action at the position of the object, 
such as the resulting template may looks like: organization (Vw 
return) $a: [$a isa call or $a isa compliment]. Such a 
redefinition would require a greater effort, but make the NLP 
system smarter as it reduces the degree of ambiguity. 

In the field of static program analysis, we walkthrough program source code 
outside of program execution. In a parallel, here we walkthrough templates for 
partial execution (reduction). 



 

 
 

Nevertheless, the NLP system goes back to clients for a 
clarification by raising a question whenever it meets an 
ambiguity. For example, the question would be for the example 
discussed above:  
 
Would you like to return the shirt or your purchase? 

 
With the parsing process accomplished, the NLP system will 

walkthrough the same assigner that had been walked through in 
our previous use case. This time, however, the NLP system 
knows more about the inquiry: the purchase occurred 3 days 
ago. Knowing that this walkthrough is for a general inquiry 
which will not have any modification to the database, the NLP 
system will generate the following message:  
 
You would give walmart the shirt. walmart would pay you what 
you had paid. 

 
3. A request for transaction without adequate information 

from client:  
 
Hi, I bought a shirt from Walmart. I like to return it. 

 
Since the client this time wants to make a transaction to 

modify the database, the NLP system will need to obtain all 
necessary information to complete the transaction. Since I is 
still unknow and it is requested in the clause (Bothink ("did" 
organization "buy a" commodity "from walmart?")), the NLP 
system will generate the following message based on the 
template organization (Vw return) commodity: 
 
May I know who likes to return a shirt? 
 

As soon as the client identified himself, say I am Joe for the 
sample database discussed in this paper, the NLP system will 
continue to walkthrough the rest of the assigner, as it has done 
for the two earlier use cases. Since it has all information it needs 
this time, it will make a final transaction depending on how 
many days the product has been purchased. For a product that 
had been purchased for 3 days, the return message will be: 
 
You give walmart the shirt. walmart pay you 100 dollar. 
 

X.  CODE GENERATOR 

From the earlier subsections, we saw that client’s text 
message in English can drive the NLP to produce outputs in 
English, which is enabled by templates created by their authors. 
Rather than directly asking the question of if client’s text 
message can drive the NLP to produce Froglingo code or 
another programming language code, we ask this question: can 
English itself be a programming language which takes English 
sentences 1) as its executables and 2) as a tool to generate 
source code? We answer these two questions in this section. 

We have already seen that the NLP system takes English 
sentences and produce outcomes in English. So English 
sentences are executables. Can English sentences as 

executables be as expressive as Turing machine?  We give a 
template for the factorial function to show that English 
sentences can be executables equivalent to Turing machine 
(which itself is not a surprise as a natural language is a super 
language of any programming languages. But this result claims 
that we have a tool now, the NLP system, that uses natural 
language to drive machines as effective as programming 
languages): 

 
fac (Vw take) $n:[$n isa number] (Prew to)  
     (Vw produce) $m:[$m isa number]  
=  

bothink ("if" $n "is 0," $m "is 1 or" $m is "the multiplication 
of" $n "with what fac takes" ($n -1) "to produce;"); 

 
Here is a conversation supported by the definition above 

which has been implemented as part of the NLP system: 
 
Client:   What does fac takes 4 to produce? 
System:  fac takes 4 to produce 24. 
Client:   Does fac takes 4 to produce 24? 
System:  Yes, fac takes 4 to produce 24? 
Client:   Does fac takes 4 to produce 25? 
System:  No, fac takes 4 to produce 24. 

 
The second question: Can we build some templates such that 

clients can intentionally create new types and new entities by 
giving commands in English that eventually drive templates to 
carry out the execution of the commands? The answer is yes.  
We can simply add the following templates into the database: 

 
newterm Inherit entity; 
newterm (Arew be) (Thtw a) type =  

schema newterm Inherit type; 
newterm (Arew be) (Thtw an) instance (Prew of) type = 
 create newterm Belong type; 
 

We can also enhance the NLP system such that its lexer and 
parser will accept new words or phrases from clients that are 
not in the database. It will first categorize them as type newterm. 
When the second or third template is called, the NLP system 
will change newterm to be type or an instance of type respective. 
Here are a few examples that trigger the creation of new types 
and entities: 
 
virus is an entity; 
covid is an instance of virus; 
mathematical function is an entity; 
fac2 is an instance of mathematical function which takes an 

integer to produce another integer; 
 

These will introduce the following into database: 
 
virus Inherit entity; 
covid Belong virus; 
mathematical function Inherit entity; 
fac2 Belong (mathematical function); 



 

 
 

 
With the new types and instances (entities) created above via 

English, similarly, we can introduce additional templates that 
allow clients to add properties for the types and instances. 

To complete the definition of fac2, we can add additional 
sentences right after the first sentence regarding fac2: 
 
If the former is 0, the second is 1. Otherwise, the second is the 
multiplication of the first with what fac takes the first integer 
minus 1 to produce;  
 

Since fac2 is defined as a mathematical function and if the 
type mathematical function has been enhanced with rules to 
define an instance, the NLP would know how to construct a 
template with assignment that would be identical almost to the 
definition of fac that we discussed earlier. 

The last question: Can the NLP system allows other 
expressions other than “is a type” and “is an instance” to create 
new types and entities, such as covid and fac2 respectively? If 
any equivalent expressions exist, the NLP system should allow 
various forms of equivalent expressions for the sake of the 
completeness of the NLP system as a code generator. We 
believe this completeness will become evident when the NLP 
system is accumulated with enough things and linguistic 
structures. On the other hand, the NLP system can always be 
constructed with equivalent templates (using Botran) to allow 
clients to express their requests in any newly discovered 
equivalent expressions, as the underneath entities are 
unchanged.  

 

XI.  RELATED WORK 

Given a finite set of things (entities and actions) as potential 
topics of natural language communications, there is a 
potentially infinite number of expressions (e.g., sentences) in 
natural languages regarding these things. Machine learning 
approaches don’t intend to represent these things directly. 
Instead they learn from a finite number of sentences from the 
past and make predictions about (the future of) these things. 
This approach cannot guarantee that the predictions are true. 
Linguistic structure has been recently emphasized as part of the 
machine learning approach to reduce false conclusions [11], 
[12], [19]. However, rather than representing things, linguistic 
structure merely represents the syntactical form of expressions 
in natural languages. Instead of inventorying sentences, the 
NLP system inventories the representation of things in terms 
and templates. This approach avoids the complexity of a 
statistical approach, which has to consider a potentially infinite 
number of samples in disciplines such as biology where the 
functions (things) to be computed are unknown. The NLP 
system can avoid such complexity because the EP data model 
uniformly databases all kinds of things conveyable in natural 
languages. It uses finite (memory) space to expose infinite 
properties of certain (bounded) partially computable functions.  

Although machine learning based approaches don’t 
guarantee correctness, they addressed certain NLP issues and 
have been widely used in our daily lives. Does a deductive 
approach work at all as a NLP solution for long-awaited 

applications such as natural language and code generations? 
The answer to this question is the most critically dependent on 
the quality of the parser: Does the parser precisely and correctly 
parse a sentence that is uniquely meaningful to the author and 
the readers of the sentence? The answer is yes, because we can 
simply add a new template or modify an existing template to 
cover the sentence if there is not an existing one. Can two 
sentences that are meant differently be reduced to a single 
value? It is impossible as long as we don’t construct the two 
templates that cover the two sentences respectively with 
assignments such that the two sentences be reduced to the same 
value. (In other words, the parsing structure and the semantic 
meaning of a sentence are fully controlled by the authors who 
construct the templates in a database.) As soon as a sentence is 
precisely and correctly parsed, i.e., the NLP system 
“understood” the sentence, the NLP system simply starts to 
reduce the sentence, during which nature languages or code are 
generated. 

To generate natural languages, machine learning based 
approaches do not necessarily “understand” sentences but 
generate outputs from learning. The result may not be 
necessarily accurate, but it doesn’t need software engineering 
to represent things (i.e., knowledges) referenced in the 
sentences. On the other hand, the Froglingo-based NLP system 
will be able to accurately generate results. However, it needs an 
effort of databasing knowledges to truly generate natural 
languages. Although this effort is a software engineering, the 
effort of doing so using Froglingo, the most productive tool, is 
significantly reduced from the programming effort of using the 
contemporary software development tools, such as BigData and 
the combination of a programming language and a database 
management system. In addition, the Froglingo based NLP 
system doesn’t require to database all knowledges before 
processing a sentence. For example, we may simply have a 
template: person (Vw take) walk without an assignment. It 
would keep the covered sentence joe takes a walk everyday as 
the weak head normal form itself without being further reduced. 
When the NLP system has limited knowledges, it will be able 
to answer limited questions. For example, the system will be 
able to respond: joe takes a walk everyday when asked: how 
often does joe take a walk?; the system would respond: I don’t 
know when asked: how much calories does joe burn by taking 
a walk every day?.  

Rather than predictions in machine learning based NLP 
approaches, the deductive NLP system gives precise 
conclusions that are derived from its database. Therefore, it can 
act as a specialist to perform tasks that don’t tolerate errors. For 
example, it can fill the role of a customer support ‘agent’ to 
answer client questions and to perform transactions; a ‘tutor’ in 
a classroom; a ‘counselor’ for personal, social, or psychological 
issues; and an ‘advisor’ providing reliable information before 
decisions are made. 

Code generation is another topic in NLP. Generating natural 
languages using neural language models, e.g., masked language 
modeling (i.e., predicting next words or masked words in the 
middle of sentences [11]) is the most challenging, because the 
targeted natural languages are  irregular in syntactical forms and 
the neural language modeling doesn’t have any context as 
reference (except for experience learned from the past). 
Generating formal languages (such as SQL and even the more 



 

 
 

complex Python [15], [26]) using neural language modeling 
should be relatively easier, because the targeted languages are 
simpler than natural languages. With enough information about 
words and linguistic structures in a database, the Froglingo-
based NLP system takes input in natural languages to generate 
natural languages. As a ‘natural’ programming language, it 
takes input in natural languages to generate Froglingo 
expressions that drive to accumulate more entities and actions 
from various disciplines in the world. The NLP system works 
as a natural language and code generator because the generation 
process is driven by templates (for action profiles), terms (for 
entities), and sentences (for actions) in a database. 

A neural language model that produces natural languages or 
linguistic structures (e.g., treebanks) normally doesn’t detect 
ambiguity. The neural language models that work as code 
generators, e.g., semantic parsers [2], [9], [26], can detect and 
eliminate ambiguities by interactions, because targeted formal 
languages like SQL are simpler than natural languages. The 
Froglingo-based NLP system which generate both natural 
languages and Froglingo expressions, is also able to detect and 
eliminate ambiguities by interaction, because of the formal 
language Froglingo, as well as the templates and the context in 
its database. 

When applying a machine learning based NLP system to a 
discipline, it has to be customized by newly identifying 
effective training data, which is expensive and only large 
corporates can afford it. The Froglingo-based NLP system has 
a common infrastructure embedding the abstractions within 
linguistic structures. Once it is built, it would become accessible 
to smaller organizations and individuals. Because this NLP 
system is a “native” programming language, it would allow 
everybody even without coding knowledges to database in 
natural languages for their personal needs (entities and actions). 
This will bring automation to each corner of our society to serve 
human beings. 

 

XII. CONCLUSION 

Databasing is an essential strategy in the NLP system, which 
collect information about (and accommodates exceptions from) 
things in the world and linguistic structures. Within Froglingo, 
terms and assignments serve as words and phrases representing 
real-world entities and properties. We use templates (terms in a 
special format) and their assignment to model clauses and 
simple sentences which represent real-world actions. We also 
accumulate abstractions (relationships) embedded in entities 
and actions of the world as well as in linguistic structures. The 
NLP system supports natural language and code generation by 
embedding linguistic structures into template assignments. The 
development of the NLP system is an accumulation process. As 
more things are accumulated, the NLP system will become 
increasingly robust. As more abstractions are accumulated the 
NLP system will become smarter and friendlier in interacting 
with others in natural languages. 

This paper focuses on the symbolic approach using 
Froglingo, where the things in the world are uniformly 
represented in a database along with linguistic structure. It is an 
independent approach to NLP in parallel to neural language 
models. It also can be part of the neural language models to 

ground natural languages using linguistic structure and 
contextual knowledges [3].  
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