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Abstract 

 

Currently a typical database application has three forms of data that need to be translated back 

and forth. The first form is relation (table) in which the application data is stored in a relational 

DBMS. The second form is user-defined data type in host programming language spaces. The 

third form is a common data exchange protocol like XML, in which the data is exchanged with 

other applications across distributed computing environments. The data translations have to be 

manually done to make the data application work and the data is copied from one computing 

environment to another. As a result, there are overhead in system performance, system 

development, and system maintenance. Another motivation of this research is that the advanced 

database applications in data streams are looking for DBMSs that can treat triggers and data 

equally. This research is to propose a new data model or a language that supports a data type 

shared by DBMSs, programming languages, and data communications. The sharable data type 

can be used for arbitrary application functions including data and triggers repository. 

 

1. Problem Statement 

Currently a typical database application has three forms of data that need to be translated back 

and forth. The first form is relation (table) in which the application data is stored in a relational 

DBMS. The second form is user-defined data type in host programming language spaces. The 

third form is a common data exchange protocol like XML, in which the data is exchanged with 

other applications across distributed computing environments. The data translations have to be 

manually done to make the data application work and the data is copied from one computing 

environment to another. As a result, there are overhead in system performance, system 

development, and system maintenance. Another motivation of this research is that the advanced 
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database applications in data streams are looking for DBMSs that can treat triggers and data 

equally. 

This section analyzes the existing DBMSs, programming languages, and relevant previous 

research work in support of this research statement. 

1.1 Data Types in Databases 

There are hundreds of data models having been proposed in the past decades. But all of them can 

be classified as the relational data model; graph oriented models; and hierarchical data models. 

Relational Data Model 

The relational data model has been dominant in the industry. It is simple in database design and 

sound in theory [1], [18]. The drawback is its flat structure of relations [1]. As far as this 

research’s concern, we argue that the flat structure causes the necessity of a secondary data 

exchange model for data communication in distributed computing environments. The reason is 

that the communication expects messages to carry application-oriented data, like a purchase order 

or an organization. However, the application-oriented data may have to be spread across multiple 

relations in a relational DBMS. This would imply multiple messages for a single transaction at 

application level if the relational data model was the data exchange model.  See more discussion 

on data exchange models in Section 1.2. 

The relational algebra provides DBAs and programmers a declarative query language. It is the 

major contributor towards the success of the relational data model. On the other hand however, 

Relations limit the relational algebra (and Datalog) only to be the functions from relations to 

relations. This causes the disconnection between programming languages and relational DBMSs, 

and was called impedance mismatch in [32], [35]. It is clear that not all the functions of a 

database application are from relations to relations. For example, they could be simply from 

relations to integers, which cannot be expressed in the relational algebra or Datalog. Therefore, 

different data types in a host programming language have to be used to transform relations to 

other data values. 

Of course, the most popular criticism against the relational data model is its lack of power in 

expressing rich semantics and queries of database applications, again due to the flat structure of 

relations. This forces a host programming language on the top of DBMSs to make up whatever is 

missed from relational databases. 
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Graph Oriented Data Models 

There are many graph oriented data models having been proposed over many decades. Although 

they were proposed with different emphasizes, the basic structure is a directed and labeled graph 

[11], [22]. The earliest graph model was called the network data model (CODASYL) [56], [18] in 

parallel to the relational data model and hierarchical data models for traditional database 

applications. The Entity-Relational (ER) Data model is the most popular tool in database design, 

but it offers no query language. DAPLEX [45] was called a functional data model, it is actually a 

graph oriented model [22]. Object Oriented data models were categorized into graph oriented [22] 

though the focus was on class inheritance and method embodiment with classes. Complex 

Objects model is also graph oriented [1]. The latest data exchange models like OEM [38] and 

XML [11] are claimed to be graph oriented, where semistructured data is the focus for web-based 

database applications. The earlier graph oriented models, Complex Objects typically, offers a mix 

set of data structures like record, list, set, nested set, etc.. The latest graph oriented models, XML 

typically, are refined to simpler structures, e.g., single rooted, labeled and directed edges, and 

atomic values at leaves. The graph oriented data models offer more powerful query languages 

like path expressions than the relational algebra and Datalog [11]. 

The good thing about the graph oriented data models is its flexibility in representing application 

data as complex as it is needed. The drawback is its difficulty in offering a sound query language. 

The big assumption of the graph oriented data models is that they allow cyclic data (or they could 

be categorized into the hierarchical data models). It follows an immediate controversial however. 

For example in Figure 4 in Appendix D, the query of “find the values of all the names that 

reachable starting from the path college.Dept could be expressed like: select 

college.Dept.*.name, here the symbol ‘*’ is the wildcard matching any path. Since there 

is a cycle in the database, this query could lead to an infinite loop in evaluating. We may have 

artificial ways to re-define the query behavior and to improve system performance, but we would 

lose the legitimate of the graph oriented data models. In addition, certain data dependencies like 

inverse dependency is missed from a graph base data model unless additional edge was added 

into databases [12], [13]. 

Hierarchical Data Models 

Tree structure is efficient in capturing database application semantics (data dependency) and in 

system performance. Human beings think of and organize the real world in a hierarchical fashion, 

and file systems in computers are organized in hierarchy. Primary keys and foreign keys are 
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utilized to form hierarchical structures (functional and inclusion dependencies) in Relational 

DBMSs. The exchange models X.500 [57] and CORBA/IDL [47] are hierarchical data models. 

Although XML/Semi-structured data has been generically claimed as graph oriented data model 

[11], representing hierarchical data in XML/Semi-structured data is the most appropriate and 

efficient [11], [16], [26]. Even the relational DBMS use primary keys and foreign keys for more 

semantics. The foreign keys for inclusion dependency actually reflect the hierarchical structures 

among the relations. 

The key concept in a hierarchical data model is the parent-child relationship [18]. A single parent 

dominates its children; and a child can have only one parent. A removal of a parent must imply 

the removal of its children. The parent-child relationship is built-in (no user-defined relationship 

label is necessary). Therefore, the transitive-closure queries like printing all the children in the 

tree under a parent are uniquely expressible in hierarchical data models [29], [57]. 

Obviously the world is not always that simple. An object may have to be dominated by multiple 

objects; and more, multiple objects could cyclically depend on each other. For example, the 

success of a person not only depends on himself or herself, but also environment. A directed 

cyclic graph is another example hardly making the hierarchical data models acceptable.  

There are normally two ways of dealing with the data having multiple parents in hierarchical data 

models. The first is to duplicate all the parents under the child except one parent that is taken as 

the parent of the child. This would cause data redundancy and increase the complexity of 

maintaining data integrity. The second way of dealing with multiple parents is to use virtual 

parent-child relationship, e.g., using a pointer from the child record to the second parent. 

However, a virtual parent doesn’t act as a dominating parent, but a dependent attribute. When the 

virtual parent is to be removed from database, the child would not be removed automatically from 

database. This ruins the principle of the hierarchical data models.  

1.2 Data Types in Data Communications 

As discussed earlier, many data exchange models like X.500, CORBA/IDL, OEM, and XML 

have been proposed. XML is the most accepted one in Web-based database applications, where 

unstructured data or semi-structured data is assumed. There are two ways of storing XML data. 

One approach is to store XML data into relational DBMSs, which needs data translation between 

relations and XML. SilkRoute [20] is an effort to automatically translate data based on the 

relational data schemas and XML DTD. However, a generic optimization on data translation in 

web-based distributed environments is NP-complete [36], [20]. 



 5 

The second approach is to store data in the graph oriented data models, e.g., Lore [21], StruDel 

[19], and IRA-OSS [17]. This approach, however, cannot get rid of the problems existed in the 

traditional graph or hierarchical oriented data models. 

1.3 Data Types in Programming Languages 

The primary data types are atomic types like integers, strings, characters; arrays; list; variants; 

trees; and records; and combinations of all in programming languages. They provide 

programmers flexible ways of constructing objects. But constructing objects itself and building 

operations against the objects on data structures are expensive; and further maintaining and 

changing the data structures are difficult in imperative languages. Declarative languages like 

logic and functional programming languages offer built-in data structures like list in functional 

programming language and relation in Prolog. For example, the expression: 1: [2, 3, 4] = 

[1, 2, 3, 4] is a common practice for inserting an element into a list in functional 

programming languages. Built-in data structures easy software development effort. 

The data types in programming languages are run-time objects. Explicit code has to be written in 

programming language that stores or retrieve data from data storage. Keeping data persistent, e.g., 

storing data in storage in the form of its data type, became an issue as soon as database 

management systems did so in 1970s such as Pascal/R [4]. The researchers recognized the 

economy of unifying the paradigms of programming languages and database management 

systems. In 1980s and 1990s, there are many proposals made toward this direction, e.g., Galileo 

(surveyed in [4]), Functional Object Language [30], Machiavelli [35], PFL [46], BULK 

[42],Orthogonal Persistent Java [28], [3]. These proposals can be classified into two categories.  

The first approach is to make data types in programming languages persistent. The latest 

development on this direction is called orthogonal data persistent Java [28], [3], [27]. It means 

that all the data types from atomic types to complex types are equally subject to be persistent. In 

addition, all the source code is also subject to be persistent. Eliminating the overhead of 

connecting database and programming languages is an obvious obje ctive. The second objective 

is to provide a continuation of computing after a computing execution is accidentally terminated 

[3]. This approach focuses user-defined data types and makes the life of data transparent to 

programmers by analyzing data reachability [27]. On the other hand however, this approach 

doesn’t address useful declarative query languages like relational algebra. 

The second approach is to construct higher-level functions on the top of relations in  a functional 

programming language. To reuse higher-level functions over multiple DBMSs, constructing 
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polymorphic functions was proposed in [33]. These functions, however, are from relations to 

relations, and then were called relation transformers. To overcome the limitation of the relation 

transformers, the work in [8], [9], [10] explicitly proposed structural recursion on sets, which 

could output values that are not relations. But the framework was still based on the structure 

recursion on sets. For example, the following expression from [8] 

Let f(Nil) = N 

| f(Cons(x, l)) = C(x, f(l)) 

in … f … f … 

is to define a structural recursion that walk through a list while arbitrary operations can be done 

against element on the list. However, Not all the practical experiences want the expensive linear 

travel against lists or sets. 

The work in [23], [24], [25] elegantly and comprehensively encodes the relations, relational 

algebra, transitive closure, complex objects, and object-oriented methods into a typed lambda 

calculus; and classifies the complexity classes of query languages in the orders of lambda terms. 

1.4 Data Types for Arbitrary Functions 

So far the data types we discussed earlier are normally representing finite data. To represent 

continuous time and geographical space, the temporal and spatial, or called constraint, database 

management systems were introduced based on the relational data model [40], [41]. However, 

there has been no data type that offers a data structure and operations against the data structure 

for arbitrary infinite data (or functions). As a result, a data exchange model, e.g., XML, has to 

leave infinite data unspecified. When an arbitrary function needs to be communicated across 

different systems, it has to be specified in a different language. For example, Java Scripts are 

normally sent from web servers to web clients along with HTML or XML messages [34].   

On the other hand, a new class of advanced database applications, data streams, is emerging. The 

researchers in this area observed that the traditional database management systems are “Human 

Active and DBMS Passive (HADP)”. In other words, they treat triggers and alerters as second-

class citizens [39]; and their implementation don’t scale to a large number of triggers. The data 

stream applications, however, are trigger-oriented. Their role is to alert humans when abnormal 

activity is detected. This is a “DBMS-active, Human-Passive (DAHP)”, or it is desired to treat 

data, triggers, and alerters equally [5], [6], [15], [49]. 
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2. Proposal Detail 

This section describes the philosophy of the EP approach, gives a formal definition for the EP 

data model or language, and briefly discuss the ordering relations that provide advanced set-

oriented primitives. 

The detailed grammar for the latest EP language system is provided in Appendix A. Many sample 

expressions or application examples are given in Appendix B. From the example, one may get 

more sense about the EP language that connects database management and programming 

language together. Many examples about database design, e.g., school administration database, a 

factorial function, and a directed cyclic graph, and their graphical presentations were provided in 

[51], [54]. Appendix D reiterated the school admin database in comparison with other data 

models. 

2.1 Approach and Objectives 

As we know, a function is a binary relation so that no two distinct members have the same first 

coordinator.  In other words, a relation f is a function iff it meets the following requirements:  

1. The members of f are ordered pairs. 

2. If <x, y> and <x, z> are members of f, then y = z.  

x is called an argument of the function f; and y the result of f by applying to x, and written as f x = 

y. In a different way of describing the relationships among a function and its argument/result pairs, 

f x is an application of f ; y is an image of x; and f is called a higher-order function where x and y 

are functions. The collection of all the (higher-order) functions is called the function space, or a 

λ-model [43], [7]. The functions in the space are interconnected with the relationships of function, 

argument, and image. 

This research is to propose a data type – EP Data Model, or EP Language. The EP data model has 

a data structure and operations against the data structure. An instance of the data structure 

represents a finite set of functions from the function space; and the functions are interconnected 

with the relationships of function, argument, and image. By extending (typed) lambda calculus, 

the operations against the data structure can be from arbitrary types to arbitrary types. In turn, the 

operations are expressed as data in the data structure, which treats data and arbitrary functions 

equally. The objectives of the proposal are the followings: 

1. The EP data structure is rich in database design, and sound in database update and database 

integrity. It is a practically effective data structure for data repository. 
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2. A few built-in query primitives against the EP data structure offer powerful set-oriented 

query expressions in the place of the relational algebra and Datalog. The query primitives offer 

optimized or the best system performance for the equivalent query operations.  

3. The EP data structure offers a language, the EP language that can be used to construct 

functions from arbitrary types to arbitrary types. This language is based on the lambda calculus 

having its λ−terms and β−reduction. This would allow any programming language to adopt the 

EP data structure. In other words, the EP data structure is the bridge merging the paradigms of 

database management and programming languages together. 

4. The EP data structure is rich for data communication in the place of XML. In a distributed 

computing environment where all the components support the EP data model, the data exchange 

protocol is the EP data model itself that offers application-oriented messages, and no data 

translation is needed.  

5. The EP data structure is extended to incorporate infinite data (or arbitrary functions). This 

would eliminate the necessity of a secondary language like JavaScript to carry functions in data 

communication. Further it provides a mechanism to treat data and triggers equally in data stream 

applications. 

3. Formal Definition 

This section gives the syntactical definition of the EP language. The definition hasn’t included the 

type system yet. 

Definition The following symbols are allowed in the EP language: 

 A countable set of constant symbols C;   

A countable set of identifiers (or called prepositional symbols) P;  

A countable set of variables V, each of which will have a range; and 

Parentheses: (, ) 

 

A variable $x has a range in the implemented EP system. For example: 

create fac $n:[$n > 0] = $n * fac ($n – 1); 

If there is no range declared for a variable, it means that the variable ranges all possible values. 

The range is not specified syntactically in this formal definition; but it exists semantically and is 

denoted as range ($x) when it is needed in the rest of this section. 

Definition Let Γ be the set of terms expressible in EP language: 
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1. v ∈ V � v ∈ Γ;  

2. p ∈ P � p ∈ Γ; 

3. c ∈ C � c ∈ Γ; or 

4. if M ∈ Γ, and N ∈ Γ, then M N ∈ Γ. 

 

Γ is the complete set of terms can appear in the EP language. M N is called an application term as 

usual in lambda calculus.  

Definition Let ℑ be the set of terms that can appear in a database: 

5. v ∈ V � v ∈ℑ;  

6. p ∈ P � p ∈ℑ; 

7. c ∈ C � c ∈ℑ; or 

8. Inductively, if M, N ∈ ℑ, and if M’s inner-most subterm is not a constant and N is not an 

application term including a variable as a subterm, then M N ∈ ℑ. 

It is certain that ℑ ⊂ Γ. As examples, 4 (constant), p1 (identifier), p2 (identifier), and $x (variable) 

are in ℑ. So do the terms p1 4, p1 $x; but not 4 p1 and p1 (p2 $x). The last constraint says that a 

database cannot extensively re-define a constant by constructing subordinators under the constant 

as a root. Further it also constrains that a node (or term) with variable(s) as subterm(s) cannot be 

applied as an argument to another node in a database.   

Definition  An EP database is a finite set D  ⊂ ℑ:  

1.  if M N ∈ D, then M ∈ D, N ∈ D.  

2.  if M ∈ D, and there is no N ∈ D  such that M N ∈ D, then M may (or may not) be assigned a 

term Q ∈ Γ (denoted M (tag ≡ Q), and it is required that FV (Q) ⊆ FV (M). 

For example, the textual presentation of the database in Fig. 1 would be: { SQ, SQ 2 (tag≡4), SQ 

3 (tag ≡9), Root, Root 4 (tag ≡2), Root 9 (tag ≡3), I, I 2 (tag ≡2), I 3 (tag ≡3), C, C SQ, C SQ Root 

(tag ≡I), C SQ SQ, C SQ SQ 2 (tag ≡16), C SQ SQ 3 (tag ≡81)}. The factorial function is defined 

in a database: {fac, fac 0 (tag ≡ 1), fac $n:[$n>0] (tag ≡ $n * fac ($n – 1)}. 

When M, M N1, M N2, …, M Nn are in a database, then M is viewed as having been extensively 

defined, and semantically equivalent to an abstraction in the lambda calculus. As an additional 



 10 

constraint as to be defined later, here N1, N2, …, and Nn are not overlapped both syntactically and 

semantically. 

The restriction FV (Q) ⊆ FV (M), here FV stands for the set of Free Variables, says that all the 

terms defined in a database must be closed. For example, fac $n (tag ≡ $n * $m) is not allowed in 

a database. This requirement bundles all the variables in Q with those in M.  

Note that in a term M (tag ≡ Q) of a database, here M is called a leaf node, all the variables in M 

will have their ranges no matter they are explicitly defined or not. Further, all the terms in Γ have 

either given or derived types under a given database D. Therefore, the EP language is a typed 

system though the type notion has not been formally introduced yet so far. Further work on types 

and polymorphism needs to be done with a guideline from [13]. 

 

Definition Given a database D, a term M ∈ Γ is a db-redex if 

1. M∈ P, but M ∉ D. 

2. M is an application term, e.g., M ≡ P Q, where P ∈ D, and Q ∉ D. 

3. M is a leaf node, e.g., M (tag ≡ Q). 

Definition A term M ∈ Γ is a normal form, denoted as nf (M), if there is not a db-redex in M as a 

subterm. 

Since variables are allowed, the beta-reduction has its correspondence in the EP language. For a 

lambda term (λ x. M) N in the lambda calculus, the beta-reduction is denoted as M [x := N]. 

Similarly a term M ∈ Γ in the EP language, M may have an environment [env] during EP 

evaluation. [env] is a set of variable-value assignments, e.g., [env] = {$x0 := V1; …; $xn := Vn}, 

where n >= 0. 

Definition Let D be a database, M ∈ Γ  is db-reduced to N, denoted as M →db N, if 

1.  M ∈ D, M is a leaf node, e.g., M (tag ≡ Q), then N ≡  Q [env]. Semantically equivalent to the 

β–reduction, here Q [env] is the term whose variables are substituted with their values 

provided in the [env]. The environment [env] is set to empty after the substitution. 

2.  M ≡ a, here a ∈ P, but a ∉ D, Then N ≡ ⊥. 

3.  M ≡ ⊥. Q, where Q ∈ Γ.  Then N ≡ ⊥. 

4.  M ≡ Q L, where Q ∈ D; L ∈ Γ.  

4.1.  N ≡ M Ni if there is a Ni such that M Ni ∈D, and there exists a term Ni’ such that L →db 

Ni’ and Ni →db Ni’, 
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4.2.   N := (M $x), and [evn] := [evn] ∪ [$x := nf(L)] if there is a term M $x ∈ D, and nf(L) ∈ 

range($x); or 

4.3.  N ≡ ⊥ if neither the condition 4.1 nor condition 4.2 is satisfied. 

Since an EP database defines functions, an additional constraint is needed to keep the integrity of 

databases. 

Definition Given a M ∈ D, for all the N1, N2, …, Nn such that M N1, M N2, …, M Nn ∈ D, then the 

database D must further satisfy the condition: range(N1) ∩ range(N2) ∩ … ∩ range(Nn) ≡ ∅. 

Here range(Ni) ≡ Ni if Ni ∉ V (variables). 

The semantics has been given in [54], [53], where the Church-Rosser, Consistency, and 

Soundness, and Turing-Computing completeness were provided. The idea is to encode all the 

prepositional symbols into the corresponding lambda terms in the pure lambda calculus; and all 

the reduction rules also are encoded to the beta reduction. Note that the syntax in [54] and [53] 

was not exactly following the grammar defined in this proposal. For example, all the lambda 

abstractions (then variables) were not explicitly presented in the data structure of the EP data 

model, but they were treated as constants. Then the reduction behavior (the beta reduction) of the 

constants then was presented as axioms by using applicative structures.  

2.3 Ordering Relations 

The set of lambda expressions in a database embed pre-ordered (reflexive, transitive, but not anti-

symmetric) semantically; and partially ordered (reflexive, transitive, and anti-symmetric) 

syntactically. The pre-ordering and the partial ordering relationships are carried by the function-

argument-value relationships. The partial orderings provide the theoretical guidelines for 

maintaining data integrity in data update and delete; and for improving system performance. Both 

partial orderings and pre-orderings provide a set of rich, built-in, and deductive operators for set-

oriented queries. The queries like:  

1. “tell me all the information about the student John Smith”, and 

2.  “is there a cycle between two vertices in a directed graph?”  

can be simply expressed by some of operators. See more discussion in [51], [54]. 

The introduction of the partial orderings brings a phenomenon not usual in the lambda calculus, 

e.g., the db-reduction rules by adding the partial orderings look not Church-Rosser. Appendix C 

provides a detail discussion, stating that the partial orderings are our intention for database 
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management; and that the db-reduction rules are still Church-Rosser by forbidding the db-

reduction process against the operands of the partial orderings. 

3. Related Work 

The EP data model can be viewed as a different approach to hierarchical data models. When a 

child has multiple parents. The EP data model takes one of the parents as the function, and the 

other parents as curried arguments. For example in figure 4 in Appendix D, the course CS101 

takes the argument College Admin (SSD John) and forms the new node College CS 

CS101 (College Admin (SSD John)). In the EP data model, both function and 

argument dominate the application (child) which preserves the semantics of hierarchical 

relationship (inclusion dependency). The removal of either a function or an argument implies the 

removal of the child. In [55], functions were called enterprises; and arguments as “participants”. 

This is how the terminology EP (Enterprise-Participant) came from. 

In short, the EP data model uses one type of links (solid arrows) for data sharing and the other 

type of links (dash arrows) for multiple parent-child relationship, while the virtual parent-child 

relationship approach of the traditional hierarchical data models has only one type of links 

(pointer) for both different circumstances.  

In comparing with traditional database management systems and programming languages, the EP 

data structure is the key that makes it different from the others. Here is a brief summary of the 

main areas the EP language finds its uniqueness. 

1. Built-in data structure for database programming languages. Like lists in LISP and ML and 

relations in Prolog, Pascal/R [4], and Machiavelli [35], the EP data structure is built-in for coding 

application programs. This would save the effort of constructing user-defined data structures or 

object classes in imperative languages. 

2. Data structure matching both database management and programming language. The 

infamous “impedance mismatch” said that the type systems in programming languages don’t 

match the data structure in data models [29], [33]. Relations offer functions from relations to 

relations via the relational algebra and relation transformers, but there is no efficient way of 

constructing functions from arbitrary types to arbitrary types [10]. Graph oriented data structures 

offer regular path expressions from sets to set, but the path expressions don’t provide a sound 

semantics against cyclic data as we discussed earlier. Hierarchical data structures offer advanced 

primitives for transitive closures, but they are not generic enough for arbitrary data, as we 

discussed earlier. The EP data structure generalizes the hierarchical data structures and adopts the 
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structures of the function-argument-image relationship in the function space. Based on the 

lambda calculus, the extended λ−terms are the form that identifies the nodes in a database; and 

expresses queries from λ−terms to λ−terms; and carries messages in data communications. It is 

sufficient to make the EP language unique in approaching the issues of database programming 

languages – unifying the paradigms of database management and programming language.  

3. Data exchange model for data communication in distributed database environments. Semi-

Structured Database is the most accepted data exchange model so far. It is either viewed as a 

hierarchical data model or a graph data model [11]. If it is a hierarchical model, then the multiple 

parents relationship with children is the major obstacle in data presentation, as we discussed 

earlier. If it is a graph model where cyclic data is allowed, then expressing path expressions 

against cyclic data is a controversial. Using the same EP data structure and the extended λ−terms, 

however, all the issues including infinite data (arbitrary functions) around data communication 

have their resolutions under the EP data model.  

4. Data structure that supports a higher degree of polymorphism in querying data. Appendix D 

gave a few examples, where the query expressions against relational databases and graph oriented 

databases are more tedious and complicated than those against EP databases. The reason is the 

built-in primitives (pre-ordering and partial ordering relations, such as <=a, <=A, etc.) that are 

uniquely available in the EP language. Polymorphism allows a function to take operands with 

different types [14]. If we view a database application as a type, then different database 

applications are different types – different schemas. However, when we express queries against 

data with pre-orderings or partial orderings, we have to know and reference the data schemas in 

detail in the relational data model or a graph data model. Then a query against a database 

application cannot be reused against another. But the ordering relations in the EP language are the 

polymorphic functions that takes data from different database applications as argument and 

outputs ordering data.  

Viewed differently, the EP ordering relations (then transitive [54]) are actually transitive closures. 

In the relational database application, some hierarchical data like college – department – course – 

student – grade is a transitive closure, but the length of the ordering is known in data schema. 

Then the query expressions for the ordering must reference the exactly attribute names in a graph 

oriented data model or the relational data model. But this is not necessary in the EP language and 

in the composite objects in [29]. On the other hand, some hierarchical data like assembly = 

{parts, assembly} has unknown length of ordering during data schema design time. Then 

the query is given in Datalog in the relational data model; and in regular path expression in semi-
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structured data. The EP ordering relations have the similarity in this case, but go further for more 

expressiveness by incorporating the db-reductions. 

5. The data structure with the partial orderings (<=A, <B, etc.) that precisely defines the 

behaviors of database update (see more discussion in Appendix C and [54]): Removal of a node M 

implies the recursive removal of all the nodes N, where N <A M or N <B M. Updates in the 

relational model, hierarchical models, and graph models are problematic in some ways as we 

discussed earlier. The problem with the relational model is discussed in [18], [1]. The addition of 

primary keys and foreign keys reduces the update anomaly. But the problems from hierarchical 

models, that have been discussed earlier, are inherited. With graph data models, update is done by 

adding/deleting individual edges or values; the nodes related by the EP partial orderings 

obviously cannot be removed at one shot according to the application semantics. 

6. Data structure allowing arbitrary functions including triggers. Triggers are the additional 

mechanism on the top of databases; and the triggers in relational DBMSs are not sufficient for 

data stream applications [15], [5]. Triggers as a part of functions in the EP language, however, are 

equally treated as data in the EP data structure. 

7. Data structure with embedded trees for better performance. One of the main reasons for the 

popularity of hierarchical data structures in programming language systems and data 

presentations is their support of better performance. Since the EP data structures are tree-

structured with multiple dimensions, it is expected that the EP language improves the system 

performance. For example, the recursive queries in EP language are optimized while it is hard in 

Datalog. 

4. Future Work 

The EP data model or language has been proposed in [51], [54], [55].  The future work is to 

implement the EP language systems with optimization, revisit the previous semantics for the EP 

language, and have a few case studies in traditional database applications and data streams. 

1. Implementation. A language system for the EP data model will be implemented that has the 

EP data structure, the db-reduction rules against the data structure, the ordering relations, set-

oriented operations, and data update operations. The implemented system further can express 

triggers and arbitrary functions by expressing the functions as data in the EP data structure.  

2. Optimization. All the operations and the reductions will be optimized in the sense that the 

tree structures embedded in the EP data structure are the guiding structure in implementing the 
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EP language. The implemented EP language system shall be demonstrated with the best 

performance in comparison with the traditional database applications. The performance is reached 

under the generic optimization strategy.  

3. Case Study. This research shall show a few traditional database and data stream applications. 

The case study shall demonstrate that that the EP data model is not only a toy language, but also 

can be a real system for database design, software development, and data communication. The 

case study shall further demonstrate that the effort with the EP data model is minimized in 

software development and maintenance. The examples on data streams will also demonstrate that 

the triggers and arbitrary functions can be handled efficiently in the EP language. 

4. Revisit of the EP semantics. The EP semantics has been studied in [53], [54]. But it was 

based on the previous version of the EP language, where variables, types, and sequence of 

statements were not explicitly introduced. Although the presentation of the EP semantics has 

fully covered all the mathematical material, a revisit would simplify the presentation and refine 

the work precisely along the latest syntax of the EP language. 
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Appendix A.  Latest Version of EP Grammar 

 

input:  

 | input line  

; 

 

line:   ';' 

 | term ';'   

 | bin_exp ';'   

 | ‘typeof’ term ':' term ';'  

; 

 

term: '(' term ')' 

 | atom_term 

 | application  

 | abstract 

 | error 

; 

 

atom_term: IDENT 

 | INTEGER 

 | variable 

; 

 

variable: '$' IDENT range 

; 
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range: 

 | ':' '[' bool_exp ']'  

; 

 

application: term atom_term   

 | term '(' term ')'  

 | term  '(' bin_exp ')'  

 | '(' bin_exp ')'  

 | uni_optr term  

 | ‘select’ term_list where_clause   

; 

 

abstract: ‘fun’ variable '.' term   

 | '{' set_terms '}'  

 | update_optr term_constraint assign_value where_clause   

; 

 

uni_optr: next | prev | Anext | Bnext | Aprev | Bprev | Aptr | Bptr  

 | Afirst | Bfirst   

/* navigational operators, equivalent to the ordering operators <=a, <=A, etc.. */ 

; 

 

update_optr: ‘create’ |’update’ | ‘delete’ 

; 

 

bin_exp: bool_exp 

 | num_exp 

 | bin_assign 

; 

 

term_list: term 

 | term_list ',' term 

; 

 

bin_assign: term ‘:=’ term  

   

; 
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assign_value : 

 | ‘:=’ term_list  

; 

 

where_clause :  

 | WHERE bool_exp  

; 

 

 

 

term_constraint : term  

 | term ':' term  

; 

 

 

num_exp: term 

 | num_exp num_optr num_exp 

; 

 

num_optr: ‘+’ | ‘*’ | ‘/’ | ‘%’ 

; 

  

set_terms :    

 | set_element  

 | set_terms ',' set_element  

; 

 

set_element: term  

 | ‘{‘ term_constraint ',' term ‘}’ option 

; 

 

option :   | ‘+’ /* only used in schema, 1 or more instance is 

allowed*/ 

|’*’  /* only used in schema,0 or more is allowed */ 

/* more operators are needed in the future */ 

; 

 

bool_exp:  atom_bool  
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 |  '(' bool_exp  ')'  

 |  bool_exp  ‘and’ bool_exp   

 |  bool_exp  ‘or’  bool_exp 

 |  ‘not’ bool_exp 

; 

  

 

atom_bool: term  bool_optr term 

; 

 

bool_optr: ‘amem’ | 

  ‘aSubetOf’ | 

  ‘<’ | ‘>’ | ‘==’ | ‘<>’ | ‘<=” | ‘>=’ | 

  ‘<A’| ‘>A’ | ‘<=A’ | ‘>=A’ | 

  ‘<B’| ‘>B’ | ‘<=B’ | ‘>=B’ | 

  ‘<a’| ‘>a’ | ‘<=a’ | ‘>=a’ | 

  ‘<b’| ‘>b’ | ‘<=b’ | ‘>=b’ | 

; 

 

Appendix B.  Examples in EP language 

The examples are based on the latest version of the EP language system.  

create a b = 4; /* create nodes a and a b; assign a b = 4 */ 

create  c = a;  /* create node c */ 

 

a b ; 

=> 4 /* result */ 

 

c b ; 

=> 4 /* a and c are equal */ 

 

create A B = 10; /* create A and A B, and assign A B = 10 */ 

create V $n $m = $m $n; /* create node V, V $n, V $n $m, assign 

     V $n $m = $m $n, since there is no 

ranges 

specified for $n and $m, the both  

variables are un-typed */ 
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V B A; /* B matches $n; and A matches $m */ 

=> 10 

 

create AA $n $m = certain; 

create AA BB = uncertain; 

create AA CC DD = fuzzy; 

 

AA BB ; /* EP matches an extensive definition first */ 

=> uncertain; 

AA CC DD; /* EP matches the extensive definition first */ 

=> fuzzy; 

AA 8 9; /* variables are considered last after there is  

  no match with extensive definitions */ 

=> certain; 

 

typedef complex = {<c, {<d, integer>}>}; /* define a type “complex” */ 

create A:complex ={<c, {<d, 123>}>}; /* define an instance of type 

complex */ 

create C:complex ={<c, {<d, 321>}>};  /* define an instance of type 

complex */ 

 

create TT $n : [$n amem complex] = (($n c d) * 3);  

/*TT $n has the type complex */ 

create UU $n : [$n amem complex c d] = ($n * 2); 

     /* UU $n has the type (complex c d) */ 

 

TT A; 

=> 369 

 

UU (A c d); 

=> 246 

 

The next example is to simulate a loop in imperative languages. When the variable $j < 10, print 

the $j, increate the count value by 1, and recursively call loop ($j + 1) until the variable $j (or 

named $k, as EP is implemented) == 10. Note that a leaf node can be assigned as the value a 

sequence of statements. Allowing a sequence of statements in EP language fully simulates the 
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function/procedural definitions in imperative languages. Though it causes side-effects that is 

against the functional programming language principal, say losing the lazy evaluation possibility 

and reducing the degree of parallel computing,  but it does add the welcomed, efficient flexibility 

the imperative languages have. 

 

create count = 0; 

create loop $j : [$j < 10] = $j,  

update count = count + 1, 

      loop ($j + 1); 

create loop $k : [$k >= 10] = END; 

 

loop 4; 

4, 5, 6, 7, 8, 9, END 

count; 

=> 6; 

The following example simulates a trigger: when the temperature is exceeding 90 degree, then 

trigger air conditioner. 

 

create action $n: [$n < 90] = doing nothing; 

create action $m: [$m >= 90] = TriggerAirConditioner $n;  

/* TriggerAirConditioner is a pre-defined */ 

 

create temperature = 0; 

create monitorTemperature $input = (update temperature = $input), 

      action temperature; 

 

monitorTemperature 60; 

=> doing nothing 

 

temperature; 

=> 60 

 

monitorTemperature 99; 

=> TriggerAirConditioner 99  /*the pre-defined function is called */ 

 

temperature; 
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=> 99 

 

In this following example, the schema (typedef) is given for the school administration in the 

Figure 5 of Appendix D. Both schema definition and instance data are stored together. The 

schemas (types) are viewed as (identity) functions. 

 

create SSD; 

typedef SSD human = {<name, string>, < birth, integer>}; 

create SSD John : SSD human = {< name, John Smith>, < birth, 060476>}; 

create SSD Mike : SSD human = {< name, Mike Lee>, < birth, 060466>}; 

create SSD Dave : SSD human = {< name, Dave Feng>, < birth, 120570>}; 

typedef classGrade = {A, B, C, D, E, F}; 

typedef college = {< principle, SSD human> ,  

     < admin, {< SSD human, { < Major, college dept>,  

      < Enroll, integer>,  

      < RegNum, integer> 

     } 

        > *, 

       < chair, string> 

       } 

     >, 

     < dept, {< Head, SSD human>, 

      < class, {< college admin (SSD human),  

     {< grade , classGrade>} 

        > * 

       } 

      >* 

     } 

     > *}; 

 

create Purdue: college =  

  {< principle, SSD John>,  

   < admin, {< SSD John, {< Major, Purdue CS>, 

          < Enroll, 090300>, 

          < RegNum, 123455> 

          } 

      >, 
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     < SSD Dave, {< Major, Purdue Math>, 

     < Enroll, 0008>, 

     < RegNum, 8988> 

        } 

     > 

    } 

   >, 

   < CS: dept, {< Head, SSD Mike>, 

       < CS101:college dept class,  

    {< Purdue admin (SSD John), A >, 

     < Purdue admin (SSD Dave), B>}> 

      } 

   >, 

   < MATH:dept, {< Head, SSD Mike>, 

       < MATH1: class, {<Purdue admin (SSD John), B >}> 

      } 

   > 

  }; 

 

A few SQL-like query expressions. 

 

Find all the information about the Department of Computer Science at Purdue University: 

 

select $x where $x <=A Purdue CS; 

 

The output is: Purdue, Purdue CS, Purdue CS Head, Purdue CS101, Purdue 

CS101 (Purdue Admin (SDD John)), Purdue CS CS101 (Purdue Admin (SDD 

John)) Grade. 

 

Find all the students who registered at SSD (Social Security Department), and obtained the grade 

A in CS101; and print their names, SSNs, and Majors. 

 

select $student name, $student SSN, Purdue Admin $student Major  

where $student <=A SSD and Purdue CS CS101 (Purdue Admin $student) 

Grade == A; 
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Appendix C. Partial Orderings 

In the expression: 

SQ 2 <A SQ. 

It will be true if SQ 2 is not reduced by the reduction rules. But it would be false if SQ 2 was 

evaluated to 4. Are the db-reduction rules Church-Rosser by adding the partial orderings like <A 

and <B as constant functions?  

As intended in [54], we are not expecting any reduction on the operands of the partial orderings. 

The reason is that the equation =EP with the db-reductions including the β-reduction is no longer 

valid under the syntactical oriented operators (partial orderings). When we evaluate SQ 2 <A 

SQ, we are not allowed to reduce the expression SQ 2.  

Nevertheless, the syntactical oriented orderings are the functions in the function space. To 

express them in a lambda calculus where the CR is a dominant principal, we can view that their 

operands are restricted to the range of the Godel numbers of the lambda terms (Definition 6.5.6 in 

[7]). A Godel number uniquely identifies a syntactical λ−term. 

To be more meaningful in database practice, we should further limit ranges of the operands of the 

partial orderings to the set of terms defined in a given EP database. For example, the expression 

for the mathematical functions: C SQ SQ 2 <=A C is true, but C SQ Root 2 <=A C is 

false as shown in Figure 1. Note that the partial orderings presented in [54] took the entire infinite 

set of the db terms  as the range, which was not different from what we said here. 

The significance of the syntactical oriented orderings in the EP database is further explored with 

the math functions in Fig 1. If we write the definition of the node C SQ textually, it is  

C SQ = {<Root, I>, <SQ, {<2, 16>, <3, 81>}>}. 

But the EP data model allows two alternative presentations that semantically (in the sense of db-

reductions) are equivalent to the previous one.  The first alternative is: 

C SQ = {<Root, I>, < SQ, SQSQ>}, where SQSQ is defined in the database as: 

SQSQ = {<2, 16>, <3, 81>}. 

The graphical representation is in the Fig 2. 

The second alternative as graphically represented in Fig 3 is: 
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C SQ = {<Root, {<2, 2>, <3, 3>}>, <SQ, <2, 16>, <3, 81>}>}. 

We said that the three representations are semantically equivalent under the db-reductions 

because the following expression is reduced to the same result along with any of the 3 

representations: 

C SQ SQ 2 -> 16. 
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Fig 1. Original Presentation of Math Functions in [ ]
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Fig 2. First Alternative Presentation of Math Functions in EP data model
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Fig 3. Second Alternative Presentation of Math Functions in EP data model
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Allowing the different presentations for the same functions happens to have its usages in database 

applications (see more discussion in [54]): 
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1. Data sharing or avoidance of data redundancy. In many circumstances, an object needs to 

be shared by other objects. The shared object is an attribute of the others; and it has a solid arrow 

pointing to it. For example, John and Joe are both CS students, then their majors shall point to 

the (College CS) via solid arrows in Figure 4. If John is to be removed from database, then 

College CS will still retain in the database. In this case, it is not true that College Admin 

(SSD John) Major <=A College CS. 

2. Data Ownership. In other circumstances, an object needs to be owned by other object. 

The owner is a function; and the given object is an application of the function. For example, the 

CS department is a part of College. When a college is to be dispended, then CS department will 

obviously be dispended too. This is called inclusion dependency in the relational database; and 

parent-child relationship in hierarchical data models. In this case, it is true that College CS 

<=A College. The EP data model has another unique way of representing data ownership. 

That is the argument – application relationship. For example, the argument SSD John has an 

application College Admin (SSD John). Then College Admin (SSD John) <B 

SSD John.  

 


