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Abstract

Searching for a better data model is not a new topic, but it should not become old one either before a satisfaction
can be reached. Improving the productivity and quality of developing database systems is the motivation driving
the research activities. This paper is approaching this direction by taking sub function spaces from A-models.
The developed data model, cailed Enterprise-Participant (EP) data model, is to store and construct effectively
computable functions from A-models; and its db-terms, similar to combinatory-logic terms or A-terms, are the
only syntactical form of the expressions referencing the functions, and the expressions computing the functions.
The ordering relations among the db-terms, as-built«in losic-fupctions, express queries and updates which are
usually called “fixpoint queries” in the relational query languages. As both a language and a data type, the EP
data model connects the paradigm of functional progtamming languages with database management. The EP
data modet is a “usiversal” data abstraction for data integration and distribution.

Key Words: data modei, data structure, language, A-model, computable function, normal form, consistence,
soundness, completeness, applicative structure, active domain, ordering relation, first order language, functional
programming language.

1 Introduction

The less implementation details developers have to deal with, the faster and easier it will be in software
development and maintenance. In other words, higher-level descriptive languages are preferred to specify
“what”, but not “how”. This is called layering in network computing, applicative or functional in
programming languages, abstract in data types, and semantic in data models. While a language should be
highly descriptive to be simple, however, it must be expressive to be useful in certain application areas.
[n this paper, we will discuss the descriptiveness and expressiveness of data models in the database
application area, and propose a data model with higher descriptiveness and expressiveness. A data model
normally offers data structures and the operations against the data structures [35]. Instead of the
operations, the data structures of data models are focused in regard to the descriptiveness and
expressiveness.

What is expressiveness? In database query languages, the expressiveness is to categorize the classes of
queries or functions a language can express. For example, Datalog is more expressive than the relational
calculus because the former can express fixpoint queries against relations, but the later cannot [26], (5.
Similar to the expressiveness in database query languages, the pure A-calculus would be said more
expressive than a typed A-calculus in programming languages because the former can express partially
recursive functions, but the later only recursive functions [15]. When a language can express partially
recursive functions, it is said Turing-machine equivalent. For example, The mathematical models of all
the machine languages, assembly languages, imperative languages, functional languages are Turing-
machine equivalent. On the other hand, the data structures of data models are normaily not rigorously
characterized by classes of functions, or expressiveness. For example, the term “flatness” of relational
model, and the term “more semantic” in semantic mode!s and object-oriented data models are the primary
terms of characterizing data models [10], [17], [12]. However, when one would like to view data
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structures as languages, the data structures could be ranked by expressiveness. For example, relational
databases were ranked as functions of order 3 when they are mapped to typed A-terms in [14}.

What is descriptiveness? The author would not take any risk to propose an absolutely definition of it. But
the common sense was that the closer to machines a language need to reference to, the less descriptive
the language is {3], [6]. The degree of descriptiveness is increased in the order of machine languages,
assembly languages, imperative languages, and applicative languages. This is why functional and logic
programming languages are intensely focused in the programming language research. The tables in
relational databases, where finite atoms are the values of attributes, are more descriptive than imperative
programming languages in traditional business-related database applications. This was why database
management systems emerged from imperative programming languages in database applications in
1960°s. This common sense would satisfy us up to now, but we wiil come back to this point at the end of
the paper for a more measurable term.

it is unfortunate that traditional data models are usually applied to some database application areas
beyond the scopes of what they are supposed to do. When this is happened, the data model must be
accompanied with remedies to fully support its tasks. The remedies are languages other than data models
themselves. Then the overall descriptiveness of developing database application systems is degraded. The
degradation of the descriptiveness is happening with the relational data model and object-oriented data
models. For example, constraint programming is a remedy for infinite data [11]; constraints and triggers
of relational database management systems for functional dependency [8]; and methods in object-

oriented data model partly for data constructions.

Remedies are required too in data communication. Data models for storing persistent data may not be
appropriate for data communication, and common data protocols (or data models) for data
communication may not be appropriate for storing persistent data. Therefore, data interpreters become
critical components in distributed or integrated database management systems [38]. X.500 is an exampte
of the data communication protocols {311. CORBA [30] in object-oriented database management systems
seems the practical solution for data communication, but it is a purely imperative paradigm.

Another example of remedying the shortage of traditional data models would be managing application
data with ordering relations such as organization hierarchies, family trees, and graphs. The relational data
model is able to flatten them, but more expensive query languages like Datalog are required to recover
the ordering relations of data, which are so called fixpoint or transitive-closure queries 1], [2]. To
maintain the consistence of the “flattened” ordering data with the dynamic world, a remedy is required
from host programming languages to support update operations. The notion of composite objects with
hierarchical structures is useful in certain applications i8. But it is indeed a remedy because it is not

universal.

it is the purpose of this paper to propose a new data model, called Enterprise-Participant (EP) Data
model, to overcome the shortages of traditional data models, Let’s “forget” the traditional data models
and their applications for a while. We know that a computer is semantically constructing nothing, but
functions. And a A-model offers all the continuous functions including effectively computable functions
(28], [37], [27], (33], [21]. The EP data mode! would be said expressive if it can manage an arbitrary
finite subset of the elements from a A-model.

The EP data model is not the first in applying functions to data models or data structures. Structural data
like those in the record type in programming languages was interpreted as (aggregate) functions [22]; A
functional data model was proposed for database applications [29}; and Relations were interpreted as the
functions of order 3 in a typed lambda calculus [14]. However, it is only the EP data model that takes full
advantages of the applicative behavior of A-models, that is, an element in a A-model could act as a
function, an argument, and a value of an application. This leads to the ordering relations of the EP data
model introduced in this paper for the purpose of database queries and updates. When the other



functional approaches only say that a data could be interpreted as functions, the EP data model also says
that any function {any element) of a A~model could be managed by the EP data model as long as it is A—
definable (or equivalently expressible by a Turing-Machine equivalent language).

Taking a A—model as the function domain is not new because it has been done for A—calculi and practical
programming languages. The new is the EP data model itself as a language. The EP data mode! offers the
uniformed syntactical form of sentences — db-terms. Similar to CL-terms of Combinatory Logie or A~
terms of A—calculi, a db-term represents a function from a A~model, and is an expression from which a
normal form may be reduced. Different from them which are self-defined if they are closed terms, a db-
term has either an assigned meaning, or a derived meaning from other relevant db-terms defined in an EP
database. A db-term identifies a function and identifies the relationships of the function with others.
Ordering relations among the db-terms become built-in operators in queries and updates against functions
managed by EP databases. It is our intention in this paper to say that all the data in database applications
is viewed as functions; and all the functions managed by EP databases are application data. Simple
atomic data such as integers and strings (or files), has the counterpart of atom functions; and complex
data such as hierarchical organizations, graphs, multimedia data, and 3%.party applications to higher-
order functions.

As a language, the EP data model is introduced in Section 2, 3, 4, 5, and 6. Section 2 defined the EP data
model and EP databases. A few examples follows in Section 3. Sections 4, 5, and 6 give the definition of
the normal forms of db-terms, the semantics of the EP data model, and the computation of the EP data
model. Starting from Section 7, we try to understand more about db-terms as sets, from which we dig out
a few ordering relations for further database queries and update operations. In Section i1, we informatly
discuss that the EP data model is just the first step toward the complete solution of database applications.
An extended functional programming languages sugared by the EP data model is necessary, as if the
predicate calculus had its foundation of the propositional logic. We further give a more measurable
definition of descriptiveness to analyzing why the “descriptive” functional languages are not popular in
database application practice, and how the EP data model has a chance to energize the popularity of
functional programming languages. Section 12 concludes this paper.

We will feel free to use logical symbols from first-order language [7], [32] and A-terms from A—calculi
(4], [7), {24] to express what we need in this paper. Since well-formed formulas (wffs) in the first order
logic are logic functions, we sometime also use the form of the wffs in lambda terms as long as there is
no ambiguity in context. And also the equation symbol = is used as equivalence relations across many
domains, such as between two sets, two db-terms, two A-terms, and two elements in a A—models.

2 EP Data Model

The EP data model was first proposed in [38]. It was intended to be more powerful in practice than the
traditional data models. For more information, readers can see the examples in the next section, and
reference [38]. The EP data model discussed in this paper is an improvement from its origin after a close
study on the relationship of the EP data model with the theories of functions, A—models, and A~calculi.

A data mode! is traditionally viewed as an algebra consisting of data structures (values) and operations
against the data structures as we pointed out earlier. The EP data model, however, is developed as a
language with a set of symbols, db-terms as sentances, normal forms, semantics, and computational rules.
An EP database, analogous to an environment in languages, assigns values to a finite subset of the db-
terms, from which other db-terms have derived values.

2.1 Definition The following symbols are allowed in the EP data model:
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Like the propositional io®c, proposition letters are named to mean that they have fixed meanings under a
single interpretation (an EP database). The special constant symbol L, a symbol normally representing
the least defined element in a A—model [4], is used to mean undefined, or meaningless. And 1 will be
used in this paper to stand for the least defined element in a A—model. The special symbols tag and ¢ will
be explained later when the definition of EP databases is given.

7 is a countable set of constant symbols, each of which will represent a function. A function can be
simple typed values like integers, built-in higher-level functions like +, Multimedia objects, an existing
EP database, or an existing {or called 3"-party} computing application.

2.2 Definition. The set of terms 7, called db-terms, is defined inductively as follows:
aelfP=ae Tce C=ce
M. Ne JtheniMNye,7

2.3 Notation. 1. M N L, ... derlote arbitrar}; db-terms.

The symbol = denotes syntactic equality

Outermost parentheses are not written. Let M N,..Nn =(..((MNI) N2) ... Nn).

Let T (£) denotes the db-terms with proposition letters only. For example, @, a g, € Pbutcaeg P

R

Like the combinatory logic or the lambda calculus [4], the combination (M N) of db-terms is the main
syntactical form of constructing db-terms. And each db-term represents a function, and each combination
(M N) a function application. Different from the combinatory logic, where variable-free terms have self-
defined meanings, some db-terms in 7 (£ ) have assigned meanings, and the others in 7 have derived
ones. The collection of assignments will form an environment (or valuation), that is, a mapping function

tag: T(Py-» T u C.

Since certain restrictions are imposed on environments, we will give the definition of EP databases
which carries the restrictions and the environments.

2.4 Definition An EP database is a finite set 25 < J(#) such that

I, ifMNe DthenMe D[ Ne Db

2. if M e D and there is no other N € 2 such that M N € 7B then M may be (but don’t have to be)
assigned a db-term O & ] denoted tag(M) = Q.

An environment usually assigns meanings to variables in regular languages. But here, an EP database
assigns meanings to some db-terms M €7 (P) and M € D The db-terms in 2y, which have not
assignments, will have derived meanings as we will see in the following sections. An EP database
imposes a restriction that if M N ¢ Nthen M e DA N e D and M and N must not have assigned
meanings, but derived ones.

To distinguish db-terms with assigned meanings from those with derived meanings, we give the
following notations.

2.5 Notation 1. If a db-term M in Dis not assigned a value, or has not tag, then we denote /ag (M) = ¢,
and M is calied a non-leaf db-term. The symbol ¢ means empty, no tag, or no assignment.



2. If M has a tag N, that is, tag (M) = N, then M is written as M { tag = N) in the definition of a EP
database. And tag (M) = N may also be interchangeably written as M.tag = N in this paper. [

Similar to A—calculi, the subterms is defined as

2.6 Definition 1. M is a subterm of a db-term ¥ (notation M < N) if M & Sub(N), where Sub(N), the
cotlection of subterms of M, s defined inductively as follows:

Nzgandae F=>Sub(Ny={a},

N=candce C = Sub(Ny={c};

Lil; = N> SM!J(/V) = Sub(L;) U Sub(Lg) v { Ly L;:}
2. A subterm occurrence M of N is active if M occurs as (MZ) < N for some Z € J; otherwise M is
passive.

Before we give the interpretation of db-terms, the following section will give some examples to show
what a EP database looks like. As a collection of meaningful db-terms, the concept of EP databases is the
central of the EP data model, and the central of applying the EP data model to database application
practice.

3 Database Design 1

Designing databases in the EP data model may not need to understand all the formal notations presented
in this paper. The idea, as presented in {38], was that any object in the real world, called enterprise, can
be viewed as a collection of sub objects (its components). On the other hand, the participation of an
object to other objects partially defines or determines the definition of the other objects. This philosophy
matches the applicative characteristics of higher-order functions. That is, each object in the world can be
(approximately) represented by a function. Its components are the set of argument-value pairs defined by
the function. When object M participate to the “activity” of object &, &V is the function, M the argument,
and N M the value. Then we say that <M, N M> is the argument-value pair which partially determines the
definition of the function N.

Before we give examples, a graphical presentation of EP databases will be described. The graphical
presentation makes EP databases easier to read, and it is the traditional way of presenting a data model.
Or it could be a data type in programming languages.

3.1 Notation The definition of a EP database 2 as defined in Definition 2.4, can be graphicaliy
described as a set of nodes, a set of up-down solid lines, a set of dash arrows, and a set of solid arrows:

1. Nodes. A node is a circle representing an element M in 2D [f M =a e £ then the node is labeled a
name ‘a’. And if M = N,; N,, then the node M is labeled a name ‘N,’. If M has a tag, then display the tag
below the name. Note that constants including 1, which are in 2, are not displayed in the graph.

2. Solid lines. For any M, M N € 2, an up-down solid line is used to link Node M with Node M V. The
solid lines represents rator-application relationships which will be defined late.

3. Dash arrows. For N, MN e I a dash arrow may be optionally used to link Node N from Node MM.
In this case, the name of MN may be renamed for convenience, Dash arrows reflect rand-application
relationships which will be precisely defined late, When ¥ is not displayed, there is no dash arrows. But
from context, the rand-application relationship of & and MY is clear.

4, Solid arrow. For M € Dand M.tag exists, instead spelling the whole tag of M in the circle, we draw
a solid arrow from M to M tag.

Ly



Since EP databases will be interpreted as functions, the first example will show how finite functions are
defined by an EP database.

3. 2 Example Extensional definitions of functions. We define the four functions: the square function /n.

!, symbolized as SQ; the square root function An, Vr , symbolized as Root; the identity function in. n,
symbohzed as /; and composite function Afgn, symobllzed as C. The » in functions SQ, I, and C is
ranged over integers 2 and 3; the function Roor over 4 and 9. And in the function C, franges over SO, g
over SO and Root.

The textual presentation of the database would be: { SQ, SQ 2 (rag=4), SQ 3 (tag =9), Root, Root 4 (1ag
=2), Root 9 (tag =3), [, 1 2 (tag =2), I 3 (tag =3), C, C SO, C SQ Root (tag =I), C SQ SO, C SO SO 2 (tug
=]6}, C SO SQ 3 (rag =81)}.
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Fig. 1. Extensionat Definition of Functions in EP data model

In this example, SQ, Root, and [ are defined independently as shown in Fig. 1. Dependent on the
definitions of SQ, Root, and /, the composite function C is defined as the single pair { <50, C SO> },
where C' SQ is further defined by its sub hierarchical structure. While C §Q SQ is extensionally spelled
out as the set {<2, /6>, <3, 81>}, C SQ Root is defined to be equal to the function 7 by assigning a tag.
Note that the function 7 could have been spelled out under C S0 Root, and the C SO SQ could have been
assigned a tag pointing to another function An. n’. The choices of either tag assignments or the
extensional constructions of sub hierarchical structures allow different data relationships to be handied
differently. We will come back to this point when we talk about database updates in Section 10.

Tiis example showed what a EP data model looks like. How to apply the EP data model into database
application practice is the real issue of database designs. We assumed that any database application is
effectively Turing computable, and the EP model can be used to capture effectively computable functions
as we will see in late sections. Is it intuitive for database design even for a programmer who has no
knowledge of functional programming or the lambda calculus? The next example shows an EP database
for a typical traditional database application.



3.3 Example A school administrative database application. Before the school administrative database
system is constructed, the first object is the function for Social Security Department, where residents
nation-wise have records about social security numbers, birth dates, and others. As a function, the college
consists of multiple departments and an administration office. The administration office records the
registration number, enrollment date, and others of each student. And the department of computer science
offers multiple classes including CS /00, in which John studies with grade ‘4" Like nodes in the
example above, each node in this example also represents a function. And the functions have
relationships among them indicated by lines and arrows in Fig. 2. John is a resident as defined under
SSD John that has a birth date and a social security number. John is a student in a College as given under
College Admin, and he takes a class CS/00. Note that two occurrences of names “John” are renamed.
The complete names should be (College Admin John) and (College CS CS100 John) respectively.
Nevertheless, the dash arrows make the relationships not having ambiguity.

/ ©
& L

CS1 2 @ :
- 123456789
e

John Reg# Encolt
234 9/1/98

Grade
A

Fig. 2. A School Administrative Database inEP Data Model

What are CS (Computer Science), Admin (Administration), Grade, and etc.? They are distinguished
constants representing certain meanings as they do in English. Since this database is not concerning the
definitions of these constants, they are not displayed in Fig. 2 and do not have to be precisely defined in
the database. But conceptually they are interpreted as functions as we will see in Section 5.

From the above two examples, we see that db-terms offer a naming scheme referencing individual
functions, and each function is referenced at least by one db-term. For example, College references the
entire organization of a college; and College Admin John Enroll references the enroliment date of John.



3.4 Example Infinite data. We use an example similar to one given in |, a plane in which there are a
black square and a white circle (see fig. 3). The shapes of the two objects 0b// and obj2 are given by

Shape
Circle

Fig. 3. A EP database for a plane with infinite data

Square=A x,y. 0sx<10A 05y <10
Circles A x, y. (x- 10 + (v - 10 < 5%

Here, the functions are given by a “sugared” lambda calculus, where the integer constants, mathematical
operators, and boolean operators can be viewed as constant functions. The both functions return true or
false value by taking a pair of numbers (coordinators) as arguments.

From this example, we can see that the EP model is able to construct finite presentations for infinite data.
Further more, it takes advantage of the applicative characteristics of higher-order functions and offers the
uniformly syntactical naming scheme referencing individual infinite data - db-terms. For example, given
the coordinate <5, 5>, the query of “if the coordinate <5, 3> is in 0bj!* is given by the db-term: Plane
Objl Shape 5 3.

4 Normal Form

The db-terms of the EP data model not only provide the naming scheme of data (objects), they
themselves are also query expressions. The following three examples show the necessity of reducing a
db-term to another:

i. What is the grade John get in the class C:S /00 in the CS department of the College in Fig. 27 The
query expression in the EP data model is College CS CS100 John Grade, and the answer is ‘4"

2. What is the result of C after applying to SQ, Roor, and 2 consecutively in Fig 17 The query expression
and the answer in db-terms for this query are C SO Root 2 and 2 respectively.

3. 1s the coordinator <5, 5> in 0bjl of Plane in Fig. 37 The query expression and the answer in db-terms
for this query are Plane ObjI Shape 5 5 and true respectively.



Before we can think of normal forms and reductions for arbitrary db-terms in 2/, let’s focus on the db-
terms in a EP database 2. We will define the equality formula and the normal forms. Two db-terms in 2
are equal if they are identical or one is the tag of another.

4.1 Definition Let Dis an EP Database. M =g NIf M, N € D and,
1. Mitag=N.Or,
2. AWE N

Notation. [f M =gp N, it is convenient to write M= N.
It is possible that there exists tag circles in 2 that is,

4.2 Definition A EP database D has a tag circle if there is a sequence of elements N, N, ..., N, in 2D,
where n 2 1, such that each element has a tag, and N.rag= N, Nytag=N;, ..., Nytag= N, and N, tag =
M.

Tag circles should be prohibited in EP database application practice because it defines nothing, but
wastes computer space. Therefore, it is not allowed in EP databases. We give two more restrictions on
the definition 2.4 of EP databases.

4.3 Definition An EP database 2D given in Definition 2.4 must further satisfy the following restrictions:

i. there is no tag circle in 2D
2. iftwo db-terms N, and N, are not identical, but ¥, = Ny, and MN, € DD, then MN, ¢ b

The restriction 2 above said that an EP database should not give a conflict or redundant definition to a
function. Since each db-term will be interpreted as a function. And the value of a function by applying to
an argument is unique. Therefore, if M N; and M N, were db-terms in 2 and N; = N,, then we must
request that M N; = M N;, which is redundant. Or M N, and M N, give the conflict definition for M.

Now, let’s introduce the normal forms of db-terms. Like the normal forms of lambda terms, we intend the
normal forms of db-terms to be the unique values of db-terms, which can not be reduced further.

4.4 Definition Let 2 is an EP database of the EP data model,

. Adb-term Me 7isanormal form (or say in normal form, denoted as db-nf) if M is either a constant
ce € or anon-leaf db-term (M has no tag) in D.

2. M has a normal form if there exists an N such that N = M and N is a normal form.

3. Let DB-NF (), or interchangeably DB-NF, is the set of the db-terms in normal forms. That is, DB-NF
(D)= C v {M|Misanon-leaf in D}.

For example, all the integers, constant functions like plus +, 1, and College CS in Fig. 2 are in normal
form. But + 2 2, College CS CS100 John Grade in Fig. 2, and SQ 2 in Fig. | are not in normal form.

Like the normal forms of A-terms, db-nfs uniquely represent functions in a A-model. But differently, The
latter represents arbitrary functions including the least defined element lg in a A-model, a partiaily
defined (recursively enumerable) functions, while the former represents only recursive functions.
Another difference is that the set DB-NF, or precisely DB-NF( D), relies on a specific EP database D
The set DB-NF varies from one EP database to another.

In Section 6, we will see that an arbitrary db-term M in J may be uniquely converted to one of the
normal forms under a EP database 2.

35 Semantics



With db-nfs defined, we can assign meanings to them. All the db-terms in normal form will be interpreted
as an element (or a function) in a A-model; and each element in the lambda model can be either pre-
constructed as a constant, or constructed as a non-leaf db-term in an EP database 2 Therefore, the
function space (or domain) in a A~-model is the one for the EP data model.

We choose A—models for the interpretation of the EP data model because db-terms in 7 have the similar
applicative characteristics of lambda-calculi, and lambda models effectively interprets the behavior of the
EP data model, It is well-known that a A—meodel defines the upper bound for all the computabie functions
a computer can do. There are many A-models such as the Scott [),, and the graph model Po for the tvpe-
free lambda calculus (Chapter 18 of [4]); and E = A + [E—>E] for an applied lambda calculus with
constanats {37], [33]. In this paper, the following notions from the previcus work are taken for granted:

5.1 Definition. 1. Let C, be a set of primary (atomic) constants. A{C4) is the A-terms possibly containing
constants from C,. The lambda caleulus with A-terms A(C)) has its obvious syntax, axioms, and rules. as
described i [19], and the chapter 5 of [4].

2. Let £ be the A—~model for the lambda calculus with A(C,) as its A-terms, where the domain £ is
isomorphic with its continuous function space 4 + [£~> £], denoted £~ 4 + [E-»E], and 4 has a one-one
mapping with Cy in A(Cy).

3.Ve e Cy VM & A(Cy), ¢ M =Q. And correspondingly, Ve € 4, VM e £, ¢ M = Lg (suggested by
[37]). Here Q) is an unsolved A—term as it will be given in the following definition

Closed h-terms A%C)) are interpreted as elements in a A—model £. In this section, instead of dealing
with A-models themselves, we will first map db-terms to closed A~terms AO(C,{). Then the meanings of
the closed lambda terms under a A-model are the meanings of the db-terms.

To be more confident in mapping A—terms from db-nfs, we start from some standard combinators of the
pure A-calculus (Chapter 6 of 4), from which other A—terms can be constructed.

5.2 Definition (some standard combinators)

1. Truthvalues: T=A xy.x, F=A xyy,

The identity function: I=A x.x.

Pairing: [M, NJ= A x.x M N.

Numerals:| 0 =f, [n+i] = [F, [n] ]-

Predecessor, and the test for zero of numerals:
FP=)xxF, Zero=MxxT

6. Fixed Point Combinator: ¥ = Af (Ax. [xx)) Ox fxx))

7. Q= (Axxx) (Ax.xx), anunsolvable term.

Ln e el B

5.3 Definition 1. To identify the syntactical forms of iambda terms,
# . A(Cy)—N (Numerals)
was used as an effective one-one mapping function, that is, # A is calied the Gode!/ number of M for all

M e A(C,) (Definition 6.5.6 of 4).
2. Similarly, there is an effective one-one map between db-terms and the numerals:

#: J — N(Numerals).
3. Let id is a special constant symbol in  and the corresponding lambda term is represented as id".

To compare a A-term with another, we introduce the A-term £Q:
5.4 Definition EQ =Y C, where
C= M Axy. (Zero #x) (Zero #y) T F) ((Zero #y) F f (P #x) (F #y))



Then we can map all the db-terms in 7 into closed lambda terms AO(CA). First, we assume that each
constant in & is mapped to a A—term, the A—term of a db-term with tag is the one of the tag, and a
proposition letter not in Dis mapped to €2. Then the rest of the db-terms have derived mappings.

5.5 Definition Given a database ), define amap At J = AY(C), as follows, where M is written for
A(M,
1. If M=c, where c € C, then e Cyor o e AY(Cy), where a special case: it=Q.
> IfM e D, and Mhas a tag, then M* = M rag”
3. IFMe D, and M is a non-leaf db-term, then find all M N, where { = 0, ..., n for an integer » 2 0,
such that M N, is in 2 By induction, we assume that N/ and (M N,Y* have been defined. Then
M =¥ C where :
C = Mix. (EQ x id") #M (EQ x N (M N)M).((EQ x NAY (M NYM) Q)..),
where (M NYM =f if MN, =g M, or (M NY'M =(M N)* otherwise.
4. If M is a proposition letter a, and a & X2, then a = Q.
5. IfMN ¢ 2 then (MM =M N,

5.6 Definition VM e 7, [MI®=TM*1% Or simply denote LAI = CM*]

In order words, the meaning of M under E is exactly the meaning of M" under E. To better understand
the definition 5.5.3, let’s see the extensional definition of the function LM ™1 . Given a non-teaf db-term
Min D, find all M N, where i = 0, ..., n for an integer n, such that each M A; is in 2D By induction, we
assume that TN/ T and [(MN;)’L]} have been defined. Then

LM = {<Lid'1, CEMT >, <IN/, LM N, *T>..<CN,'T, TM N, 3>}

The lambda expression in the definition 5.5.3 was given with the fixpoint combinator ¥ because it is
possible that A is equal (=gp) to one or more M N, Allowing an application of a function equal to itself
may not be interesting in practice, but it is valid theoretically. We will give a formal notion on this in
Section 8.

For each non-leaf db-term M € 2 the corresponding A—term M is defined to have an application M/ *igh
equal to # M. This semantically enforces that M is unique in 2 and different from each other, even
though there is no &, such that M N; € 5. The analogs of non-leaf db-terms are variables in programming
languages. No matter the variables are initialized or not, they are different data containers for potential
data.

We further show that the property of the applicative behavior of a h—model is preserved in the EP data
modei.

5.7 Lemma.V (MN el TMNI=EMI [NT
Proof. 1. We show that VM N € T (MN = M* N* It is obvious from the definition 5.5.3 and 5.5.3.
2 (MM =M*N'= IMNI=TIM3 NI

LM N] = [(MN)*] by the definition 5.6
= [M*N*1 by the first conclusion of this proof.
=fMMIINYD by the applicative behavior of A-models (Chapter 18 0f 4)

=LM3 ENT by the definition 5.6



Recall that the definition 4.3 imposed additional constraints on EP databases. This is important in
supporting the definition 5.5. The definition 5.5.2 would never touch the ground of A-terms without the
restriction 4.3.1; and the definition 5.5.3 could give a conflict meaning for a non-leaf db-term without the
restriction 4.3.2.

6 Reduction

The computing rules defined in 4.1 are not sufficient to convert arbitrary db-terms to db-nfs. Since the set
of the constants C is a part of the EP data model, we must first give the computing behavior of the
constants before the further inference rules for the db-terms can be given. For example, for any ¢ in C
and any db-term M, what does ¢ M come up with? The db-term ¢ M is not a db-nf, then it, if it is
decidable, should be computed to a normal form in a language governing the behavior of the constants c

The constants ¢ and their applicative behaviors are governed by other languages other than the EP data
mode!. They are needed because atomic values like integers, higher-order functions with infinite data like
+, and certain queries against EP databases must be supported by a Turing-machine equivalent language.
The EP data model is eventually to be said Turing-machine equivalent because the computing behavior
of the constants is counted as axioms of the EP data model.

In the discussion of the reduction of the EP data model, We could use an extended A—calculus sugared by
db-terms to be the language governing the constants Cand their computing behavior, as further discussed
in Section 11. But we only request a legitimate computing behavior of the language, instead of imposing
more specific syntactical definition and inference rules on the language. This will allow a heterogeneous
distributed computing environment supporting muitiple computing systems, instead of a single dictating
system like a lambda calculus, a functional programming language, or a imperative language.

Firstly, we iterate the concept of applicative structures in (Definition 5.1.1 of {4]).
6.1 Definition % = (X, ) is an applicative structure if - is a binary operations on X,

When % is viewed as, or supported by a language, then Vx, yeX, 3 z € X, % will have a terminating
procedure which computes z from x . y if x . y is computable, or # will have no conclusion about x . y.
The notion of applicative structures is exactly a part of what we need. We don’t care how the result z is
computed, but what is the result z, which gives the legitimate computing behavior of a language.

6.2 Examples 1. LetX={0,/, L}. Forany objects ¢, ¢; € X, a ] axomitizes ¢;-¢; to be L.

2. Let X = {Integers, Strings, Characters, L}. For arbitrary objects ¢;, ¢; € X, a # axomitizes ¢;- ¢; to
be 1.

3. Let X = {Integers, Plus, L}, a common sense language # will have: Plus n=m n + [ for all » in
integers, and L ¢ =m.L; ¢ Plus =w .. for all ¢ in X. Here =w denotes equality formula in the language ¥
4. Let X=A"(C,), and ¥Yx € X, x is either a normal form, a head normal form, or an unsolvable term
which has a distinct interpretation in £. Then the lambda caleulus with A’ (C) as lambda terms is the
language such that V¢, ¢; € ANCH, 3cre AY(C), the computing ¢, - ¢; may terminate with the result
of ¢;, but it is not guaranteed.

5. Let X = C then there is a language W:¥ ¢, ¢; € G 3 ¢; € ( such that ¢; can be computed if ¢; . ¢; is
computable.

The definition 6.1 cannot be used to completely explore the computing behavior of the constants C
because the computing behavior of ¢ M was not covered if M is a db-term in a EP database. The issue is



that the db-terms are different from the constants in terms of syntactical forms although both of them are
interpreted as functions. The EP data model adjust itself to accept constants C and their legitimate
computing behavior. The system or the language which supports the constants Cand their computing
behavior is also required to accept db-terms as its own constants. Therefore, we modify the notion of the
applicative structures a little and impose the applicative behavior of Cas the following.

6.3 Definition. 1. A system #/ = (X, -, Y), where Y C X, is an semi-applicative structure if
Vee Y, VMe X,3Ne X, suchthatc M =wN.
2. In a semi-applicative structure %] c- M, called a #/-redex , is computable if %/ has an effective
reduction such that ¢ M can be reduced to N, denoted as
c M —uN.
W is recursive if Ve € § VM € DB-NF , ¢ M is computable.
3. % is non-trivial if %/ has at least two distinguished elements

Notation. 1. a- b is vsually written as @ b. The elements in a (semi-)applicative structure are curried
functions.

Now we can see that the definition 6.3 satisfies us in the regard of the computing behavior of the
constants C We take the computing behaviors as the axioms of the EP data model.

6.4 Axiom Let % = (DB-NF, -, C)is a non-trivial semi-applicative structure, and letc € M N eDB-
NF.
cM-—>uN SQCM'—“gpN

Just corresponding to the interpretation of db-terms in Definition 5.5, we give the following inference
rules.

6.5 Rules of inference:

. Yag D=a=1.

2. LetML e J,and M e D Find all the N, € D, here i 2 0, such that M N, € 2. If there is no ¥, such
that ¥y=L,then ML= L

3. N;=N2:>MNIWMN2.

4, N}zNgﬂNijNzM.

All the proposition letters not in the database are equal to L by the rule 6.5.1. By the rule 6.5.2, all the
combinations of two db-terms M L are equal to L if M is in the database, but L can not be converted to
one of N, for all the i = 0 such that M N, is in the database. The rules 6.5.3 and 6.5.4 reflect the
applicative behavior of A~models.

Examples.

|. College CS CS100 John Grade = ‘4", by 4.1.1.

2. CSQ Root 2 =12, by 4.1.1
=2 by 4.1.1

3. Plane Objl Shape 55={Ax, . 0 x<I0 A 0Ly <10)55 by 4.1.1
=(Ay.0<sy<i0)5 by 6.4
= {rue by 6.4

Similar to the reductions of other formal theories, let’s give the definition of the reduction between db-
terms.



6.6 Definition Let M N e J witha € and a 2 If there is a (finite) sequence Ly, ..., Ly € J, where n 2
0.such that M= Ly, Lo=Ls ..., Ly =Ly, L, =N, then

1. M is (effectively) convertible (reducible, or computable) to N, written as M ~>gp N.

2. L, where i =0, ..., or n, is called an intermediate term of the reduction from M to N,

Now with the inference rules given in 4.1 and 6.5, and the axioms given in 6.4, we would like to see that
an arbitrary db-term can be reduced to a db-nf as long as the relevant #7-redexes are computable. To
clarify the term “relevant #/ -redexes”, we have to introduce more tedious notions.

6.7 Definition. Let M e Jwitha € anda D

|. [fasubterm A c M is not in normal form by itself, A is called a redex.

2 In M where each subterm is parenthesized, a subterm 4, is to left of a subterm A, if the right-

parenthesis *)* of A; is left to the left-parenthesis *(* of As.

A redex Aof M is the lefi-most redex if there is no other redex A’of M, such that A’ istoleftof Ain

M. For example in Fig. 1, (C SQ Root) and ({ 2) are the left-most redexes of ((C SQ Root) 2y and (I ({

2)) respectively.

4. The reduction procedure of a db-term M is in left-most order if each intermediate term of the
reduction is reduced by starting from the left-most redex.

5. The relevant % -redexes of M are the left-most #/-redexes of the intermediate terms that can be
reduced starting from M in the left-most reduction order.

6.8 Theorem ¥ M e J witha € anda D, M can be effectively reduced to one and only one db-nf N if
the relevant #-redexes of M are computable.

Proof. Givena M € 7,
l.ifMe 2B,
a). if M has a tag, then the normal form of M is the normal form of M.tag. Or
b). if M has no tag, then M is a non-leaf db-term. Then M itse!f is the normal form.
2. 1M e,
a). if M=za,and a & 2, then a —gp L by 6.5.1. Then M has the unique normal form L.
b). if M=c, and ¢ € C then ¢ itself is the unique normal form.
¢c). if M =N, N,, by induction, assume that N,, N, are effectively reduced to two normal forms N, Ny
separately.

D.IEN ' =¢c ce C, then N’ N, —>mN’, here N’ is a normal form by 6.4. Then M —ep N by
Axiom 6.4. The reduction on the ¢ N;', the left-most %/ -redex of itself, is effective according to the
condition of the theorem.

ii). If N, is a non-leaf db-term in 2, we can search all the M L;, where i > 0, such that N, L e
If there is a Z, such that L, = Ny', then N, L, will inductively has a unique normal form according to the
Proof 1. If there is no Li such that Li = N, then M -»gp L by 6.5.2. Since i is a finite number, the entire
reduction process is effective. Finding all N;" L, is effective. Reducing all the L; to normal forms
inductively is effective, then comparing N,’ with each L, is effective. Therefore, the entire reduction
process is effective.

Lod

Discussing the effectiveness of computing db-terms has satisfied us for the purpose of this paper. It is out
of the scope to discuss the efficiency of computing db-terms by analyzing different reduction orders like
applicative order and parallelism although the author see the potential of the EP data model in this area.
The next issue is the consistence of the EP data model as a language. We will borrow the notion of
consistence from (Definition 2.1.30 of [4]).



6.9 Definition. A formal theory with equations as formulas is consistent if the formal \theory doesn’t
prove every equation.

Notation. Definition 6.6 can be re-written as M =  if there is no reduction sequence such that M —gp N

6.10 Theorem (consistence). 1. Let M, N are two distinct (not identical) normal forms, then A/ = M.
2. The EP data model is consistent.

Proof. 1. If M, N are distinct (syntacticaly different), and M =, then M would have two normal forms,
itself and V. However, there is no any inference rule in the EP data model which reduce one normal form
M to another distinct normal form N, M = N is contradict to the EP data model theory, and it must be true
that M = N,

2. 1f 7 was inconsistent, then M = N for all M, N. But the condition given in Axiom 6.4 required that
the semi-applicative structure %/ is non-trivial, that is, there are at least two distinguished constants ¢,
and ¢, in M. Since ¢, can not be %/ -reduced to ¢;, ¢; and c¢; are the two distinguished normal forms in
the EP data model. It is a contradiction that 7 is inconsistent.

6.11 Theorem. M —p N = [AMT = LND (soundness)

Proof. 4.1.1 is true by the definition 5.5.2.
4.1.2 is true by itself.

6.4 is true by itself as an axiom.

6.5.1is true by 5.5.1.

652 IMNI=0LMI LNI by Lemma 5.7
=[] by Definition 5.5.3 and the condition of 6.5.2
=g By the semantics of Q.
6.53: CMNI=LMILN,D by Lemma 5.7
= [T LN,] by induction on the structure of db-terms with
the assumption that NV, = N; —» LN, 2 = IN,]
= [MN,] by Lemma 5.7

6.5.4: Similar to the proof for 6.5.3.

The last issue with regard to the EP data model as a language is completeness. That is, is it true that LA
= [NI =M= N?Or M# N= LMD = ENI? The answer is no in general simply because of the
“weak” reduction systems of a Turing-machine equivalent formal language like A—calculi. For example
in the pure A-—calculus, for any normal form N & A, there is a A-~term X with no normal form such that
£AMAP== £X3 %, here D, is the Scott’ A—model [37], [36]. This will be true for a A~calculus sugared by
the constants Cy, and further would be true for the EP data model when € < A%(C,). Another possibility
of the incompleteness in the EP data model is when L¢3 = EMT, where ¢ € G and M is a non-leaf db-
term in a database 2D In this case, however, ¢ # M according to the inference rules of the EP data model.

Fortunately, it is not the practical concern to construct two expressions for a single function. Therefore,
the following conclusion should satisfy the computing practice.

6.12 Corollary Let M, N s DB-NF, LM = INDif
i. for any two distinguished constants ¢;, ¢, € CL 1= Ll
2. for any non-leaf db-term O in 2 and any constant ¢ € G CQT = Lcl.

The condition 1 requests that each constant uniquely represents a function; and the condition 2 requests
that a non-leaf db-terms is constructing a new function on the base of the constants £



Proof. Case 1. [f M and N are two constants, CM3 = [NT by the condition 1.
Case 2. If M and N are two distinguished non-leaf db-terms, TMI = LN by the definition 5.5.3. '
Case 3. [f M is a constant, and NV a non-leaf db-terms in 2 LMI = LNT by the condition 2.

Now, let’s summarize what is meant by the EP data model after a serial augmentations of notions. First
of all. The EP data model adopts the constants ¢ and their computing behavior, represented by the semi-
applicative structure (DB-NF, -, C). Ccould virtually reference the entire set of the effectively
computable functions. This is why the EP data model will be shown Turing-machine equivalent. But it
would be not real unless they have been constructed by other languages. Therefore, another view of the
EP data model would be an extended 3 —calculus with the flavor of the EP data model, as we will discuss
more in Section 11. How to construct constants is not the concern of the EP data model. What really
makes the EP data model interesting is storing and manipulating the constants, and constructing higher-
order functions on the top of the constants. Secondly, the EP data model can be characterized as another
semi-applicative structure (] -, P) by ignoring the constants. Combining the two portions (I -, ¥) and
(DB-NF, -, C) together, the EP data mode! is an applicative structure,

6.13 Corollary The EP data model () is an applicative structure. That is, VM, N e 73 Le J such
that MN=L.

Proof. 1.1f all the sub terms of MN are computable, MN has a unique normal form, which must be L by
6.7. In other words, MN =gp L = MN = L.

7. [f some relevant #-redexes ¢ O of MN are not computable. But according to the definition 6.3.1, ¢ Q
=w (", where Q" is a db-nf, the sub term ¢ Q in M N can be replaced by Q. Inductively, M N should be
equal to a db-nf. We may not have EP reductions for this reasoning, and we may never know which db-nf
M N is equal to, but M N do have a db-nf.

Before finishing this section, we would like to highlight a obvious, but signification conciusion: all the
effectively computable functions can be managed by the EP data model as long as they can be finitely
expressed by a Turing machine equivalent language. Similar to the concept of A-definability, let’s give
the definition of £P-definability. In the following, we assume that the numerals [ #; ] in A—terms are the
constants in C

6.14 Definition Let ¢ be'a numeric function with p arguments. ¢ is cailed EP-definable if there is a db-
term A in a EP database A such that
"AETIN Fnﬂ eN, Minl... l_n,,—] N Y I n,,)—]

6.15 Theorem A partially recursive numeric function @ is £P-definable.

Proof. 1. The partially recursive numeric function ¢ is A-definable according to Kleene Theorem (8.4.13
of 4. In other words, there is a A~term F, such that
v l-nﬂ, s fnp—l e N, Frn,—l {—nﬂ '")J(p (ryy oo rzpﬂ
7 Let M is a db-term in a database 2, and assign M.tag = F.
Then we have M!‘nﬂ rnﬂ = (M tag) (1. fn,ﬂ =Flnl.. l_np—l ml‘q} (ny, ..., n,,)’l
Therefore, ¢ is EP-definable.

7 Active Domain and Recursive Enumeration

[t could be the end of discussing the EP data model as a language after we have finished its syntactical
and semantic definitions. However, The EP data model is introduced for database applications, where



queries and updating operations have to be constructed against databases. Without exceptions, these
queries and updating operations will be viewed as higher-order functions, and they are expected to be
Turing-machine equivalent. The immediate candidate of descriptive query languages is an extended
tambda calculus, in which the db-terms in the EP data model are possibly A-terms A7 ). On the other
hand, a first-order language wiil be very useful in providing “ad-hoc” queries against EP databases. in
stead of developing these two languages, we will try to discover a few ordering relations in the rest of the
paper which will act as primary database manipulating operators, and as constants in the extended
lambda calcuius and the first order language. To facilitate the coming sections, we explore the properties
of the db-terms as sets in this section, and introduce the notions of active domain and recursive
enumeration.

We know from the previous sections that a EP database % defines nothing but a set of higher-order
functions. While a constant function gives the definition of the function in intension, a db-term in 2
gives the definition of a function in extension. Regardless the ways of the function definitions, a function
conceptually defines a set of argument/value pairs (or called function enumeration); and recursively each
argument, as a function again, defines another set of argument/value pairs. When we recursively union
the argument/value pairs together, where the values are not undefined, or meaningless, the union would
be the complete, discrete properties of the given function. This union has the term “recursive
enumeration” for its syntactical presentation, and the term “active domain” for the semantic presentation.

In the definition S.1, we chose the A-model K = A + [E-Y E] as the function space of the EP data model.
The intention was to have a set of primary constants A in the function space such that applying each
primary constant to arbitrary element in the space would be equal to the least defined element Lg. This
has been reflected for the A—model £ and the corresponding lambda calculus A(Cy) in Definition 5.1.3.
Correspondingly, it is imposed on the EP data model.

7 1 Definition Let G €. Vee G, VMe T eM=l.

The notions of recursive enumeration or active domain practically make sense only under the special
applicative behavior of the primary constants ¢, defined above. Let’s first introduce more abbreviations
for certain syntactical forms of db-terms.

Notation

| Let N=NN, .. N,e J. Then MN..N, =M N= (AMNYN) ... Np).
Let ¥= NN, ..., N, € 7. Then NM=(N; (Nsy .., (N, M)...).

IM)] is the length of Min symbols, here M € A

=3 Definition 1.Given M e 2 the RE (Recursive Enumeration) of M, denoted as RE (M), is the set of
all the db-terms:

M N where N e DB-NF(2D),}| N |20, such that ¥ N#L
7. VX< T, REX)={REM)| M e X}.

7.3 Examples 1. In Fig. 2, RE(College Admin John)y = { College Admin John, College Admin John
Reg#, College Admin John Enroll}.

2. [n Fig.1, RE(D) = {Root, Root 4, Root 9, 1, 12,13 502 803 C CSQ, CSQ Root, C SQ Root 2,
C SO Root 3, C SQ SO, CSQSQ 2, C SQ SQ 3}

3. InFig.3, RE(D)= {Plane, Plane Obj1, Plane Objl Color, Plane Obj! Shape , Plane Obj1 Shape 0,
.. Plane Objl Shape 00, .... Plane Obj2, Plane Obj2 Color, Plane Obj2 Shape , Plane Obj2 Shape 0,
., Plane Obj2 Shape 00, ..., }.

3. If M= L, then RE(M) = ¢.

Ly



7.4 Definition 1. LetMe J,adom(M)={LxT|xe RE(M)Y
7. LetXc I, adom (Xy={Lx1]x e REXO).

Similar to the active domains in relational databases [1], the active domain of a set X < T gives the
complete elements (except for Lg) in £ which are represented by the db-terms M e X. Two db-terms in
RE(X) may collapsed into a single element in adom(X) by the function adom if the two elements are
convertible.

Theorem 6.8 indicated that all the db-terms in 7 have at most one convertible normal forms. A normal
form represents a unique element in £, Therefore if all the constants ¢ are derivable from 2 that is,
adom(C ) < adom(D), then J does not carry more meaning than what 2 does; and D defines the
exactly same meaning as the set DB-NF does.

7.5 Proposition adom( 7 )= adom ( D) = adom(DB-NF) if adom (O) < adom (D)

Proof |.¥ Me J,3N € DB-NF, M =g N by Corollary 6.12. Then EMT = LNT. Therefore adom () <
adom (DB-NF).

3 Since DB-NF c T, then adom (DB-NF) < adom (7). By t and2, adom (7} = adom (DB-NF).

3 Since D I, then adom (D) = adom (DB-NF) by Proof 1.

4 DB-NF = ( u the set of the non-leaf db-terms in D < Cw D Then adom (DB-NF) < adom { Y
 adom (D).

5. Since adom ( C ) adom (D), then adom (DB-NF) ¢ adom (D). Then adom (D)= adom (DB-
NF) by 3, 5.

Since the constants ¢ are independent from EP databases T, it is possible that some constants are not
managed by the EP databases. This could be real in practice, but not interesting from the view point of
the EP data model. The proposition 7.5 says that EP databases is the only concern of the EP data model if
either all the pre-constructed finite functions are managed by the EP databases, or the EP data model are
only interested in managing some pre-constructed functions. In other words, the constants C should be
always derivable from EP databases b in practice.

Before moving on to ordering relations of the EP data model, we would like to explore more properties of
recursive enumeration and active domains. The notion “recursive” is used in the common sense that a set
Yis said to be recursive if “x € X7 is effectively decidable.

7.6 Proposition. Let X 7, and 5 an EP database.
[ If RE(C) is recursive, so is RE (X).
2 1f Cis finite, so are DB-NF and adom ().

Proof. 1. Givenaterm M & I, and a X< 7 the question M & RE (X) is decidable. Search the elements
in Xto see ifthere isa L € X'suchthat L Ne=Mfora N ¢ J.1fno, then M & RE (X). QOtherwise, reduce
M to a normal form. Since RE(C) is recursive, then the relevant W-redexes of M are computable. By the
theorem 6.8, reducing M to a normal form is effective. If the normal form of M is L, then M eRE (X).
Otherwise, N € RE (X).

2. By the definition 4.4.3, DB-NF is the union of ¢ and the non-leaf db-terms in -5 Since the non-leaf
db-terms are finite, and C is finite. So is DB-NF. '

These propositions say that functions constructed by a D are always recursive or finite as long as the
properties of the constants in P are recursive or finite respectively. Can we say that RE (X) is finite if RE
(C ) is finite? The answer is ne in general. We will come back to this point in the next section once we
defined more notions.



8 Ordering Relations

Different from the relational data model or other object-oriented models, the EP data model has its data
organized with the interpretation of higher-order functions, and the relationships among the data obey the
computing (applicative) behavior of the functions. In this section and the coming 2 sections, we are going
to discover these relationships from the EP data model, and represent them in a few ordering relations.
As built-in operators, the ordering relations are expected to be highly descriptive and expressive in the
construction of queries, and updates against EP databases. The followings are some exampies of the
queries which can be supported by the ordering relations:

8.1 Query Example

| ~Print out all the students who registered in the College in Fig 27,

“Find all the coordinators <, >, where x, y are integers, and they are both in Objt and Obj2”
“Delete al} the data which is relevant to Joan from College in the database in Fig2.”

“Given a directed graph G, is there a path from vertex 4 to vertex B? And is there a circle in the
directed graph? "
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In this section, we formalize the relationships among functions, arguments, and values. A value depends
on its function and the corresponding argument. In other words, given a function, an argument, and the
corresponding value, the value is partly dependent on the function, and partly on the argument.

8.2 Definition. 1. Given M, N ¢ J, M is called the function of N, and N the value of M, denoted as V <.
M, if there is a db-term L in I such that ML=N.

2. Given M, N € 7, Mis called the argument of N, and N the value of M, denoted as N <, M, if there is
adb-term L in 7 such that L M= N,

3. Given Mand N, M is called the ancestral function of N, denoted as N ,.¢ M, if there is a N, where
| N|| 2 0,suchthat M N=N. ,

4. Given M, N e 7, Mis called the ancestral argument of N, denoted as N <, M, if there is Ne T,
where N} 2 0, such that ¥ M = N.

8.3 Example By applying the defined ordering relations, the following boolean expressions can be given
and each of them is true:

. CSQRoot <x CSQ
2. I <:CS8Q

3. 3 <.pRoot

4, CSQO <.S5¢

5. College CS CSI00 John <., SS§D John

8.4 Example When the relations <.rand <., are used in an extended first-order fanguage, some queries
in Example 8.1 would have the following expressions.

1. For Query 8.1.1: {x|x <.sCollege Admin Ax =1},

2. For Query 8.1.2: {<x, y> | x, y € Integers n Plane Objl Shape x y = true A Plane Obj2 Shape x y =
true}

3.5 Definition 1. A relation p in a set X is reflexive iff xp x for each x in X. p is symmetric if xp y
implies y o x, and it is transitive iff xo y and y pz imply xp z.

2. A relation p in X is an equivalence relation (=) iff p is reflexive, symmetric, and transitive.

3. p is antisymmetric iff wheneverx py and y px imply x = y. )



4. A relation p is called partial ordering in X iff p is reflexive, antisymmetric, and transitive. And 2
relation p is called pre-ordering in X if p is reflexive and transitive.

8.6 Theorem 1. =gp is a equivalent relation in a
2 the relation <., va in7 are pre-orderings (reflexive, and transitive).

Proof. 1. =gp is reflexive, symmetric, and transitive by its definition.

3. <.y, S are reflexive in 7 by their definitions.

3. <,¢is transitive. If M <.¢ L and L €, O, then there are N, and N, in 7, such that M= L N, and L
=0 N, Then, M=0 N, N,. Therefore, M <.+ 0.

4. <., s transitive, Similarly if M ¢ L and L < ¢ O, then there are N, and N, in 7, such that M = N,
(L), and L= N, O Then M= N, (N, (()). Therefore, M <.¢ Q.

[t can be shown that the pre-orderings of a set are preserved under sub sets. Therefore, Sur, Sv.a are pre-
orderings in RE(T), RE(D),and 2. In the rest of the paper, we will have our eyes on the set RE(J) in
analyzing ordering relations since analyzing the db-terms convertible to L does not add vaiues to our
conclusions.

The relations Su.r, Sv.a 5aY P, are not generally partial orderings, or antisymmetric in RE( 7)), because it
is not generally true that M o Nand N p M implies that M= Nfor M, N RE( ). See the section 9 for a
directed graph as an example. However, if additionat restrictions are imposed on ), the relations <., Of
<., could be partial ordering in RE(J).

8.7 Definition 1. Let two distinct M, ¥ € RE(TJ ). If M= N and M £.¢ N, then M is a fun-loop of N,
denoted M =,.¢ N.
7. Let two distinct M, N € RE(T). If M=Nand M <., N, then Mis a arg-loop of N, denoted M =, , N.

It is a fun-loop (function loop) if applying a function to an argument is equal to the function itself; and it
is an arg-loop (argument loop) if applying a function to an argument is equal to the argument itself. The
notions of fun-loops and arg-loops is used between db-terms. And then they are also implied between
functions.

8.8 Corollary 1. In RE (J ), if there are not two distinct M, N, such that M ~,¢ N, then RE (T ) is
partially ordered by <.¢
2. In RE (), if there is no two distinct A, ¥, such that M =, N, then RE (T ) is partially ordered by S..a

Proof. 1t is obvious from the Theorem 8.6 and the definition of partial ordering.

The examples given in Section 3 don’t have fun-loops ot arg-loops. Therefore the db-terms offered by
cach 2 in Section 3 are partially ordered by <,.¢, and <,.,.

Section 7 has left a question: is RE (X) finite if RE (Cy) is finite?

8.9 Propositioi: Let 2>be a database.
I. RE(7)Iis infinite if there is a fun-loop, or a arg-loop in RE( .
2. RE(J)is finite if RE(C) is finite and there is neither fun-loops, nor arg-loops in 2D

Proof. |. If there is a fun-loop in RE(J ), then there are two distinct M, L € RE(Z ), and others N e
RE(F ), such that M= L N.Then L =1L N.Then the infinite db-terms L, L N L N N .. arein
RE( . Similarly if there is a arg-loop in RE( ), then there are two distinct M, L RE(T), and others hY
e RE(T), such that M = N (LY. Then L= N ( L). Then the infinite db-terms L, N{LYNW (L)), ... are
in RECT)



2. Since RE ( C2) is finite, and b is finite, then there are a finite number of constant symbols and finite

proposition letters in D and RE(Cz2). And DB-NF is finite by Theorem 7.6.2. If RE () was infinite, it

must be true that there is a db-term M ¢ RE { 7), such that M = L, and ||AM}| = co. In other words, there are

at least two sub terms of M such that both are in RE (7), and are equal. The M could be either M= L N

or M=~ L, where L. N, and ¥ are arbitrary db-terms. [t must be true in one of the following cases.

Case l.M=L N. It happens that there are two distinct N, and 1\72, such that L ﬁ; =L N> and L N <o
L 1\7_; <ot L N, . Then L ﬁ, =, L N, which is contradict with the condition that there is no fun-
loops in RE ().

Case 2. M= N L. It similarly happens that there are two distinct ;, and N, such that NL=N,L and LV
<t LN, <.c LN, . Then L N, =y, L N, which is contradict with the condition that there is no arg-
loops in RE ().

The above proposition says that fun-loops and arg-loops add infinite meaningful db-terms even though
the semantics of the db-terms may be finite. Normally in database application practice, we shall avoid
this situation. However, arg-loops may be natural to represent some special application data in the real
world. In the coming section, we will give an example with arg-foops.

9 Database Design iL

Propositions 7.6.2 and 8.9 indicate that a database with fun-loop and arg-loop doesn’t offer more
elements in the active domain than those in the recursive enumeration. They ought to be avoided in
representing partially ordered data. However, not every thing in the world is simply partiaily ordered. In
this section, let's give one example to demonstrate how the data not partially ordered in the world can be
represented by arg-loops, and how the queries like 8.1.4 can be expressed by the ordering relations.

9.1 Example. EP database presentations for directed graphs.
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A directed graph could be represented in the EP data model in many ways. The presentation in Fig. 5 for
the directed graph in Fig. 4, however, is a “natural” one for directed graphs, and allows the queries in
examples 8.1.4 to be expressed by ordering relations. In Fig. 5, each node represents a vertex in the graph
of Fig. 4, and is named by the label given in Fig. 4. When a directed link connects a vertex {(say B ) from
another vertex (say 4), 4 B in Fig. 5 will be an application of 4 by applying to B, and 4 B is assigned a
tag identical to B. The textual presentation of the database in Fig. 5 is:

D=1{A4, A B{tag=B),AD(tag=D),D,D A (tag=4), B, C}.

ln this database, It is clear that 4 B =, B;and 4 D =, [; and D 4 =,, 4. When the left hand side (say
AB) of .., is coilapsed with the right hand side (say B), and the corresponding up-down solid link is
replaced by an solid arrow from the down node 4B to the up node 4, the presentation in Fig. 6 can be
reached, which looks like the same as the original graph in Fig. 4. Another sense of the “natural” is that
1o matter which node one starts with and which arrow one traces, the sequence of the node names along
a tracing path in Fig. 6 forms a valid (meaningful) db-term in RE( D), for example, DAB, DADADADAD

Now, no matter which presentation (Fig. 5 via Fig. 6) one references, the queries in 8.1.4 can be easily
expressed in a first order logic with the ordering refations as logic functions.

Query “Can D be reached from B7” is represented as
B<.D

Since D A B . D is true by Definition 8.2.2, and DA=4 and 4 B=58 by the definition of the database
D in this example, then D 4 B = B. Therefore the answer to the query “B <.¢ D" is true.

Query “Are nodes A and D along a circle in the graph?” is represented as
A Sv.fD A D Squ

Similar to the previous query, it can be shown that D has a path to 4, that is, 4 <,.s D = frue; and 4 has a
path to D, that is, D <.t 4 = true. Then the answer to the current query is true.

It is coincident that each db-term in Fig. 6 is corresponding to a retraction: an identity function whose
domain is identical to its range [33]. That is, VM ¢ Din Fig. 5, M ° M= M, where g ° f= Ax. g(fx)).
More generally, the notion of arg-loop exactly reflects the concept of fix-point of functions [34]. For
example, the infinite RE( 2) of the directed graph in Fig. 4 has the finite presentation of the EP database.
The analogy would be that the infinite tist x = (a, (a, (g, ...)}) has the finite presentation x = (a, x) [27].

This example used arg-loop functions to represent directed graphs. Are there data applications that can be
“naturatly” represented by fun-loop functions? There is not much the author could thing of far up to
now. However, fun-loops will have applications in defining recursive data types like lists and trees, and
thereby in defining data schemata for EP databases. Since defining data schema is beyond the scope of
this paper, it will not further discussed.

10 Data Dynamics.

So far the ordering relations developed in Section 8 were based on the equality (=gp) of the EP data
model. These relations would be too loose in dealing with data dynamics in the real world. For example.
the equality Plane Objl Color = “black” induces :

\. Plane Objl Color is the application of Plane Obj! to Color; or it is equivalent to itself.

3. “black" is the application of Plane Objl to Color; or it is equivaient to Plane Obj1 Color.

(3]
2



The statement | is expected to be true in any circumstance. But the statement 2 may not be true in
database application practice. The color of the object 1 may change to gray after a while; or it has never
been black even it was wrongly assigned “black”™ in the database. Similarly, if Obj/ needs to be removed
from the database, then Plane Objl Color, but not “black”, is expected to be removed from the database.
As one of the primary objectives of the EP data model, more restricted ordering relations under EP
databases is developed to deal with data dynamics in this section. Simply, we give another version of the
definition 8.2 by turning off the inference rules of =gp except for the identical equality =.

10.1 Definition. 1. Given M, N ¢ T, M is called the rator of N, denoted as NV <, M, if there is a db-term
Le I suchthat ML =N.

2. Given M, N € J, Mis called the rand of N, denoted as N <4 M, if there is a db-term L € Z, such that
L M= N

3. Given M, N e J, Mis called the ancestral rator of N, denoted as N <, M, if there is Ne I where
| M = 0, such that M N=N

4. Given M, N e T, Mis called the ancestral rand of N, denoted as N <4 M, if there is N € 7, where
IV = 0, such that ¥ M = A

The domain of the relations introduced above was J legitimately, but it is not interesting in database
application practice. Readers can simply consider the relations are applied in the domains of EP
databases 2 subsets of .

By replacing <. with <, and <., with <4 in Example 8.3, the statements 1, 4 and 5 are still true, but the
statements 2 and 3 are false. Like the relations defined in Definition 8.2, the relations defined in 16.1 also
can be used for query expressions. For example, the expression {x | x < College Admin A x € 25} would
have the same effect as 8.4.1.

It is obvious from the reduction rule 4.1.2 that each relation defined in 10,1 will be a sub set of the
corresponding relation defined in 8.2

A set X < 7 under the relations defined in 10.1 is not only partially ordered, but also tree-structured.

10.2 Definition. A set X is tree-structured under a relation p iff
1. there is one and only one root » € X such that Ve € X, <r, e> ¢ p, and
2. Ve e X, and e is not the root r, there is one and only one ¢’ € X, such that <e, &’> e p.

10.3 Proposition. {. Let 22is an EP database. 2D is tree-structured under the relation <, <y

Proof 1. Under the relation <. First of all, each propositional letter p & 2D is a root under the relation <
according to definition of the relation <. For the rest of the db-terms MN e 2, MN is not a root because
MN <, M. Therefore the propositional letters are the only roots in the database D under <. Secondly, let
M e D If there were two db-terms N, Ny € I such that M N < N}, and M N<; ;. Then, there are two
other db-terms L;, L; € D, such that M= N, L, = N; L;. Then it must be true that ¥, = V..

2. Under the relation <. the proof is similar to Proof 1.

10.4 Example 1. In order to identify the majors of the students studied in the College in Fig.2, the
database needs to insert an additional function Magjor for each student under College Admin. To make
this update in the database, The query 8.1.1 shall be given to retrieve all the students registered in the
College. The query could be expressed by 8.4.1, or an expression with <. Then a Magjor function would
be inserted under each student of College Admin. College Admin John Major, for example, would be a
meaningful db-term in 2.

P
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2. To efficiently assign the values of the majors of the students in the example above, the system
administrator would initialize “CS” as the values of the majors of the students who take the class
“CSI00”. A pseudo expression could be,

x Major = “CS”, where x <, College Admin, and College CS CSI00 x = L.

We wouldn’t worry about the integrity of EP databases. and thereby the correctness of the entire theory
of the EP data mode! after databases had updating operations if the updating is not breaking the rules’
imposed by Definitions 2.4 and 4.3. Adding functions or updating values of functions such as the
examples given above don’t break the rules of EP database as it can be shown easily. Deleting a db-terms
from database, however, is tougher. For example, What is the implication of removing John from the
College? Here, another relation, called biography in [38], is introduced. A query expression with this
relations can retrieve the complete db-terms relevant 1o a given db-term in a £ database.

10.35 Definition. Let D be a EP database, and M € 2 x <3 M if x € B(M), where B(M) is defined as
B(M)= {M} v (UWB(X)) W (Y B(x)).
X S

x Sy
xe B xe D

10.6 Example 1. Now the resulting EP database with removing John from the College in Fig. 2 would
be:
D ~ B(College Admin John).

That is, the remaining nodes under College in Fig. 2 are CS, C5100, and Admin. It can be shown that the
EP databases after removing db-terms by relation B will remain to be EP databases.

2. In Example 3.2, we have shown the two alternatives of defining the values of a db-term in an EP
database 2. The db-term C SO Root was assigned a tag / in Fig. 2. The alternative way was to spell out
the argument/value pairs of 7 under the C SQ Root, as if it was done for C SQ SQ. These alternatives for
the same function are exactly distinguished by the relation <. In Fig. 2, the expression C 5@ S0 2 < C
SO SO has the value of frue, but the expression C SQ Root 2 < C SO Root has the value of false. When
the composite function C is to be removed from the database in Fig. 2, the function C §Q SQ, or An. n',
will be removed, but 7 will not be removed although C SO Root will be removed too. One application of
these alternatives is to avoid data redundancy. For example, [ could be tagged by other db-terms while C
is tagging on [ in Fig. 1. The second application of these alternatives may allow database designers to
identify the data “ownership” among db-terms in a database. In other words, an object may own another
in one database design; but the former may not own the latter in a different database design according to
the different interests of managing objects. For example, a car owns its parts in the database of a car
dealer because selling a car implies selling the parts inside the car too. However, a car doesn’t own its
parts in the database of a auto part recycling shop because destroying a car doesn’t mean destroying its
parts.

3. Suppose that the / is removed from Fig. 1, what does the tag I of the db-term C SQ Root mean? The
notion of the EP databases has been carefully defined in 2.4 such that no special treatment is needed for
this case. Since / is no longer in 2, then / —»gp L. While C SQ Root is still a valid non-leaf db-term in 2,
C SO Root 2 is no longer equal to 2, but L.

In relational database management systems, the notion of data dependence was used to reflect certain
dependent relationships among the data in one or multiple tables. For example, the value of a data is
dependent on another one; and the removal of the later from the tables implies the mandatory removal of
the former to maintain the data integrity of the databases. The data dependence was not a part of the

? Here, the rules from data schemata are not considered.



relational data model. The EP data model, however, have the partial ordering relations defined in this
section to completely take care of the functional dependency. In other words, these relations know how to
“trim’” functions, instead of only atomic values.

11. Functional Programming

The EP data model incorporates the expressiveness of Turing-machine equivalent languages. The Turing-
machine equivalent expressiveness is not what traditional data models possess. By closely looking at the
proof of Theorem 6.15, we can see that the Turing-machine equivalent expressiveness of the EP data
model is not from the finite number of the db-terms in EP databases, but the constants tagged by those
db-terms. The constants and their applicative behavior are not governed, but accepted by the EP data
model as its axioms (Axiom 6.4). In other words, the EP data model is just a framework of organizing
and maintaining dynamic data (or functions), the real engine of driving the EP data model to the height of
Turing-machine equivalent is a programming language. An analogy is CPUs driving machine-dependent
fanguages, or the machine-dependent languages driving higher-level programming languages.

The style of the EP data model is similar to that of the type-free lambda calculus, or its extended
functional programming languages. To be more descriptive, the EP data model would choose a functional
programming language for constructing its constants and governing the computing behavior of the
constants. This functional programming language may have millions of different syntactical forms. But it
must have the pure lambda calculus as its foundation. The EP data model can be smoothly fitted in the
functional programming language just as another “teaspoon of sugar”.

Be cautious! “The whole field of information systems” is “largely untouched by functional
programming” {25]. “The methodological benefits of functional languages are well known” [16], {3},
“but still the vast majority of programs are written in imperative languages such as C” [23]. What do we
expect the functional programming in database computing applications? And what do we expect the EP
data model in energizing functional programming? Well, we are betting on the EP Data model. We know
that using assignment statements is the most controversial feature of both imperative and functional
programming languages. Allowing assignment statements gives imperative programmers flexibility in
developing application programs; but it is a major source of bugs, and discourages parallel computing.
On the other hand, prohibiting assignment statement frees functional programmers from prescribing the
flow of control in program, and permits lazy evaluation and parallel computing; but it gives functional
programmers “no help in exploiting the power of functional language™ [16]. More specifically,
“destructive updates (i.e. assignments)” are restricted with the “inferior or inappropriate data structures”
[23]. And a refevant criticism is the problematic Input/Output issues [91, [25].

The EP data model could reduce the degree of the controversy of assignment statements. First of all, an
extended functional language with the flavor of the EP data model will not have update operations
against any data except EP databases. Comparing with assignment statements everywhere in imperative
languages, the extended functional language minimizes update operations to only those reflecting the
dynamics of the world. Secondly, the update operations in the extended functional language can be
controlled by using transaction control technologies.

With the discussion above, the author would like to propose a more “measurable” definition of the term
descriptiveness. That is, the sole purpose of a language is 1) to conastruct functions representing
application data; 2) to alter the constructed functions to reflect the dynamic world. Then the

ind
LA



descriptiveness is to categorize the easiness of both constructing and altering functions. From this
proposal, we can see that the traditional functional programming languages are not as descriptive as we
expected. As it happens, the EP data model offers its data structures for storing higher-order functions
and the corresponding ordering relations for queries and updates against higher-order functions. This is
another key of the EP data model. If readers accept this measurement of languages’ descriptiveness, then
it is not hard to see that the EP data model, or an extended functional programming language with the
flavor of the EP data model, would be more descriptive than traditional functional, imperative
programming languages. and traditional data models. In the more “measurable” definition of
descriptiveness above, function update operations are singled out from function construction operations
although the former can be viewed as the latter. But this separation indeed reflects the database practice,
and “destructive” updates are quite different from accumulative constructions.

The “ad-hoc” relational calculus in relational databases was a fact that contributed the success of the
relational data model in database application practice. Computing an expression with logic variables
results an arbitrarily large set of objects, instead of a single one. This distinguishes logic-oriented
programming languages from functional-oriented programming languages. Then how does a logic-
oriented programming language fit in the paradigm of the extended functional programming with the
flavor of the EP data model? Since the well-formed formuias of the first-order language are nothing, but
functions with truth values as the range, adding a first-order ianguage with popular logic symbols into the
extended fambda calculus is expected. Many research works have been done in the related area [13]. And
the author has informally given some examples with the mixture of logic symbols with A—calculus. Data
management has been isolated from programming languages in both research and practices [20]. From
the EP data model, we can see some commonality of data management with programming languages.

12 Conclusion

The EP data model is expected to be a highly descriptive and expressive language which can “naturally”
express “arbitrary” data in database application practice. The descriptiveness stems from the simple
notions of the EP data model, and the embedding ordering relations in EP databases. Readers could react
on the flavors of the EP data model from the examples used in this paper. The expressiveness, on the
other hand, is guaranteed by computable functions EP databases manage. The EP data model is not only a
data type capturing application data, but also a language. lis db-terms are both the names of managed
data and query expressions against managed data. Certain queries and updates on data and the
refationships among the data can be expressed by built-in ordering relations existed between ¢/b-terms in
a first-order logic language. From the examples in the paper, It is obvious that certain traditional fix-
point queries, such as school organization hierarchies, paths and circles in graphs, can be
straightforwardly expressed by the ordering relations defined in this paper. It is the ordering relations
again that free developers from considering data constraints or functional dependency in database update
operations.

Thought of as a higher layer abstraction, the EP data model offers an interface interconnecting an EP
database with others and with heterogeneous computing applications. The EP data model doesn’t see the
physical presentation of data such as software code or data locations, but data itself, as if NFS (Network
File System) was for distributed file systems. Thought of as a higher layer abstraction, the EP data model
could become “system administrators” in software engineering “who” can update software source code,
query on software source code, and even execute the corresponding binary code. Do we need lower-layer
file systems? We don’t have to, because the directory of file systems is a special case of the EP data
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model. In addition, the EP data model may have influences on other computing applications if the EP
data model is used as a data type in programming languages.
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