
1

Froglingo, a Database
Programming Language

Kevin Xu
Bigravity Business Software

khxu@bigravity.com

At Microsoft Research Cambridge
May 19th, 2006

2

What is Froglingo

• FrogLingo is a database programming
language. It is based on the lambda
calculus. One can uniformly express both
data and application logic.

• The FrogLingo system is a computer
system that implements the FrogLingo
language. It has a single database storing
both data and application logic.

• The website www.froglingo.com for more.

3

Why Froglingo?

Among all the database programming
languages, Froglingo is looking for:

• Higher Productivity.

• Best Performance.

4

Agenda

• Sample Expressions

• Concepts

• Productivity

• Time Complexity

• Related Work

• Future Work

5

Froglingo – Sample Expressions

> 5;
-- 5

> “HelloWorld”;

-- “HelloWorld”
> HelloWorld;

-- null
> create John salary = 1500;

-- successful
> John salary + 5;

-- 1505

> create tax $money=($money * 0.3);
-- successful

> tax (John salary);
-- 450

> create fac 0 = 1;

-- successful
> create fac n:[n>0]=(n*(fac (n–

1)));
-- successful

> fac 3;
-- 6

> create Smith salary = 3000;
> Select $person, $person salary,

tax ($person salary) where
$person salary >= 1500;

-- John, 1500, 450
-- Smith, 3000, 900

> create a1=100;

> create a2=300;
> create transfer $money =

(update a2 = (a2 - $money)),
(update a1 = (a1 + $money));

> transfer 35;

--successful
> a1;

-- 135;
> a2;

-- 265

6

Froglingo – Sample Expressions

add_visitor $name =
“<html><body>Welcome “, $name,

did_u_visit (visitor $name) $name

;

did_u_visit null $name =

servlet {

<“funname”, epCreate>,

<“name”, $name>

},

“. You are a new visitor
</body></html>”

;

Did_u_visit $visitor $name =

“. You have been here
before.</body></html>”

;

<html><body>
Please provide your contact information

<table>
<form action="../servlet/epserv">
<tr>

<td> Name </td>
<td> <input type=text name = “name"> </td>

</tr>
<tr>

<td> Phone Number </td>
<td> <input type=text name = "visitor @name phone"></td>

</tr>
<tr>

<td colspan=2> <input type=submit value = "Submit"></td>
</tr>

<input type=hidden name=epFun value=“add_visitor">
<input type=hidden name=epPara value="name">

</form>
</table>
</body></html>

7

Froglingo – Concepts

Terms:

• constant ∈ term. e.g. 33, “string”.

• identifier ∈ term. e.g. id, John.

• variable ∈term. e.g. $x.

• term term ∈ term. e.g. John, John salary.

• term ‘,’ term ∈ term.

Assignments:

• term ‘=‘ term

8

Froglingo - Concepts

Database - is a finite set of assignments.

HR John ID = 1234;

HR Smith hireDate = ‘6/21/2006’;

Depts DEV Head = HR Smith;

Depts DEV (HR John) title = “Sr. Dev”;

Projs “.com” (Depts DEV (HR John)) wkhrs = 40;

fac 0 = 1;

fac n:[n>0]=(n*(fac (n–1)));

9

Froglingo - Concepts

Depts

DEV

“.com”

Title
“Sr. Dev”

HR

John

HireDate
6/21/2005

ID
1234

Head

Mike

John

John

Projs

wkhrs
40 (hrs)

fac

$n:[n>0]0
1 N *fac (n-1)

Tree-like Structure – equivalent of database

10

Froglingo - Higher Productivity

• Terms serve as the global names for data.
It minimizes the need for intermediate
variables commonly used in imperative
languages. In other words, it has no need
of a set-valued operation to find a single
value as SQL does.

11

Froglingo – Higher Productivity
Code comparison between C# and Froglingo

Example: displaying the phone number of a given visitor

<!– a html file embedding ASP.NET code �
<html><body>
Your Phone Number: <asp:Label id="lblPhone" runat="server" />
</body></html>

<!-- C# code feeding phone number to the above ASP.NET code -->
<%@ Import Namespace="System.Data.OleDb" %>
<%@ Import Namespace="System.Data" %>

string GetPhoneNumber(string name){
string PhoneNumber= null;
System.Data.SqlClient.SqlConnection conn = new
System.Data.SqlClient.SqlConnection(

ConfigurationSettings.AppSettings["LocalConnStr"] +
ReturnPassValue());

conn.Open();
System.Data.SqlClient.SqlCommand dc = new
System.Data.SqlClient.SqlCommand("select phone where name=" +
name, conn);
try {

PhoneNumber = System.Convert.ToString(dc.ExecuteScalar());
} catch {

PhoneNumber = "Systems error";
}
return phoneNumber;

}
void display_phone_page(Object s, DataListCommandEventArgs e) {

pnlRequestPhone.Visible = false;
pnlViewPhone.Visible = true;
lblPhone.Text = getPhoneNumber(visitorName.text);

}

<!– a html file embedding Froglingo code �
<html><body>
Your Phone Number: <frog> visitor @name phone </frog>
</body><html>

<!– No need for extra function. The above html code pulls data by itself-�

12

Froglingo – Higher Productivity

Depts

DEV

“.com”

Title
“Sr. Dev”

HR

John

HireDate
6/21/2005

ID
1234

Head

Mike

John

John

Projs

Timesheet
20 (hrs)

Participation

Depts DEV (HR John) {-
HR John;

Projs “.com” ((Depts DEV
(HR John)) {=- HR John;

mterm (Depts DEV (HR
John)) == (HR John)’

Enterprise
Projs “.com” {+ Projs;
HR John ID {=+ HR;
pterm (HR John) == HR;

Pre-ordering
Depts DEV Head HireDate --> ‘6/21/2006’;
HR Mike HireDate <=+ Dept DEV;
<+, <-, <=-

• Richer and more expressive built-in operators

13

Froglingo – Higher Productivity
Example “Is there a path from A to Z in a directed graph?”

A

B

C

D

B

B

CD

A

A

D

A Directed Graph

A B = B;

A D = D;

D A = A;

Define:

The EP Database

14

Froglingo – Higher Productivity

Algorithm Is_a_path (G, v, z);
Input: G = (V, E) (a directed graph), v (a vertex of G), and

z (a vertex of G).
Output: return true if there is a path from v to z, or false.
Begin

mark v;
if v is z itself, then return true;
for all the directed edges (v, w) do

if w is unmarked then
return Is_a_path (G, w, z);

return false;
End

Call Is_a_path (G, A, Z);

Z <=+ A

The built-in operators {=+, {=-, <=+, and <=- are more expressive
than SQL, Datalog, and path-expression in graph-oriented
structures. Datalog can do the path problem, but no gurantee of
termination.

The path problem is just a classical example. The Froglingo built-in
operators are extensively used in set-valued operations.

15

Froglingo – Higher Productivity

• Uniform language – term is the primary
concept. C# has many: table, file,
connection, binding, Label, Repeater,
DataList, DataGrid, DataSet, _.

• Uniform storage. Reduce operation &
maintenance effort.

• Functional programming declarativeness
– Easy in error handling

– For example: blog careless � null

16

Froglingo – Time Complexity

• Traveling along the
trees-like structure is
optimized.

• Arranging data
differently costs less
for many queries than
SQL does.

• The time complexity
for many queries not
SQL-expressible is
the best.

Depts

DEV

Title
“Sr. Dev”

HR

John

HireDate
6/21/2005

ID
1234

Head

Mike

John

O (log n)

O (1)

O (1)

O (1)

O (log n)

17

Froglingo - Time complexity
Case 1: Queries on m-to-m relationships using SQL join

- Example: a report of all the projects including member names.

- SQL spends O (n log (n)). Then Denormalization

- Froglingo spends O (n)

Emps Projs Emps 1 name = "John";

empId name projId empId Emps 2 name = "Smith";

1 "John" 10 1 Projs 10 (Emps 1) = true;

2 "Smith" 10 2 Projs 10 (Emps 2) = true;

20 1 Projs 20 (Emps 1) = true;

select Projs.projId, Emps.name select mterm $p, $e name

from Emps, Projs where $p $e == true;

where Emps.empId = Projs.empId;

18

Froglingo – Time Complexity
Case 2: Queries on shredded hierarchies using SQL select

- Example: find the phone
number of the postal office
in Bridgewater township,
Somerset County, New
Jersey, U.S.A.

- Assume at each layer, org
has m sub orgs, and there
are n nested levels in a
hierarchy (total mn+1 -1
nodes).

- SQL (by knowing the
depths) spends O(n2log(m))

- Froglingo spends

O(n log(m))

org Froglingo database

orgId name parent US NJ SO BR phone = "123-233-9999"

0 US 1000 US CA OR NL phone = "405-566-9878"

1 NJ 0

2 CA 0 Query: US NJ SO BR phone;

3 SO 1

5 BR 3

6 OR 2

7 NL 6

OrgPhone

townIdphone

6 123-233-9999

7 405-566-9878

SQL Query:

select orgPhone.phone from org, OrgPhone

where org.name = "BR" and org.orgId = OrgPhone.townId

and org.parent in

select org.orgId from org

where org.name = "SO" and org.parent in

select org.orgId from org

where org.name="NJ" and org.parent in

select org.orgId from org

where org.name="US"

19

Froglingo – Time Complexity
Case 3: Queries not SQL-expressible

- Example 1:If is there a path from A to Z in
a directed graph? -- O(n log(n))

- Example 2: Find all the information about
John: select $info where $info {=- HR John

-- (O(n)).

20

Why Froglingo?

Higher Productivity

• Terms serve as global naming.
It says that SQL doesn’t support
a mapping from relations to a
single value.

• More expressive built-in
operators than SQL, Datalog,
path expressions in semi-
structured data.

• Uniform language and storage
for both data and application
logic.

• Functional programming
declarativeness– less bugs,
and “what rather than how”.

• 10 times less code than Java in
practice.

Best Performance

• Froglingo re-arranges SQL’s
many-to-many relationships to
avoid using SQL join. The
resulting query expressions are
cheaper.

• Froglingo doesn’t shred
hierarchical data that SQL
does. The resulting query
expressions are cheaper.

• Froglingo reaches the best time
complexity for many queries not
expressible by SQL, DataLog,
and path expressions in Semi-
structured data model.

21

Froglingo – Related Work

• Relational model misses semantics by
“shredding” application data.

• Hierarchical (including XML) model is incapable
for general application data.

• Network model lacks a consistent way of
managing hierarchical data vs cyclic data, and a
feasible algorithm for competent performance.

• Froglingo has its unique tree-like data structure
which unites the best features of the other data
models and beyond.

22

Froglingo – Related Work

• Persistent Java
– Unifies db & programming by keeping running states persistent.

– Not much on set oriented operations.

• Machiavelli
– Unifies db & programming by typed lambda calculus

– On the top of a list of tuples.

• .NET (LINQ, Yukon, Cω, C#/XML/SQL)
– Build bridges for DB, Objects, & Documents.

– Minimize communication cost.

• Froglingo
– Unifies db & programming by tree-like structure/λ−calculus.

– Data and Application Logic are unified logically and physically.

23

Froglingo – Future Work

• Optimize Froglingo System to test its
competent performance.

• Develop a formal method to precisely
analyze the expressiveness of Froglingo
built-in operators and the time complexity.

