An Introduction To Enterprise-Participant Data Model

Kevin Houzhi Xu
Department of Computer Sciences
Purdue University
West Lafayette, IN 47907

Abstract

A data model, called enterprise-participant (EP) model, is
proposed. Unlike any other traditional data models
including object oriented models, the enterprise-
participant model takes a different angle to look at the
real world. The concepts participant, enterprise hierarchy
and biography hierarchy are introduced to construct
databases representing the universe of discourse.
Participants, as basic units, provide finer granularity than
entities in traditional data models. Enterprise hierarchies
provide recursive abstractions of enterprises from entire
database applications to individual printable attributes.
And biography hierarchies provide integrated view of all
facts about entities. Because of its capacity to simplify the
complexities of applications and of its natural hierarchical
characteristics, the EP model promises: 1) more “natural
ways” to represent data for database applications with

Increasing complexities, 2) a uniform, advanced
manipulating language, and 3) world-wide unique
participant names to immediately support data

integrations and distributions in worldwide, distributed,
and heterogeneous computing environments.

1. Introduction

While our life has been more and more relying on
database systems, we haven’t had a commonly acceptable
data model to satisfy the requirements of increasing
database applications. Since the middle of 1970's when
the relational data model began to dominate database
research areas, the relational data model has been
criticized for its too simple mechanism for representing
complex objects and supporting useful semantic concepis
(51, [7], [13}, [20], [21], [25]. Although relational database
management systems are dominating commercial database
marketing places, applications in CAD, CAM, CASE, and
other knowledge-based applications suggest that the
relational data model is not the future of database

management systems {25], [15], [1]. With the dream of /. model ~and the common

/

Bharat Bhargava
Department of Computer Sciences
Purdue University
West Lafayette, IN 47907

modeling the real world “in ways that correlate more
directly to how data arise in the world” [12] around the
beginning of the 1980’s, researchers introduced semantic
data models with typically richer abstractions such as
generalization and aggregation, and derived attributes
£10], [5], [20], [19]. However these are too complicated to
be completely implemented [10]. After the middle of the
1980s, object-oriented data models, the marriage of the
object-oriented programming techmologies with the
previous data models including the network models, the
relational model and some modeling concepts of the
semantic models had seemed to be the future of the
database management systems [15], [24], [3]. However,
we believe that object-oriented data models inherited
many of flaws while they absorbed many of good features
from the previous models [32].

Data distributions and integrations used to be issues of
DBMSs beyond data models. In other words, traditional
data models concentrated on data representations and
manipulating languages with the assumption of centralized
data. While the transparency (data independence) of data
distributions and integrations was the central focus of the
researches in distributed database management systems,
researches in data models ignored implications of data
models themselves to the implementation of data
distributions and integrations. Consequently, Additional
databases “dictionaries” and associated software “clients”
must be provided to support data communications in
distributed environments. Even worse, there was no
theoretical solutions for distributed database designs and
query optimizations in the distributed DBMSs supported
by taditional data models {18]. To be fitted into
distributed and heterogeneous environments, {wo
hierarchical-based object-oriented models, which
sacrificed some modeling powers of network-based object
oriented models, have been established by ISO/TU [28],
(291, [30], [23], [11), and [31], [22], as the standard data
communication protocols at the application layer. The first
standard protocol, X.500, provided “directory” and its
corresponding “abstract services” as the common data
manipulating languages
“respectively for general data manipulations across

P

P

interconnected (distributed and heterogeneous) computing
environments. The second standard protocol, X.700,
derived from X.500, provided “Naming Hierarchy” and
CMIP (Common Management Information Protocol) for
the specific environments of telecommunication network
management systems. The most impressive features of
X.500 (we will use X.500 as the typical protocol to
represent both X.500 and X.700 in the rest of the paper)
are the concept of world-wide unique object identities
(Distinguished Names) and the concept of the advanced
manipulating language - the “Directory Abstract
Services”. Since X.500, as the common data model, is
different from others supported by current available
DBMSs, interpreters (called “data gateways”) sitting
above database management systems, must be built to talk
to each others by speaking the “international languages” -
“Directory Abstract Service”. The overheads both of the
extra amount of the development work and of the system
complexity are significant due to the additional
interpretations. Another problem with the 1ISOMTU
standards is that they have too limited power to model
future applications with increasing complexities, while
advanced networking technologies in the future will allow
complex data transactions to be executed &cross
broadband network systems or wireless network systems.
For example, we may be expecting that a mobile user can,
through a mobile computer, interact with a complex
database system in his/her own business unit, and also can
interact with various public information servers such as
weather report in Chicago, purchasing order services of a
supermarket in Los Angles, and the stock information in
New York. A standard, powerful data model and data
manipulating language will be essential to support this
scenario,

With advanced graphical displaying technologies, SQL
or SQL-based languages are no longer sufficient to
support a good graphical user interface. In recent
commercial database applications, vendors like to use
Motif-based or CAD-based tools to display semantically
related data (or symbols representing data) on screens. The
extra interpretation from SQL has to be done to feed the
required data by the GUI. Actually, SQL-based languages
were rarely used by end users; instead they are only used
by system administrators or as embedded languages in
programming environments. Although the recursive query
languages are supported by object oriented data models
for applications, e.g, CAD, with only “part-of”
relationships [14], [15], {31, other general-purpose
applications do not have the corresponding advanced
query languages supported by object oriented data models.
Providing uniform, advanced manipulating languages in
database management Systems can better fit user interface
reguirements.

. kind of applications.

In this paper, we attempt to develop a more powerful
data model, called the enterprise-participant (EP) model,
with a uniform, advanced manipulating language and the
potential to immediately support data integrations and
distributions in distributed and heterogeneous computing
environments. The EP model is more powerful in the
sense that database designers can apply the EP data model
to applications with increasing compiexities "in intuitive
fashion. The EP-supported manipulating language is
uniform and advanced in the sense that a language better
than SQL-based, similar to the recursive query languages
for composite objects in object oriented data models and
the directory abstract services in X.500, is applied to any
The EP model supports data
distributions in the sense that no application-dependent
dictionaries and clients are needed in homogeneous
distributed environments so that the simple combinations
of local schemata are the “global schema”. The analogy of
homogenous distributed database management systems in
the EP model will be network file management systems
with the file mounting functionality in Unix systems, The
EP model support data integrations in the sense that the
EP model can be an efficient common data model in the
data’ communications of worldwide heterogeneous
database systems.

In the rest of the paper, we first give the motivation to
choose hierarchies as the fundamental structures in the EP
medel. Section 3 introduces the core concepts of the EP
model. In Section 4 summarize the features of the EP
model,

2. Hierarchies

Humans have long used hierarchical organization of
information to help them better understand the world 8],
[20]. The physical objects in the world are hierarchically
structured. Logical or abstractive applications can be
organized into hierarchies; for example, the contents in a
book with nested chapters and sections. New
terminologies can be used to abstract relationships
between entities; for example, a “reservation” abstracts the
relationship among a person, a date, and a hotel, which
was called aggregation in database researches. The
traditional hierarchical model would have been the most
popular data model if any relationships between entities in
the world were simply one-to-many or one-to-one
relationships [26], [4], 16}, [16], [9]. The most impressive
features of a tree-like hierarchical model is the simplicity
of the tree structure representing the relationships between
entities, which benefits both the user interfaces and the
system implementations. Although network-based models,
including object-oriented models are powerful for
capturing any kind of relationships between entities,

network-oriented relationships formed by object
references between entities complicated user interfaces
and hence did not support a general-purpose advanced
manipulating language. One of the evidences of this point
is the experiences of the Hypermedia/Hypertext researches
and commercial productions, where the researchers or
designers intended to provide the end users with the
hierarchical views for underlying databases with network
relationships [2], £27].

“Many-to-many relationships” from the viewpoint of
the relational data model, and the “cyclic relationships™
from the viewpoint of the network-based object-oriented
data models, which exist in the real world, have been
blocking researchers from further developing a
hierarchical-based model for database applications after
recognizing the limitations of the hierarchical models in
1970’s. Can we eliminate, by taking a different approach,
the dilemma caused by the “many-to-many relationships”
and the “cyclic relationships™ in a hierarchical-based data
model? “Yes™ is the answer provided in this paper, which
becomes the foundation of the research, The idea is to
decompose entities in the world into multiple,
semantically independent components so that each
component has only a single relationship with the rest of
the world. In the next, we provides an example of “many-
to-many relationships” to illustrate the general idea.
Section 3 will formally define the EP model.

The relationship between entities class and student is a
many-to-many relationship from the viewpoint of the
relational data model. By closely looking at the facts of a
student involved in two classes, we notice that the
involved facts can be decomposed into two disjointed
facts, and each ome is solely determined by its
corresponding class. For example, a student takes CS500
and C8541. The student takes two classes at different
times, learns the different contents, and get two grades for
the two classes. Other than depending on this student's
intelligence and study attitudes, the fact {the student took
C8500 at 2:00 pm, graded A} and the fact {the student
took C3541 at 10:00 am, graded C} are only dependent on
class CS500 and class CS541 respectively. Although the
student’s dropping one course may improve the student’s
performance in the other class in the real life, we can say
approximately that to create, delete, or update the
information of {the student took CS500 at 2:00 pm,
graded A} neither impacts the fact {the student took
CS541 at 10:00 am, graded C}, nor impacts the other
properties or behaviors such as the student’s name and the
fact that he played basketball at night. By decomposing
the facts related to the entity student, the relationship
between class and student can be simply viewed as
superior and subordinate relationship, and the “many-to-
many relationship” has been eliminated.

3. Modeling concepts

This section formally introduces the core concepts of
this data model: entity, biography, enterprise (or
participation), participant, biography hierarchy, enterprise
hierarchy, and participant identities. Before moving
forward, we review some common important concepts.

The world is too big and too complex to be captured
and recorded completely. We establish a database only for
a special aspect of the world called the universe of
discourse (or the application) for a special purpose. The
definition of database here is taken from [8]: A database,
as the objective of an application, is a collection of related
data which represents a special aspect of the real world,
The application is actually an enterprise as we can see
after its formal definition is given below. An enterprise
can be an organization, an activity, a plan, or an abstract
concept. The purpose of designing a database is to collect
and organize useful data and to filter out irrelevant data so
that the enterprise can be effectively and efficiently
represented. For example, the organization of a university,
a Christmas party, and the content of mathematics are all
the enterprises. An entity is something that exists as a
discrete unit in the real world; for example, a student in
the university, a rectangle in mathematics, and a scientific
theory.

3.1. Biography

The term “biography” used to be an account of a
person’s life which collects all information about the
characteristics, activities, and achievements of this person.
We borrow this terminology to define that a biography is
a collection of the properties of an' entity including the
characteristics, the behaviors, and the performances which
are associated with the life of the entity. For example, the
biography of John Smith in a database may looks like:
{typed a person; called “Yohn Smith”; born on 02/23/1960
in USA; majored in CS in Purdue University in 1980;
graded A in course CS500; married in 1990; working as
project . manager in ABC company; playing baseball as
pitcher in DEF baseball club}. This object not only
contains the permanent properties of John Smith such as
name and birth, but also contains the roles and the
performances in the school, the company, the family, and
the baseball club. Another example of the entity
biographies in a database might look like: {typed a class;
called CS500; offered since 1980; opened with 40 students
and with Tom as the instructor in the spring of 1985;
opened with 45 students and with Peter as the instructor in
1990}. This biography collects the facts of the entity
83500 in some school.

To our knowledge,

we couldn't find a better

terminology than “biography” to represent the concept
defined above. There are the foilowing two reasons for us
to make this choice. One is that a biography must be a data
collection in an existing database about an entity’s history,
but not the history itself. While the history of an entity is a
set of the solid facts that occurred in the real world about
the entity, a biography is a subset of the history retrievable
from the database. The second reason is that a biography
is about an entity, which is active, not passive. Like the
concept object in the object oriented concept, we treat an
entity as being active. We didn’t choose “entity” in the
position of “biography” because “entity” is an ambiguous
constructor used by traditional models in the sense that it
was not clear how many facts of a real entity should
actually be wrapped in “entity™.

3.2. Participation and participant

Before we define concept participant, we introduce
terminology participation. A participation is a subset of
data from a biography, which comresponds to the
properties (facts) the entity possesses when it participates
in a particular environment such as an activity or an
organization. A participation is syntactically disjointed
with the rest of participations in the biography, There is
one and only one primary participation in the biography
which consists of the minimum properties to form the
entity in the world. For example, the biography *“John
Smith” in the database given in Section 3.1 can be
decomposed into the following participations: {typed a
person; called “John Smith™; born on 02/23/1960 in USA)
which is the primary participation; {majored in CS in
Purdue University since 1980}; {graded A in course
CS500}; {married in 1990}; {working assgifoduct manager
in ABC company]; and {playing baseball as a pitcher in
DEF baseball club}.

A participant is the abstraction of a participation of an
entity, which surrogates the entity in the participation,
From the definitions in Section 3.3, we will see that
participation is the equivalent concept of enterprise, and a
participant is a physical node in an enterprise hierarchy,
and physically belongs to its participation.

3.3. Enterprise and its hierarchy

- At the beginning of this section, we mentioned that an
organization, an activity, a plan or the content of a book
can be an enterprise. After the concept participation and
participant were given, we formally define the concept
enterprise. Our definition is a generalization of its
conventional definition, '

An enterprise is the state of a thing in the real world at
a given time. A participation in the EP model represents “a

thing”. Therefore, a participation is an enterprise. On the
other hand, we view “a thing” in the world as a

participation of an entity with respect to a particular

environment. In the EP model paradigm, therefore, we
redefine that an enterprise is a participation. We call a
thing as an enterprise with respect to the thing itself, and
call it as a participation with respect to its environment.
For example, John Smith’s {graded A in course CS500)
alone is an enterprise, and it is a participation in the course
CS500. 4

An enterprise consists of a participant and zero or
multiple sub-enterprises. The participant in the enterprise
is the abstraction of the enterprise itself, and the sub-
enterprise(s) is (are) the components of the enterprise, or
the participations of other entities under the given
enterprise. For example, a party is an enterprise, which
consists of the participant “The party”, and a number of
componenis: the people participating in the party, the
room holding the party, and its organizer.

From the definition of the enterprise, we noticed that it
can be recursively decomposed into a hierarchy consisting
of participants only. The enterprise hierarchy of an
enterprise is the hierarchical structure representing the
enterprise itself, which is formed by semantically and
recursively decomposing the enterprise into sub-
enterprises until all participants at leaves don’t have to
have further sub-enterprise(s). Figure ! gives a complete
enterprise hierarchy for a sample university database in
the EP model, where each node is a participant. The
contents of participants are discussed in Section 3.5 and
3.6.

We call the participant abstracting an enterprise as the
superior participant of the enterprise, and the
participants below the enterprise as the subordinate
participants. In an enterprise hierarchy, a participant acts
as a superior with respect to the enterprise that the
participant abstracts, and acts as a subordinate with respect
to the higher level enterprise where the participation is a
component of the enterprise.

We summarize the features and the constrains of the EP
model below.

I. As an enterprise, a given application is represented
by a single enterprise hierarchy.

2. An application represented by the EP model is
extensible in two dimensions. One is the further
specification to a participant at a leaf of the enterprise
hierarchy. For example, a department head can be further
specified by adding subordinates: performance, agenda,
and secretaries. Another dimension to extend applications
is to integrate the enterprise hierarchies representing
individual applications to form a higher level abstraction.
For example, we may integrate all databases of the
universities in the United State to form an integrated

database called “U.S. Universities”. The extensibility of
enterprise hierarchies determines the possibility of the
database distributions and integrations.

3. An enterprise hierarchy is a pure tree structure. This
is the major goal of this research. This feature contributes
to the potential of a good user interface (the manipulating
language) and better system organizations and
performances associated with the EP data model (see [32]
for more information). The tree structure implies that a
participant only relies on its enterprise and an enterprise
dominates its participants.

4. A participant can’t be created unless its superior has
been created. And the deletion of a participant implies that
its child participants are deleted automatically.

Purdue
Engilish[ept CSDept President Stud-Gov Students
/\

DeptName Head Classes Raidlab JohnSmith JoaStev

& 502 EnrcliDate Major RegiNo
instruttor Studgnts Assignment? FinalExam
Davebé;msmith
Assignment! FinalExam
Grade Griade

Figure 1. A sample Database with EP Model

3.4. Biography hierarchy

After defining the concepts biography, participant,-

enterprise (or participation) and its hierarchy, the concept
biography hierarchy is introduced in this section. The
biography hierarchy of an entity is a hierarchical
structure representing the biography of the entity, in which
nodes are participations from the biography, and links
represent dependent relationships between participations,
The biography hierarchy is rooted at its primary
participation, and is formed by linking all of its
participations occurred in an entire enterprise hierarchy.
The levels of the participations in the biography hierarchy
are determined by the dependencies existed between the
participations, In a biography (or a sub biography)
hierarchy, the root of the hierarchy is called the parent
participation of its successive participations in “the
hierarchy, and the successive participations are called the
child participations. The participants corresponding to the
parent participations and child participations are cailed
parent participants and child participants respectively.
For example, John Smith’s {majored in CS at Purdue
University in 1980} is the parent participation of his

fgraded A in course CS500}, and in turn the latter is the
child participation of the former. Another example is that
a person as a participation in the society is the parent
participation of him/herself as a scientist in a research lab.
Two participations can be either a pair of the siblings
under a common parent participation or can have parent/
child relationship. For example, John Smith’s participation
{majored in CS at Purdue University in 1980} and
participation {working as product manager in ABC
company} are siblings, and {majored in CS at Purdue
University in 1980} and {graded A in Class CS500) have
parent/child participation relationship. Figure 2 shows the
biography hierarchy for John Smith’s biography in the
database given in section 3.1. Note that each node
represents a sub-enterprise in its corresponding enterprise
hierarchy.

PERSON
STUDENT MARRIAGE EMPLOYMENT BASEBALL

STUDENT_IN_CLASS_CS_500 MANAGER

Figure 2. A Sample Biography Hierarchy

Biography hierarchies have the following features and
constrains.

1. Biography hierarchies are represented implicitly in
enterprise hierarchies. Participations {or syntactically the
participants of the participations) are the intersections of
the two types of the hierarchies.

2, Two siblings in the biography hierarchies can be
created or deleted in any orders.

3. A child participant can’t be created unless its parent
participant exist.

4. The deletion of a participant implies that the child
participations of the participant are deleted automaticaily.

The biography hierarchy provided a way to retrieve any
information in the biography of an entity by giving
participant.

3.5. Participant identity

As one of the core concepts of the EP model,
participant identity (Distinguished Names and Relative
Distinguished Names) are briefly introduced. The
contribution of the participant identity to data distributions
and integrations was analyzed in [32].

Like the naming scheme in X.500, there are two names
associated with a participant, Relative Distinguished
Name (RDN) and Distinguished Name (DN), in the EP
model. the RDN of a participant is the name of the

participant unigue under its enterprise, and it is an element
as a part of the participant. The DN of the participant, by
given an enterprise hierarchy, is the ordered list of the
RDNs of the participants along the path from the root of
the database to the participant itself. For example, in
Figure 3, the RDN of participant G is G, and its DN is /A/
B/E/G. In the University database example, John Smith
has the two RDNs called “JohnSmith” under /Purdue/
Students and under /Purdue/CSPept/Classes/300/Students
respectively, and the two corresponding DNs respectively
called */Purdue/Students/JohnSmith” which uniquely
identifies the fact {majored in CS since 1980} and */
Purdue/CSDept/Classes/500/Students/JohnSmith” which
uniquely identifies the fact {John Smith was graded A in
class CS500}.

B/A\C
¢
A

C!-l H

Figure 3. A Generic Enterprise Hierarchy

Like the names of simple variables in programming
languages, RDNs of the EP model are the names mapping
to the physical addresses where the participants are
located and further mapping to the wvalues of the
participants (see Section 3.6 for the definition of
participant values). In addition, RDNs are the strings
representing the participations of the entities or are the
abstractions of the corresponding -enterprises. Thus like a
structured variables’ names in programming languages,
the RDNs of the EP model are the names from which the
physical addresses, where its immediate subordinates,
children, superior and parent are located, can be inferred.
Because the RDN of a participant is required to be unique

“among the immediate subordinates of its superior, its
superior can be locally responsible for the naming
authority of the participant.

Because the DN of a participant are the ordered list of
RDNs of the participants along the path from the root to
the participant itself within a given enterprise hierarchy,
the DN is unique in the hierarchy and is a means to
identify the participant any where in the enterprise
hierarchy. Because of the recursive structure of enterprise
hierarchies, a participant recursively has multiple relative
DNs and each DN is associated with a superior of the
participant in the higher level enterprise hierarchy.
Because of the extensibility of enterprise hierarchies in the

EP model (see Section 3.3), the uniqueness of DNs in the
worldwide scope is guaranteed.

3.6. Values of participants

In the previous sections, we described that a participant
are a physical node in an enterprise hierarchy, and a RDN
is one of elements of a participant. In this section, we will
define the values of a participant which are the second
elements of participants,

Although a participant has up-stream and down-stream
connections with other participants through either superior/
subordinate relationship or parent/child relationships, the
connections are maintained by systems, In other words,
what users can manipulate are RDNs and values of
participants only. - Hence, the only elements of a
participant are its RDN and its value. While RDNs are
represented by strings uniformly across all participants,
the values of participants differentiate the various types of
participants which are the issues to be discussed in this
section. There are four types of participants: primary
participant, extended participant, atomic participant, and
user-defined participant.

1. Primary participant. A primary participant is the
participant representing the primary participation of an
entity. Like object identifiers in object oriented data.
models, values associated with primary participants are
system-generated. While DNs uniquely identify their
participants in a given time, values of primary participants
uniquely identify their entities along the entire life of a
databases. See [32] for more discussion about the
necessity and the scope of the uniqueness of both DNs and
values of primary participants.

2. Extended participant. An extended participant is a
child participant. We call it extended participant in the
sense that it is an extension of its primary (recursively
through parent participants), and depends on its parent
participants. Values of extended participants are pointers
t¢ its parent participants (either physical addresses or the
DNs of its parent participant depending on different
implementations). For example, “JohnSmith” under /
Purdue/CSDept/Classes/500/Students bas a value pointing
to /Purdue/Students/TohnSmith. Intersections between
enterprise hierarchies and biography hierarchies are
located exactly at values of extended participants.

3. Atomic participant. An atomic is a participant which
has a system-supported (build-in) value. For example, the
value of the participant “Grade™ under /Purdue/CSDept/
Classes/500/Students/TohnSmith is "A’, a character, We
call this type of participants as atomic participants in the
sense that they are non-decomposable participants located
at leaves of enterprise hierarchies. In other words, atomic
participants, supported by computer systems, are the

foundations of enterprise hierarchies and biography
hierarchies in the EP model.

4. User-defined participant. A user-defined participant
is the one representing an enterprise structured by a
prototype other than the EP model. The examples of the
user-defined participants are unstructured complex objects
such as video, voice, and image; derived attributes such as
minimum, maximum, average, and sum; and other non-EP
applications. Values of user-defined participants are
managed by non-EP functions. User-defined participants
provide a way to provide functions beyond the capacities
of the EP model, and provide a way for systems in the EP
model to communicate with non-EP systems.

Before we finish the definition of the EP model, we
give Figure 4 for a sample data schema in EP model, from
which readers might have further understanding to the EP
model. In the figure, “pri” stands for primary, “parti”
stands for participant, regular lines stand for one-to-one
fixed relationships, boldface lines stand for one-to-many
dynamical relationships. Note that data schema in the EP
model is not covered in this paper, and the symbols in the
figure are used for the discussion only. See [32] for more
information.

Person

University
prim parti

prim parti

Department President Students
prim parti Person's partt prim part

Research Student
primparti Person’s parti

Head Classes
Person's Parti prim parti

Class EnroliDate Major RegNo
prim parti date string number
Instructor Students

Person's parti prim parti

Student
fUnivarsity/Students/Student’s parti

Figure 4. A Data Schema in EP Mode!

4. Summary

This paper presented the EP model, which is a different
approach from the traditional data models including the
object oriented data models. An application, as the initial
and the highest-level enterprise, is semantically and
syntactically refined into its enterprise hierarchy, where
the only elements are the participants, and the
relationships between the participants are represented by

the simple superior and subordinate relationships. More
than aggregations (composite objects) in semantic data
models, enterprise hierarchies provide uniform, complete
views of entire database applications, which are recursive
abstractions of enterprises from database applications
themselves to individual printable attributes (atomic
participants). The biography hierarchies of entities, more
than entities in semantic data models, integrate the
participations of the same entities together and provide a
complete view of entity related data, A participant
syntactically is an intersection of the enterprise hierarchy
and its biography hierarchy, and semantically is the
abstraction of the facts associated with the entity when it
participates in a specific environment such as an activity,

‘an organization, a plan, or a logical concept.

In addition to the data representation of the EP model,
supporting an uniform, advanced query language, and data
distribution and integration are two other major objectives
of the EP model. Because of the simplicity and the
uniformity of enterprise hierarchies and biography
hierarchies, an advanced manipulating language similar to
recursive query languages for composite objects in object
oriented data models [14], or the directory abstract
services in X.500, is uniformly applied to any
applications. While “the CPU as an island, contained and
valuable in itself, is dying in the nineties” [17], the EP
model takes the responsibility of data distribution and
integration. While the distribution transparency is
preserved from both end users and the design of
centralized conceptual schemata, participants
Distinguished Names in the EP model reduce the
complexity of data address resolutions from O(N) in the
traditional DBMSs to O(Lg N), hence the EP model
practically support very large volume of data in the
worldwide scope. Further, with system-managed superior/
subordinate and parent/child relationships, DNs of
participants eliminate the necessity of application-
dependent “dictionaries” - secondary databases, and their
associated “client” software. Due to the limited space
available, readers who are interested in these topics can
refer t0.[32] for more information.

We did not address the issues of data security,
transaction, versioning, replication, and system
implementation in this research, but we believe that the EP
model promotes the optimized solutions for the above
issues.

Acknowledgment: Thanks to Richard Jesmajian who
provided the related information about X_500.

References:

{1} lisoo Ahn. Database Issues in Telecommunications Network
Management. SIGMOD 94 - 5/94 Minneapolis, Minnesota,
UAS.

{2] Rodrigo A. Botafogo, Ehud Riviin, and Ben Shneiderman.
"Structural Analysis of Hypertexts: Identifying Hierarchies
and Useful Metrics”. ACM Transactions on Information
Systems, Vol. 10, No. 2, April 1992, Pages 142 -180.

[3] Michael 1. Cary, David J. DeWitt, Scott L. Vandenberg. A
Data Model and Query Language for EXODUS. Proc. ACM
SIGMOD Intl. Conf. on Management of Data, Chicago, Hi.,
June 1988, pp. 413-423. :

{4} Donald. DB. Chamberlin. Relational Data-Base Management
Systems. Computing Surveys, Vol. 8, No. 1, March 1976.

[5] Peter Pin-Shan Chen. The Entity-Relationship Model -
Toward a Unified View of Data. ACM Transactions on
Database Systems, Vol. 1, Ne. 1, March 1976, Pages 9-36.

{61 EF. Codd. A Relational Model of Data for Large Shared
Data Banks. Comm. ACM 13, 6, June 1970, Pages 377 -
387.

{71 EF. Codd. Extending the Database Relational Model to
Capture More Meaning. ACM Transactions on Database
Systems, Vol. 4, No. 4, December 1979, Pages 397 - 434,

[8] Elmasri/Navathe. Pundamentals of Database Systems,
Second Edition. Benjamin/Cummings Publishing, 1994,

[9] James P. Fry and Edgar H. Sibley. Evolution of Data-base
Management Systems. Computing Surveys, Vol, 8, No. I,
March 1976.

{101 Michael Hammer and Dennis Mcleod. Database
Description with SDM: A Semantic Database Model. ACM
Transactions on Database Systems, Vol 6, No. 3,
September 1981, Pages 351 - 386.

[11] Baha Hebrawi., OSI Upper Layer Standards and Practices.
McGraw-Hill, 1992,

[12] Richard Hull, and Roger King. Semantic Database
Modeling: Survey, Applications, and Research Issues. ACM
Computing Surveys, Vol. 19, No. 3, September 1987.

[13} William Kent. Limitations of Record-based Information
Models. ACM Transactions on Database Systems, Vol. 4,
No. i, March 1979, Pages 107 - 131.

{14} Won Kim, Hong-Tai Chou, and Jay Banerjee. Operations
and implementation of Complex Objects. IEEE
Transactions on Software Engineering. Vol. 14, No. 7, July
1988.

£15] Won Kim. Introduction to Object-Oriented Databases. The
MIT Press, 1990,

f16] Ann S, Michaels, Benjamin Mittman, and C. Robert
Carlson. A Comparison of the Relational and CODASYI.

Approaches to Data-Base Management. Computing
Surveys, Vol. 8, No. 1, March 1976.
{17} Richard Mark Soley, Christopher Stone. Object

Management Architecture Guide, Third Edition. Jon Wiley
& Sons, Inc., 1995,

[18] M. Tamer Ozsu, Patrick Vaiduriez. Principles of
Distributed Database Systems. Prentice Hall, 1991.

[19} David W. Shipman. The Functional Data Model and the

Data Language DAPLEX. ACM Transactions on Database
Systems, Vol. 6, No. 1, March 1981, Pages 140-173.

[20] John Miles Smith and Diane (C.P. Smith. Database
Abstractions: Aggregation and Generalization. ACM
Transactions on Database Systems, Vol. 2, Jmne 1977,
Pages 105 - 133.

[21} John Miles Smith and Diane C. P. Smith. Database
Abstractions: Aggregation., Communications of the ACM,
June 1977, Vol.20, Number 6.

[22] Wildam Stallings. SNMP, SNMPv2, and CMIP - The
Practical Guide to Network Management Standards.
Addison Wesley, 1993, .

[23] Douglas Steedman. X.500 - The Directory Standard and its
Application. Technology Appraisals. U4 ¢ 3

[24] Michael R. Stonebraker and Lawrence A. Rowe. The
Design of POSTGRES, Proc. ACM SIGMOD Intl. Conf,
On Management of Data, Washington, D.C., May 1986,

[25} Michael R. Stonebraker, Future Trends in Database
Systems. IEEE Trans. Knowledge and Data Eng., Vol. 1,
No. 1. Mar. 1989, Pages 33 - 44,

f26] D. C. Tsichritzis and F. H. Lochovsky. Hierarchical Data~
Base Management: A Survey. Computing Surveys, Vol. 8,
No. 1, March 1976.

[27] Kenneth Utting and Nicole Yankelovich, Context and
Orientation in Hypermedia Networks. ACM Transactions
on Information Systems, Vol. 7, No. 1, January 1989, Pages
58 -84

{28] ITU-T Recommendation X.500 (1993). information
Technology - Open Systems [Interconnection .- The
Directory: Overviews of Concepts, Models, and Service.

[29] JTU-T Recommendation X.501 (1993). Information
Technology - Open Systems Interconnection - The
Directory: Modeis

[30] ITU-T Recommendation X.511 (1993). Information

Technology - Open Systems Interconnection - The
Directory: Abstract Service Definition,

[31] CCITT Recommendation X.700 (09/92). Management
Framework for Open Systems Interconnection (OSI} For
CCITT Applications.

{32} Kevin Houzhi Xu. An Enterprise-Participant Data Model for
Increasing Complexities of Database Applications, Ph.D.
Thesis Proposal. Department of Computer Sciences, Purdue
University, West Lafayette, IN 47907, 1996,

