
1 

Outline of a PAC learnable class of 
bounded functions including graphs 

Kevin H. Xu1 
Froglingo Development Association, 2306 Johnson Circle, Bridgewater, New Jersey, 

USA 

Abstract. A graph G = {V, E}, with a finite number of vertices V and a finite number 

of edges E, has a property of a possibly infinite number of paths where a path is a 

sequence of vertices one walks along edges from one vertex to another. In this paper, 
we describe a graph as a function in the Enterprise-Participant (EP) data model and 

outline that a graph G, i.e., the function representing G, is Probably Approximately 

Correct (PAC) learnable, i.e., there is a learning algorithm in polynomial time that 
constructs edge representations in an EP database as a program P from a set of 
sampled paths and EP’s built-in reduction rules enables the reasoning of global 
transitive relations of the graph: there is a path from A to C if there are two paths A 
to B and B to C. Such a reasoning is also called a prediction, where predicting that 
A to C is not a path is an error when A to C is actually a path and an edge along the 
path A to B or B to C was not fed to the algorithm as part of a sample path. We 
generalize this learnability to a class of bounded functions. It is a reminder that data 
can be better represented in an EP database than in a graph before being embedded 
in distributional semantic learning models. 

Keywords. Learnability, computability, graph, transitive relation, bounded function 

1. Introduction 

Imagine a robot not built with any knowledge about a city and not deductively 

programmed to navigate the streets of the city is daily dropped off to a random location 

of the city and subsequently randomly walks a few blocks on local streets. Days later, if 

the robot is able to deductively construct a program based on what it had experienced 

such that the program can predict more routes than what the robot had experienced, e.g., 

predict A to C is a path if it experienced two separate paths A to B and B to C, then we 

say that the street network of the city, a graph represented by the program, is learnable. 

Such a learned program always correctly provides negative predictions, i.e., when there 

is no path from A to C. It correctly provides positive predictions almost all the time but 

a few exceptions, i.e., when there is a path from A to C. As time goes by, the more walks 

the robot has, the more precise the prediction of the learned program will be. This 

learnability example falls under the definition of learnability introduced by Valiant in 

[1], which was later called Probably Approximately Correct (PAC) learnability, 

abbreviated as learnability in this paper.  

In this paper, we introduce a class of functions, called bounded functions including 
graphs, and show the class is PAC learnable. We demonstrate that databases from the 

 
1 Corresponding author: kevin@froglingo.com 



2 

Enterprise-Participant (EP) data model are programs that can be constructed by a 
learning algorithm to represent bounded functions. We say such bounded functions are 
learnable because of EP’s reduction system that can, for example, calculate the global 
path A to C from the local paths A to B and B to C in a given graph. A thorough work on 
the computability and the corresponding PAC learnability of the bounded functions was 
provided in [2]. A separate discussion on a graph’s learnability was covered in [3]. 

2. Related work 

A graph’s PAC learnability, according to the EP data model, means that the global 
transitive relations of a graph, e.g., A to C, are preserved from local transitive relations, 
e.g., A to B and B to C. Preserving the global transitive relations of a graph certainly 
helps to learn aggregates of a graph, such as nodes clustering, and ranking, link 
prediction [4]. Many attempts of using a statistical machine learning model to learn the 
global transitive relations in a graph have not been successful [5, 6, 7], and 
mathematically proven ineffective [8, 9, 10]. Conceptually, a symbolic representation 
for a graph has the global transitive relations available. But the technologies, such as 
Semantic Web’s Linked Open Data [11, 12], Hadoop and Spark BigData systems with 
limited query languages available (www.ibm.com/think/insights/hadoop-vs-spark), to 
store a graph with billions of nodes do not have the global transitive relations available 
practically [7]. EP is a better approach to store billions and trillions of nodes in a graph 
because all data in an EP database are arranged under three types of trees [3], as we know 
that data in a tree structure is easier to be stored and to learn [13, 14, 15]. Representing 
a graph in EP with various transitive relation operators and embedding the EP data for 
the graph is potentially a better approach than representing and embedding the graph 
itself for statistical machine learning. 

Another benefit of using EP (in distributional semantics learning models) is that non-
cyclical related data can be expressed in a more efficient structure than a complex 
structure for cyclic data in EP. We know many entities in the world, such as streets in a 
city and social networks, are naturally abstracted as a graph. But there are many other 
entities, such as a car-component-subcomponent recursive containment relationship and 
the sequence of the words in a sentence of “Joann went to shopping”, don’t have to be 
abstracted as a graph but represented as a graph in the contemporary graph embedding 
technologies [6, 16]. Further an accumulation of many pieces of non-cyclic data in a 
graph often ends up with cyclic data, for example, “Joann loves Mike” and “Mike spoke 
to Joann”, where each unique word is a node and each sentence sequence is a path from 
a node to another linked by edges. In EP, there are two ways to express a hierarchical or 
sequential data: for a sequence of “a b c”, for example, EP can express it hierarchically 
as a b c or graphically as a b: = b; b c: = c. We would always choose the former for 
hierarchical data and the latter for naturally graphical data, particularly cyclical data. In 
either case, data in EP would never have a chance to form a cycle even for a cyclic graph. 

Most significantly, the learnability of a graph is extended to an entire class of bounded 
functions, where a bounded function is an approximation to a partial recursive function 
and the union of all (an infinite number of) bounded functions is semantically equivalent 
to the Lambda Calculus (or equivalent to the Turing Machine) [2]. This conclusion 
potentially reopens the avenue of symbolic approaches to Natural Language Processing 
(NLP).  

Distributional semantics, rooted with the distributional hypothesis [17, 18] and 
hallmarked with real-valued vector space to represent entities, with dimensionality 



3 

reduction, and with similarity computation among entities in the Euclidean space, has 
been the dominant approach to NLP since the beginning of the 1990s. It has achieved 
great successes from question answering, document categorization, machine translation, 
to recent chatbots, especially when it was driven by powerful neural networks with 
backpropagation techniques. The distributional semantic approach has limits. It is a 
statistical nature of learning and completely disregards the logical nature of reasoning 
that has been so successful in symbolic computation. The distributional semantic 
approach to NLP has been eager to be injected with knowledge represented in a graph 
for a more satisfactory performance [4, 19, 20, 21]. This desire, however, will continue 
to face challenges as long as a graph embedding technique is not improved. When 
evaluating if distributional semantics is the ultimate solution for NLP by asking “Are we 
climbing the right hill?” in [22], as further resonated in [20], the authors answered: “No”. 

Valiant’s theory of the learnable established a broad framework for machine learning 
that not only provides the theoretical foundation for the distributional semantics [23], 
but it also reserved a space for a different approach that could potentially bridge logical 
nature of reasoning with the statistic nature of learning, as it was intended by the 
framework itself [24 and Valiant’s research interest described in 
https://valiant.seas.harvard.edu]. Many deductive approaches had been identified to 
exemplify this purpose, such as the Boolean expressions identified in [1, 24]. 
Unfortunately, the known learnable functions do not reach a desired expressive power 
to represent natural languages, as evidenced in the research efforts that resulted in logic 
programming such as Prolog as well as the projection, disjunction and decision list of 
size-limited graphs in [25] from the 1950s to the 1990s. 

3. The EP data model 

The Enterprise-Participant (EP) data model is a language system and equivalently a data 
structure with which an EP database can be constructed. The idea behind EP is that we 
treat all objects to be represented as functions. Given a function f that produces a value 
m when it is applied to an argument n, denoted as f (n) = m, let’s think of an exercise in 
which we inventory the behavior of f in a database. We can rewrite f (n) = m as {f n := 
m}, reading it as: applying f to n is assigned a value m. The set {f n := m}, called a 
database, is an approximation of f. When we apply f to an additional argument n’, we 
would obtain a better approximation {f n := m, f n’ := m’} where f (n’) = m’. In addition, 
m could be another function such that m (p) = q for a given input p. So we can exhibit 
more properties of f with the accumulated approximation {f n := m, f n’ := m’, m p := q} 
or equivalently {f n p := q, f n’ := m’}. From the database {f n := m, f n’ := m’, m p := q}, 
we can derive: (f (n)) (p) = q.  

The EP data model is described as a language system (F, C, null, ·, (,), :=, D) where  
1)   F is a set of identifiers (function names), 
2)   C is a set of constants, disjoint from F. It could include infinite domains such as 

strings, integers, reals, and timestamps. C includes a special constant null. 
3)  · is a binary operation that produces a set E such that  

m ∈ F  ⇒ m ∈ E 

m ∈ E, (n ∈ C  ∪ E) ⇒ (m · n) ∈ E 

Here we simply write (m · n) as (m  n) and further m n when (m n) is implied, where m, 
n, and m n are called a function, an argument, and the corresponding application. For a 

x ∈ E, we call x a term. Given an application term m n, m and n are called proper 

subterms of m n, and m n is also called a subterm of itself. 

https://valiant.seas.harvard.edu/


4 

4)   := is the Cartesian product E × (C  ∪ E), i.e., := = E × (C  ∪ E). When a pair (p, 

q) ∈ :=, we denote it as p := q, which is called an assignment, where p and q are the 

assignee and assigner respectively. 
5)    D , called a database, is a finite set of terms and a finite set of assignments, i.e., D 

⊂ (E  ∪ :=), such that for each assignment p := q ∈ D, where p, q ∈ E, the following 

constraints are met:  
1) p has only one assigner, i.e.,  

p := q  and p := q’ ∈ D ⇒  q ≡ q’ 

2) A proper subterm of p cannot be an assignee, i.e.,  

p := q ∈ D ⇒ ∀x ∈ SUB+(p) [∀m ∈ E [x := m ∉ D]] 

3)   q can not be an assignee, i.e., 

p := q  ∈ D ⇒ ∀a ∈ (C  ∪ E) [q := a ∉ D] 

Identifiers are the most basic building blocks in EP. Like in programming languages, 

we can choose alphanumeric tokens as identifiers, such as abc123, _abc, and more 

commonly we take words from a natural language vocabulary as identifiers, such as 

hello, John, sport, law, and person.  

A term is either an identifier x ∈ F or an application x y ∈ E where x ∈ E, y ∈ C  
∪ E, such as x x, x 3.14, (a b c) (d e 3 (d t 3)) are legitimate terms where x, a, b, c, d, e, 
t ∈ F.  

A term alone without an assignment is allowed to be in a database. When a term is in 
a database, its subterms are considered in the database as well. 

By terms alone, we can represent containment relationships. For example, the 
hierarchical structure of geographical locations can be expressed: (the United States of 
America) (New York State) (New York City) Manhattan; (Water Street 55); (the United 
States of America) Florida Miami; France Paris; 

The data in a database D are arranged in three kinds of trees [3]. The tree structures 
in EP are the foundation for an efficient system implementation to host billions of 
records, e.g., nodes in a graph, and potentially for better embedding an EP database that 
represents a graph rather than the graph itself into a low-dimensional Euclidean space 
for distributional semantic learning models. 

The terms embed transitive relations, such as we can infer Miami is part of the United 

States of America because Miami is part of Florida and Florida is part of the United 

States of America.  

A set of reduction rules are available on a database. Given a database D, a term n ∈ 

C ∪ E is in EP normal form (or normal form in brief) if and only if 

1) It is a constant c ∈ C, or 

2) It is a term n ∈ D and n is not an assignee, i.e., n ∈ D and ∀b ∈ E [n := b ∉ 
D]. 

Let NF(D) denote the entire set of normal forms under a database D, where null ∈ 

NF(D) and other constants c ∈ NF(D) only if c ∈ D.  

Given a database D, we have one-step reduction rules, denoted as →: 
1) An assignee is reduced to the assigner, i.e., a := b ∈ D ⇒  a → b 

2) An identifier not in the database is reduced to null, i.e., a ∈ F, a ∉ D ⇒  a → null 

3) If a and b are normal forms and a b ∉ D, then a b is reduced to null, i.e., 

        a, b ∈ NF(D), a b ∉ D ⇒ a b → null 

4) a → a’, b →b’ ⇒ a b → a’ b’ 



5 

If we have a sequence of reductions: a → a0, a0 → a1, …, an-1 → an, where n ≥ 0, we 
say that a is effectively, i.e., in finite steps, reduced to an, denoted as a →D an.  If a1 →D 
b and a2 →D b, then we say that b, a1 and a2 are equal (equivalence relation), denoted as 

b == a1 == a2. We also define a == a for any term a ∈ D. Note that given an application, 
e.g., a b c, the sequence of the reductions toward its normal form is unique because the 
restricted syntactical form of an application only allows one unique reduction sequence, 
e.g., a b c is restrictedly written as ((a b) c). 

A term a has a normal form b if b is in normal form and a →D b. In [26], it has been 

proven that any term a ∈ C ∪ E under a database D has one and only one normal form 

and can be effectively reduced in finite steps. A constant, such as null, 3.14, or “Hello”, 
is always in normal form.  

With the EP reduction rules introduced, we give two sample databases representing 
graphs, from which we can intuitively see that an EP database represents a bounded 
function. First, we give a graph with a single directed link with two end vertices: D = {u1 
u2 := u2}. EP has a reduction on D:  

u1 u2  →D  u2  

Here the vertex u1 can be viewed as a function that yields to u2 when it is applied to u2, 
which simulates that one from u1 can walk over to u2. Because the database is only 
defined with the single pair {u1 u2 := u2}, applying u2 to anything else would yield to 
meaningless, denoted as null in EP: 

u2 y  →D  null for any y.  

This reduction says that one from u2 cannot reach out to anything else. In this database, 
NF(D) = {null, u1, u2}. 

Now, let’s give another EP database representing a graph with a triangle: D = {v1 
v2 := v2;  v2 v1 := v1;  v2 v3 := v3 ; v3 v2  := v2; v3 v1  := v1; v1 v3 := v3}, where each undirected 
edge is expressed by a pair of directed edges, for example, v1 v2 := v2 and  v2 v1 := v1 for 
the edge between vertices v1 and v2. With the database D, the system has the following 
infinitely possible reductions: 

v1 v2 v1 →D  v1  

v3 v2 v1 v2 … v1 →D  v1  

…  
The sample reductions above simulate how one can walk from one vertex to another 
along the edges of the triangle. In this database, NF(D) = {null, v1, v2, v3}. 

Given a database D, there is a function YD: E  →  NF(D) that is defined as: 

             YD = {(m, n) | m ∈ E, n ∈ NF(D), and m →D n}. 
We call such a function YD bounded because E is infinite and NF(D) is finite. In addition, 

there is a subset E’ ⊆  E such that 

        YD (x)   = y, where y  ∈  NF(D)  \ {null}   if x ∈  E’ 

                         null     if x ∈  E \ E’ 

We say YD has a finite support and simply call it finite if E’ is finite. Given a database D 

= {a b c := d; d e := f;}, for example, we have a finite E’ = {a, b, c, a b, a b c, d, e, d e, 

f, a b c e} and NF(D) = {a, b, c, a b, d, e, f, null}. YD is bounded if E’ is either finite or 

infinite. Given a database D = {a b c := c;}, as an additional example of cyclic data like 

a graph, we have an infinite E’ = {a, b, c, a b, a b c, a b (a b c), a b (a b (a b c)), ...} and 

NF(D) = {a, b, c, a b, null}. A finite function is bounded, but a bounded function may 

not be finite. The definition of a bounded function was originally introduced in [26] and 

further elaborated in [2]. Further, a bounded function YD is recursive, i.e., YD(x) always 

terminates and yields to a normal form [26]. 



6 

Because EP databases represent bounded functions including graphs, the bounded 
functions can be constructed by a learning algorithm in terms of the PAC learnability. 

4. The class of bounded functions is PAC learnable 

An EP database introduced in Section 3 can be generated from a partial computation on 

the closed lambda terms of the lambda calculus (or independently from an enumeration 

based on the data restrictions defined in Section 3) [26]. From a sequence of partial 

computations in the lambda calculus, where each partial computation is signified by a 

number of computation steps s ∈ N (the set of natural numbers), a corresponding 

sequence of databases can be generated, denoted as D0, D1, …, Ds, ... and rewritten the 

sequence as a set D = {Ds | s ≥ 0}, where the size of the database |Ds|, the number of 

assignments, is restricted by s, i.e., |Ds| ≤ s. Accordingly, the class of bounded functions 

can be denoted as Y  = {YDs | Ds ∈ D and s ≥ 0}, where NF(Ds) ≤ s. 

When we say that the class of bounded functions Y is PAC learnable, we actually say 

that Y s  = {YDi | Di ∈ D and i ≤ s} for any s ∈ N is PAC learnable, where the size of the 

normal forms in Di is restricted by s, i.e., |NF(Di)| ≤ s, and equivalently, we say that a YDi 

∈ Y s is the target function for a learning algorithm to construct a program, e.g., another 

database Di’ ⊆ Di, such that YDi’ approximates and converges to YDi when it receives 

more and more sample pairs (m, n) that are selected from YDi, i.e., (m, n) ∈ YDi, with an 

arbitrary probability distribution. In the rest of the section, we use D to denote a database 

Di where i ≤ s for a given s ∈ N. 

As a law of the nature, the probability of discovering and constructing a full D from 

the provided sample pairs (m, n) is quantified by a function L(h, S) in [1], where h is an 

adjustable real number larger than 0 with which h-1 represents a probability and S is a 

positive integer representing the size of the program. L(h, S) is the smallest number of 

independent Bernoulli trials, after which a trial with a provided (m, n) has the probability 

of at least h-1 to successfully discover a new assignment. Further after L(h, S) 

independent Bernoulli trials, the probability of discovering all the assignments in D is at 

least 1- h-1. The upper bound of the function L(h, S) is determined with a proposition [1]: 

For all integers S ≥ 1 and all real h > 1, L(h, S) ≤ 2h(S + logeh). (There are more accurate 

models to differentiate the first probability, h-1, of discovering a new assignment from 

the second probability, 1- h-1, of discovering all the assignments. But it is sufficient 

conceptually to choose one number h for both probability for now in this paper.) 

Given a database D, the target function YD to be learned has the size of D to be the 
size S of the program that represents YD, i.e., S = |D| in L(h, S) ≤ 2h(S + logeh), where |D| 
denotes the size of D. Although the number of elements in YD can be infinite, the given 
database D, a finite set of assignments, determines the semantics of YD. Therefore, if we 
have a learning algorithm that constructs D, we say that we have PAC learned YD, i.e., 
the size |D| of the program D that represents YD is proportional to the number of 
assignments in D. 

We are going to give a learning algorithm that will call a routine EXAMPLES about 
L(h, |D|) times with a pre-determined h that would meet an expected precision, e.g., h-1 
to measure how easily to discover a new assignment and 1- h-1 to measure how close D’ 
to D would be after L(h, S) calls to EXAMPLES. When EXAMPLES is called, which 
pair (m, n) is chosen from YD is determined by a probability distribution P. Because YD 



7 

can have infinite number of pairs (m, n) and because D consists of a finite set of 
assignments that determines the entire (infinite) set of pairs (m, n) in YD, we practically 
have the following preferences on the set of pairs (m, n) that EXAMPLES would return 
and on the probability distribution P: 

1) EXAMPLES only returns positive examples, i.e., returns (m, n) ∈ YD, where n is 
not null.   

2) When EXAMPLES returns a pair (m, n), the size of m, i.e., |m|, does not need to be 
large. So we choose |m| to be no more than the maximum size of assignees in D. 
This is a special requirement to the probability distribution P to ensure that the 
learning algorithm is effective when we choose |D| to be the size S of the program 
to be learned. 

Now let’s give the learning algorithm: We first initiate an empty database D = {}. While 
the number of the calls to EXAMPLES has not reached 2h(|D| + logeh), call 
EXAMPLES to get a pair (m, n) and search D to find if m and n have already been served 
as the assignee and the assigner of an assignment in D.  
1) if (m, n) has been in D already, do nothing. 
2) if we found another assignment m’ := n’ in D such that m is a left most subterm 

(lms) of m’, i.e., m’ ≡ m q1 … qk for some k > 0, then we delete m’ := n’ from D and 
add m := n. For the pair (n q1 … qk, n’), we recursively call Step 1 above.  

3) if we found another assignment m’ := n’ in D such that m’ is a lms of m, i.e., m ≡ m’ 
q1 … qk for some k > 0, then we add one assignment n’ q1 … qk := n. 

4) if we did not find any assignment m’ := n’ in D such that m is a lms of m’ or m’ is a 
lms of m, then we create m := n into D. 

The complexity of running the algorithm above is within a polynomial. For each 

loop in the algorithm with an input (m, n), the time complexity to search the term m is 

O(log(|D|)), where EP terms are sorted in a database. Provided that the learning algorithm 

may needs to recursively search the database again in Step 2 above for investigating the 

pair (n q1 … qk, n’) and the number of the recursive calls may at the worst case reach the 

size of the term n q1 … qk, i..e, |n q1 … qk| which is a constant in average, we add the 

time complexity O(log(|D|)) * |n q1 … qk| ≅ O(log(|D|)) times in each loop. Then, the 

time for each loop is O(log(|D|)) * (|n q1 … qk| + 1) ≅ O(log(|D|)). The time complexity 

for the total loops of 2h(|D| + logeh) is 2h (|D| + logeh) * O(log(|D|)). So the time 

complexity is O(h |D| loge|D| + h logeh loge|D|), which is within polynomial. The space 

complexity is |D|, linear to the size of the database. 

5. Conclusion 

In this paper, we introduced a class of bounded functions including graphs that is PAC 
learnable. The learnability comes from the built-in reduction rules and subsequently the 
built-in transitive relations of the EP data model. We also reminded that an EP data 
model can better represent data than a graph does in general and potentially in statistical 
machine learning.   
 
Acknowledgement  The author would like to thank Dr. Prof. Anselm Blumer who had 
an extensive discussion with him on a general property of a PAC learnable class of 
functions that was discussed in an earlier version of this paper and provided substantial 
review notes that significantly improved the quality of the paper. 



8 

References   

[1] L.G. Valiant. A Theory of the Learnable. Communication of the ACM, November 1984, Volume 27, 
Number 11. 

[2]  K. Xu. A class of bounded functions that approximate the lambda calculus is PAC learnable. Submitted to 
ALT 2025. 

[3]  K. Xu. A graph is PAC learnable. DOI: 10.13140/RG.2.2.27392.65282, September 2024. 
[4] H. Cai, V.W. Zheng, K. Chang. A Comprehensive Survey of Graph Embedding: Problems, Techniques 

and Applications. IEEE Transaction on Knowledge and Data Engineering, Sept. 2017.  
[5] J. Berant, I. Dagan, J. Goldberger (2012). Learning entailment relations by global graph structure 

optimization. Journal of Computational Linguistics, 38(1):73-111. 
[6] A. Bordes, J. Weston, R. Collobert, Y. Bengio (2011). Learning structured embeddings of knowledge bases. 

Proceedings of the Twenty-Fifth AAAI Conference on Artificial Intelligence. 
[7] M. Nickel, V. Tresp, H. P. Kriegel. Factorizing YAGO – Scalable Machine Learning for Linked Data. 

WWW2012 – Session: Creating and Using Links between Data Objects. April 2012, Lyon, France. 
[8] C. Seshadhri, A. Sharma, A. Stolman, A. Goel. The impossibility of low rank representation for triangle-

rich complex network. The Proceedings of National Academy of Sciences, March 2020. 
[9] R. Bhattacharjee, S. Dasgupta. What relations are reliably embeddable in Euclidean space? Journal of 

Machine Learning Research 1 (2019) 1-48. 
[10] D. Korman, J. Jett, A. Renear. Defining textual entailment. Journal of the Association for Information 

Science and Technology, 2018. 
[11] C. Bizer, T. Heath, and T. Berners-Lee. Linked data-the story so far. International Journal on Semantic 

Web and Information Systems, 5(3):1–22, 2009. 
[12] H. Halpin, P. Hayes, J. McCusker, D. Mcguinness, and H. Thompson. When owl: sameAs isn’t the same: 

An analysis of identity in linked data. The Semantic Web–ISWC 2010, page 305–320, 2010. 
[13] J. Berant, I.Dagan, M. Adler, J. Goldberger. Efficient tree-based approximation for entailment graph 

learning. Proceedings of the 50th Annual Meeting of the Association for Computational Linguistics, 
pages 117-125. 

[14] M. Nickel, D. Kiela. Poincaré embeddings for learning hierarchical representations. 2017. 
[15] K. Xia, K.Z. Lee, Y. Bengio, E. Bareinboim. The Causal-Neural Connection: Expressiveness, 

Learnability, and Inference. 35th Conference on Neural Information Processing Systems (NeurIPS 2021) 
[16] B. Perozzi, R. Al-Rfou, and S. Skiena, “Deepwalk: Online learning of social representations,” in KDD, 

2014, pp. 701–710 
[17] J. Firth. A synopsis of linguistic theory 1930-1955. In Studies in Linguistic Analysis, Philological Society, 

Oxford. Reprinted in Palmer, F. (ed. 1968) Selected papers of J. R. Firth, Longman, Harlow. 
[18] Z. Harris. Distributional structure. Word, 10(2-3): 146-162. 

https://doi.org/10.1080/00437956.1954.11659520 
[19] M. Apidianaki. From word types to tokens and back: a Survey of approaches to word meaning 

representation and interpretation. Computational Linguistics (2023) 49 (2): 465–523. 
[20] A. Lenci, M. Sahlgren, Distributional Semantics, Cambridge University Press, 2023. 
[21] R. Patil, S. Boit, V. Gudivada, J. Nandigam. A survey of text representation and embedding technologies 

in NLP. IEEE Access. 
[22] E.M. Bender, A. Koller. Climbing towards NLU: On meaning, form, and understanding in the age of data. 

Pages 5185–5198 of: Proc. ACL, 2020. 
[23] A. Blumer, A. Ehrenfeucht, D. Haussler, M.K. Warmuth. Learnability and the Vapnik-Chervonenkis 

Dimension. Journal of the Association for Computing Machinery. Vol. 36. No. 4. October 1989, pp. 929-
965. 

[24] L.G. Valiant, J.C. Shepherdson. Deductive Learning, Philosophical Transactions of the Royal Society of 
London. Series A, Mathematical and Physical Sciences. Vol. 312, No. 1522, Mathematical Logic and 
Programming Languages [Displayed chronologically; published out of order] (Oct. 1, 1984), pp. 441-
446 (6 pages) 

[25]  P. Jappy, R. Nock. PAC learning conceptual graphs, ICCS 1998. 
[26] K. Xu. A class of bounded functions, a database language and an extended lambda calculus. Journal of 

Theoretical Computer Science, Vol. 691, August 2017, Page 81 - 106. 
 

https://doi.org/10.1080/00437956.1954.11659520

