Froglingo, a Database
Programming Language

Kevin Xu
Bigravity Business Software
kKhxu@bigravity.com

At Microsoft Research Cambridge
May 19, 2006

What is Froglingo

* FrogLingo is a database programming
language. It is based on the lambda
calculus. One can uniformly express both
data and application logic.

* The FrogLingo system is a computer
system that implements the FrogLingo
language. It has a single database storing
both data and application logic.

* The website www.froglingo.com for more.

Why Froglingo?

Among all the database programming
languages, Froglingo is looking for:

* Higher Productivity.

» Best Performance.

Agenda

Sample Expressions
Concepts
Productivity

Time Complexity
Related Work
Future Work

Froglingo — Sample Expressions

> 5; > create Smith salary = 3000;
-- 5 > Select S$person, S$person salary,
> “HelloWorld”; tax (S$person salary) where
“ ’” Sperson salary >= 1500;
- “HelloWorld
> HelloWorld; - John, 1500, 450
-- Smith, 3000, 900
e 1=100
> create John salary = 1500; > create al= ;
> create a2=300;
—-— successful B
> John salary + 5; > create transfer Smoney =
-- 1505 (update a2 = (a2 - Smoney)),
> create tax Smoney=(Smoney * 0.3); (update al = (al + Smoney));
> transfer 35;
—-— successful -
> tax (John salary); __STCCGSS u
—— 450 > al:,3
> create fac 0 = 1; T o7
> az;
—-— successful s
> create fac n:[n>0]=(n*(fac (n-—-
1)));
—-— successful
> fac 3;

-— 6

Froglingo — Sample Expressions

7} D\ Documents and Settings',smm3kh - 10| x|

File Edit iew Fawaorites Tools Help #

Address @ ,tu:n:nls'l,Frn:ninngn:n'I,Micrnsaft-talk'l,cart.htmj a ao | Links **

Please provide vour contact information
Matne |

Phone Mumber |

Submit

&) Done ol [My Computer

K

<htmlI><body>
Please provide your contact information

<table>
<form action="../servlet/epserv">
<tr>
<td> Name </td>
<td> <input type=text name = “name"> </td>
</tr>
<tr>

<td> Phone Number </td>

<td> <input type=text name = "visitor @name phone"></td>
</tr>
<tr>
<td colspan=2> <input type=submit value = "Submit"></td>
</tr>
<input type=hidden name=epFun value=“add_visitor">
<input type=hidden name=epPara value="name">
</form>

</table>
</body></html|>

add visitor Sname =
“<html><body>Welcome “, S$name,
did u visit (visitor $name) Sname

;
did u visit null Sname =
servlet {
<“funname”, epCreate>,
<“name”, Sname>

by
“. You are a new visitor
</body></html>"

4

Did u visit Svisitor Sname =
W

. You have been here
before.</body></html>"

’

Froglingo — Concepts

Terms:

» constant € term. e.g. 33, “string”.

* identifier € term. e.q. id, John.

 variable Eterm. e.g. $x.

* term term € term. e.g. John, John salary.
* term’, term € term.

Assignments:

« term =" term

Froglingo - Concepts
Database - is a finite set of assignments.

HR John ID = 1234;

HR Smith hireDate = ‘6/21/2006’;

Depts DEV Head = HR Smith;

Depts DEV (HR John) title = “Sr. Dev’;

Projs “.com” (Depts DEV (HR John)) wkhrs = 40;
fac 0 = 1;

fac n:[n>0]=(n*(fac (n—1)));

Froglingo - Concepts

Tree-like Structure - equivalent of database

Froglingo - Higher Productivity

* Terms serve as the global names for data.
It minimizes the need for intermediate
variables commonly used in imperative
languages. In other words, it has no need
of a set-valued operation to find a single
value as SQL does.

10

Froglingo — Higher Productivity
Code comparison between C# and Froglingo
Example: displaying the phone number of a given visitor

<l— a html file embedding ASP.NET code ->

<html><body>

Your Phone Number: <asp:Label id="IbIPhone" runat="server" />
</body></html>

<l-- C# code feeding phone number to the above ASP.NET code -->
<%@ Import Namespace="System.Data.OleDb" %>
<%@ Import Namespace="System.Data" %>

string GetPhoneNumber(string name){
string PhoneNumber= null;

System.Data.SqlClient.SqlConnection conn = new
System.Data.SqlClient.SqlConnection(

ConfigurationSettings.AppSettings| "LocalConnStr"] +
ReturnPassValue());

conn.Open();

System.Data.SqlClient.SqiCommand dc = new

System.Data.SqlClient.SqlCommand("select phone where name=" +

name, conn);

try {

PhoneNumber = System.Convert. ToString(dc.ExecuteScalar());
} catch {

PhoneNumber = "Systems error";
}

return phoneNumber;

void display_phone_page(Object s, DataListCommandEventArgs e) {
pniRequestPhone.Visible = false;
pnlViewPhone.Visible = true;
IbIPhone.Text = getPhoneNumber(visitorName.text);

<l- a html file embedding Froglingo code >
<htmI><body>

Your Phone Number: <frog> visitor @name phone </frog>
</body><html>

<!— No need for extra function. The above html code pulls data by itself->

11

Froglingo — Higher Productivity

. Richer and more expressive built-in operators

Enterprise

Projs “.com” {+ Projs;

HR John ID {=+ HR;
pterm (HR John) == HR;

Participation

Depts DEV (HR John) {-
HR John;

Projs “.com” ((Depts DEV
(HR John)) {=- HR John;

mterm (Depts DEV (HR
John)) == (HR John)’

HireDa
6/21/2095

Pre-ordering

Depts DEV Head HireDate --> ‘6/21/2006’;

HR Mike HireDate <=+ Dept DEV;
<+, <-, <=-

12

Froglingo — Higher Productivity

Example “Is there a path from A to Z in a directed graph®?”

/Q)
B D
A Directed Graph The EP Database
Define: AB =B:;
AD=D;

DA=A

13

Froglingo — Higher Productivity

Algorithm Is_a_path (G, v, z);
Input: G = (V, E) (a directed graph), v (a vertex of G), and
z (a vertex of G).

Output: return true if there is a path from v to z, or false.
Begin

mark v;

if v is z itself, then return true;

for all the directed edges (v, w) do

if w is unmarked then
return Is_a_path (G, w, z);

return false;

End

Call Is_a_path (G, A, Z);

Z<=+A

The built-in operators {=+, {=-, <=+, and <=- are more expressive
than SQL, Datalog, and path-expression in graph-oriented
structures. Datalog can do the path problem, but no gurantee of

termination.

The path problem is just a classical example. The Froglingo built-in
operators are extensively used in set-valued operations.

14

Froglingo — Higher Productivity

* Uniform language — term is the primary
concept. C# has many: table, file,
connection, binding, Label, Repeater,
DatalList, DataGrid, DataSet,

* Uniform storage. Reduce operation &
maintenance effort.

* Functional programming declarativeness
— Easy in error handling
— For example: blog careless - null

15

Froglingo — Time Complexity

* Traveling along the
trees-like structure is
optimized.

* Arranging data
differently costs less
for many queries than

SQL does.

* The time complexity
for many queries not
SQL-expressible is
the best.

o (1)

&

HireDa
6/21/2095

16

Froglingo - Time complexity

Case 1: Queries on m-to-m relationships using SQL join

- Example: a report of all the projects including member names.

- SQL spends O (n log (n)). Then Denormalization

- Froglingo spends O (n)

Emps Projs
empld|name projld [empld
1|"John" 10 1
2|"Smith" 10 2
20 1

select Projs.projld, Emps.name
from Emps, Projs
where Emps.empld = Projs.empld;

Emps 1 name = "John";
Emps 2 name = "Smith";
Projs 10 (Emps 1) = true;
Projs 10 (Emps 2) = true;
Projs 20 (Emps 1) = true;

select mterm $p, $e name
where $p $e == true;

17

Froglingo — Time Complexity

Case 2: Queries on shredded hierarchies using SQL select

Example: find the phone
number of the postal office
In Bridgewater township,
Somerset County, New
Jersey, U.S.A.

Assume at each layer, org
has m sub orgs, and there

are n nested levels in a
hierarchy (total m»** -1
nodes).

SQL (by knowing the
depths) spends O(n?log(m))
Froglingo spends

O(n log(m))

org Froglingo database
orgld |[name |parent US NJ SO BR phone = "123-233-9999"
0lUS 1000 US CA OR NL phone = "405-566-9878"
1[NJ 0
2|CA 0 Query: US NJ SO BR phone;
3|SO 1
5|BR 3
6/OR 2
7|NL 6
OrgPhone
townld phone|
6/123-233-9999
7|405-566-9878

SQL Query:

select orgPhone.phone from org, OrgPhone

where org.name = "BR" and org.orgld = OrgPhone.townld
and org.parent in

select org.orgld from org

where org.name = "SO" and org.parent in

select org.orgld from org

where org.name="NJ" and org.parent in

select org.orgld from org

where org.name="US"

18

Froglingo — Time Complexity

Case 3: Queries not SQL-expressible

- Example 1:lIf is there a path from Ato Z in
a directed graph? -- O(n log(n))

- Example 2: Find all the information about
JONN: select $info where $info {=— HR John

- (O(n)).

19

Why Froglingo?

Higher Productivity

Terms serve as global naming.
It says that SQL doesn’t support
a mapping from relations to a
single value.

More expressive built-in
operators than SQL, Datalog,
path expressions in semi-
structured data.

Uniform language and storage
for both data and application
logic.

Functional programming
declarativeness— less bugs,
and “what rather than how”.

10 times less code than Java in
practice.

Best Performance

Froglingo re-arranges SQL’s
many-to-many relationships to
avoid using SQL join. The
resulting query expressions are
cheaper.

Froglingo doesn’t shred
hierarchical data that SQL
does. The resulting query
expressions are cheaper.

Froglingo reaches the best time
complexity for many queries not
expressible by SQL, Datal og,
and path expressions in Semi-
structured data model.

20

Froglingo — Related Work

Relational model misses semantics by
“shredding” application data.

Hierarchical (including XML) model is incapable
for general application data.

Network model lacks a consistent way of
managing hierarchical data vs cyclic data, and a
feasible algorithm for competent performance.

Froglingo has its unique tree-like data structure
which unites the best features of the other data
models and beyond.

21

Froglingo — Related Work

Persistent Java

— Unifies db & programming by keeping running states persistent.
— Not much on set oriented operations.

Machiavelli

— Unifies db & programming by typed lambda calculus
— On the top of a list of tuples.

NET (LINQ, Yukon, Cw, C#XML/SQL)
— Build bridges for DB, Objects, & Documents.
— Minimize communication cost.

Froglingo
— Unifies db & programming by tree-like structure/A—calculus.
— Data and Application Logic are unified logically and physically.

22

Froglingo — Future Work

* Optimize Froglingo System to test its
competent performance.

* Develop a formal method to precisely
analyze the expressiveness of Froglingo
built-in operators and the time complexity.

23

